
Enabling Robots to Find and Fetch Objects
by Querying the Web

(Extended Abstract)

Thomas Kollar, Mehdi Samadi, Manuela Veloso
School of Computer Science, Carnegie Mellon University

tkollar@cmu.edu, {msamadi, mmv}@cs.cmu.edu

ABSTRACT

This paper describes an algorithm that enables a mobile
robot to find an arbitrary object and take it to a destina-
tion location. Previous approaches have been able to search
for a fixed set of objects. In contrast, our approach is able
to dynamically construct a cost function to find any object
by querying the web. The performance of our approach
has been evaluated in a realistic simulator, and has been
demonstrated on a companion robot, which can successfully
execute plans such as finding a“coffee”and taking it to a des-
tination location like, “Gates-Hillman Center, Room 7002.”

Categories and Subject Descriptors

I.2.9 [Computing Methodologies]: Robotics

General Terms

Algorithms

Keywords

Robotics, Object Search, Web, Cyber-physical systems

1. INTRODUCTION
Our aim is to make robots that can interact with peo-

ple in a natural and intuitive way. Toward this end, we
look at a problem domain where people ask a robot to find
an object and then have the robot deliver the object to a
specified destination. This is a challenging problem since
people will specify object names using open-ended natural
language, leading to many distinct queries. Humans address
the variability in the query by using common-sense knowl-
edge. For example, if a person is asked to find and deliver the
object “coffee,” a person easily knows that “coffee” is likely
to be found in the “kitchen.” Robots, however, generally
have limited access to such knowledge.

To address this limitation, we enable robots to access the
web when they are missing task-related knowledge. In the
object-finding domain this knowledge relates objects to lo-
cations; for example, assuming the robot has no prior ex-
perience with an object, such as “coffee,” the robot will
search the web. Using the results of the web search, the
robot is able to predict that a “coffee” is generally found in
a “kitchen,” instead of in a “printer room.” Our approach

Appears in: Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems
(AAMAS 2012), Conitzer, Winikoff, Padgham, and van der Hoek (eds.),
4-8 June 2012, Valencia, Spain.

Copyright c© 2012, International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). All rights reserved.

dynamically incorporates these predictions into a cost func-
tion, which minimizes the distance the robot travels and the
number of interactions it has with people, while at the same
time maximizing the the probability that an object will be
found in each of the visited locations. The inferred multi-
step plan consists of a sequence of locations to visit and
questions to ask people.

We evaluate the robot’s performance by executing plans
to find 80 objects in a realistic simulator and have demon-
strated our approach on a companion robot. This work
builds off of OpenEval [4], which is able to evaluate the
probability of arbitrary facts (predicates) by querying the
web.

2. APPROACH
To command a robot to find and fetch objects, people

specify a query object (e.g., “coffee”) and a place to which the
object should be taken (e.g., “Gates-Hillman, room 7002”);
the robot infers a plan to find the object and take it to the
destination. Our robot overcomes its limitations in object
detection and manipulation by asking humans for help [3].

We formulate the problem of finding and fetching objects
as maximizing a utility function. If O is an object name
(e.g., coffee), then the problem can be formulated as finding
the plan that maximizes the utility function U :

argmax
plan

U(plan|O) (1)

The utility of a plan is broken down into the utility of
each element: U(plan

i
). Each element of the plan (plani)

visits a location and asks for an object from a person.

U(plan|O) =
N∑

i=1

Ui(plani
|O) (2)

The utility Ui consists of three components:
• The probability of the plan. We approximate this term

as the probability of a location in the environment (e.g.,
“kitchen”) given a query object (e.g., “coffee”). This
probability is high when the location is likely to contain
the object.

• A reward for traveling as little as possible. This term
is computed by subtracting the distance traveled from
the maximum distance the robot could travel for the
current component of the plan.

• A reward for the number of interactions that the robot
has with a person. This term is computed by subtract-
ing the number of interactions required to search a lo-
cation from the maximum number of interactions the



robot can have for the current component of the plan.
The first component (the probability of the plan) requires

the system to compute the probability of finding an object in
a location. This term connects a query object (e.g., “coffee”)
to a location type in the environment (e.g., “kitchen”). Con-
necting a query word for an object to a place is challenging
because there are thousands of different object names people
can use.

2.1 Querying the Web
To evaluate the probability of a plan, we have developed a

general predicate evaluator called OpenEval, which returns a
probability distribution over instances of predicates [4]. Un-
like other approaches which read the web [1], OpenEval eval-
uates the validity of existing predicates and returns results
immediately. For this paper, OpenEval has been trained on
a single predicate, locationHasObject(L, O), which is true
only when location L contains object O:

p(L =kitchen|O = coffee)

, p(locationHasObject(kitchen, coffee)) (3)

At training time a small number of predicate instances,
such as locationHasObject(kitchen, refrigerator), are provided.
A web search for {“kitchen”, “refrigerator”} returns a set of
documents (web-pages), from which text snippets are ex-
tracted. These text snippets are treated as ground truth
examples of the predicate instance, and a SVM classifier is
trained to discriminate between different location types. Be-
cause Equation 3 is multinomial over locations, OpenEval
only needs positive training examples of location / object
pairs. At test time, OpenEval will evaluate the probability of
a new predicate instance, such as locationHasObject(kitchen,
coffee) by converting the input relation instance to a search
query, such as {“coffee” “kitchen”}, and downloading the
highest ranked web pages. This set of documents (web-
pages) is classified into one of the location types; a proba-
bility is computed according to the proportion of web-pages
that is classified as being in a “kitchen” given the object
“coffee.”

2.2 Optimization
The system takes as input the name of an object (e.g.,

“coffee”), a destination (e.g., “Gates-Hillman, room 7002”),
the current location of robot, a set of example predicates
that are used to train OpenEval, and a map that includes the
type of each room (e.g., “office,” “kitchen,” “bathroom,” or
“other”). A cost function is then instantiated given the query
object (Equation 1), and our approach uses beam search to
find a sequence of candidate locations that maximizes the
utility. The robot then executes the corresponding plan,
recomputing the plan after visiting each location.

3. EVALUATION
We have evaluated our approach by showing that OpenEval

is able to correctly categorize the location of novel objects
and locations. Table 1 shows the probability of different
test objects for each of the four location types. The only
erroneous prediction is that bathrooms likely contain cups.

To show that our approach is able to search for objects,
we have simulated a semantic map of 305 spaces over three
floors of an office building. We have evaluated the effective-
ness of our approach against two baseline approaches on 80

commands for 40 different object types that were not a part
of the training set for OpenEval. The first baseline (frontier)

searches nearby locations, using the rewards from Section 2,
but not the probability returned by searching the web. The
second baseline (ESP) provides a baseline similar to previ-
ous work [2]. It uses all the terms in Section 2, but instead
of searching the web for relevant documents, it searches data
collected from ESP [5].

Object Location Types

Bathroom Printer Room Kitchen Office

laptop 0.07 0.23 0.13 0.56

papers 0.1 0.57 0.12 0.22
cup 0.36 0.16 0.29 0.18

coffee 0.22 0.21 0.3 0.28

Table 1: The probability that OpenEval assigns to

different locations given each novel object type. The

location type which has the maximum probability is

shown as bold.

The frontier approach finds objects in an average of 45.4
visited locations (standard error of 6.8), ESP finds objects
in an average of 31.56 visited locations (standard error of
5.64) and our approach finds objects in an average of 19.21
visited locations (standard error of 4.62). This indicates a
clear downward trend in the number of steps required to
find query objects when using the web to retrieve knowl-
edge about the physical environment. The number of vis-
ited locations is relatively high because a few objects require
searching many (or all) locations in the environment.

Sometimes our approach will retrieve a reasonable loca-
tion for the object, but the test environment does not con-
tain the object in that location. For example, our approach
searches bathrooms first because “cleaning liquid” can often
be found in a “bathroom” in homes, even though bathrooms
in our office environment do not contain this object. In
addition, sometimes our approach will infer the correct lo-
cation, but it may still take several steps before the object is
found. For example, since not every “office” has a “laptop,”
“jacket,” or “hat” (e.g., often people have desktops, or don’t
wear hats), our approach will visit a few locations before
finding the object. Finally, we have demonstrated our ap-
proach on our companion robot (CoBot), showing that it is
successfully able to find a “coffee” in the “kitchen” and take
it to “Gates-Hillman, room 7002.”

4. REFERENCES
[1] A. Carlson, J. Betteridge, R. C. Wang, E. R. H. Jr., and

T. M. Mitchell. Coupled semi-supervised learning for
information extraction. In Proceedings of WSDM, 2010.

[2] T. Kollar and N. Roy. Utilizing object-object and
object-scene context when planning to find things. In
Proceedings of ICRA, pages 4116–4121, 2009.

[3] S. Rosenthal, J. Biswas, and M. Veloso. An effective personal
mobile robot agent through symbiotic human-robot
interaction. In Proc. of AAMAS, pages 915–922, 2010.

[4] M. Samadi, M. Veloso, and M. Blum. Evaluating correctness
of propositions using the web. In Workshop on Learning by
Reading and its Applications in Intelligent
Question-Answering, IJCAI, 2011.

[5] L. von Ahn and L. Dabbish. Labeling images with a
computer game. In Proc. of SIGCHI, pages 319–326, 2004.


