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Abstract— In this paper, we address the problem of recogniz-
ing multiple known objects under partial views and occlusion.
We consider the situation in which the view of the camera
can be controlled in the sense of an active perception planning
problem. One common approach consists of formulating such
active object recognition in terms of information theory, namely
to select actions that maximize the expected value of the
observation in terms of the recognition belief. In our work,
instead we formulate the active perception planning as a
Partially Observable Markov Decision Process (POMDP) with
reward solely associated with minimization of the recognition
time. The returned policy is the same as the one obtained
using the information value. By recognizing observations as
a time consuming process and imposing constrains on time,
we minimize the number of observations and consequently
maximize the value of each one for the recognition task.
Separating the reward from the belief in the POMDP enables
solving the planning problem offline and the recognition process
itself becomes less computationally intensive. In a focused
simulation example we illustrate that the policy is optimal in
the sense that it performs the minimum number of actions and
observation required to achieve recognition.

Index Terms— ignore

I. I NTRODUCTION

Object recognition is still an open problem. From the
choice of features to the actual classification problem, we are
still far from a global recipe that would allow for a complete
discriminative approach to recognition. The large majority of
object recognition community is focused on offline, database
driven tasks. State of the art is measured with respect to
performance in datasets gathered from web images such
as the Pascal challenge datasets. Two problems arise from
the use of such datasets. The first is the large variability
of images. The second is the incapacity to look at the
scenes from different poses that would provide different, and
probably more discriminative, views of objects that would
help to segment objects from the background.

In the context of a robot moving in a constrained environ-
ment, the object variability is no longer present. The chairs in
an office building are all very similar to each other and will
be the same for long periods of time. For a robot moving in
such a building, the model for a chair can be much simpler
and efficient than a model built from web datasets. So, in
this project, we assume that recognition can be feasible in
such an environment.
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However, in spite of having highly accurate models of each
object in a room, the robot may not be able to completely
distinguish between two different types of objects. Both self-
occlusion and occlusion caused by other objects may cover
the distinctive parts of an object, making the robot unable
to distinguish between two object classes: the object classes
are ambiguous given the occlusion. This ambiguity appears,
for example, between a computer screen and a card box.
Although they may look the same when the robot is directly
in front of them, if the robot looks to the side of the screen
it should be able to correctly differentiate the screen from
the card box. Since the robot will never have access to all
the views of the object at a given time instant, the type of
ambiguity described arises even when the robot performs
3D object recognition. The robot only has access to partial
information on the object until it decides to move with
relation to the object.

We assume that most of the ambiguity in object recogni-
tion can be removed by having the robot looking to objects
through different angles. I.e., we assume that, in spite the
ambiguity between object A and object B, there is always an
angle in A or B from which the objects can be disambiguated.

There is a vast literature on active perception and the
reader may find a detailed overview of the field with special
focus on multi-view object recognition at Chen et. al. [1].
In recent years, the main contributions to the field concern
the algorithms used to come up with a policy. In the early
2000’, approaches (e.g. [2], [3]) focused on information
theory arguments to make decisions. The next viewpoint in a
task was selected in order to minimize an entropy function,
i.e., to minimize the uncertainty in the state. The cost of
the whole plan in terms of time and energy is neglected.
In a recent work of R. Eidenberger and J. Scharinger, [4],
an action control cost is added to the value of information
reward. In this work, we consider the problem solely as the
minimization of time to recognition. Since time is spent in
both image processing and movement actions, by minimizing
time we guarantee that the viewpoints selected for image
processing are the most informative.

To minimize the number of movement actions and the
time spent in image processing we formalize our problem as
a Partially Observable Markov Decision Process, POMDP.
The partial observability arises from the incapacity of the
robot to see the whole object from the same viewpoint.

The formalization of active object recognition as a
POMDP is also present in some recent works. In particular
we refer to [4]. However, in their work, POMDP rewards are
linked to the expected minimization of information entropy
from the next observation. In practice, the reward of future



actions needs to be computed online, since it depends on the
entropy of the current state. The dependency of rewards on
the current state means that the robot has to solve a POMDP
after each observation, which is a very costly process. In our
approach, we assign negative rewards to all time consuming
actions and all the rewards are defined a priori. This enable
us to solve the POMDP problem offline.

Another important feature of the current work is that
we only try to recognize one object at a time. In our
formulation of the POMDP problem, states are linked to
object orientation with respect to the robot. By considering
only individual objects, we ensure that all possible statesare
known a priori, which is essential for solving the POMDP
offline. In their work, [4], the authors aim at having the robot
identifying several objects at the same time. This means that
the state space is not initially known and hence the POMDP
solution cannot be determined beforehand.

Contrary to what can be found in the literature and without
loss of generality, we define our state as the orientation
between the robot and the object and neglect the relative
distance between the two. It is assumed that the robot is
able to control its distance to the object or that this distance
will not pose a problem to recognition. The assumption is
valid since we could use distance invariant features for object
recognition, or we could just expand the number of states in
our problem to accommodate relative distances between the
robot and the object.

The main contribution of this work is how we represent
the active object recognition as a POMDP problem. Our
objective is to minimize the overall time spent by the robot
in the object recognition task. As such, we want to minimize
not only the time spent on movement and image processing,
but also the time spent on planning. Solving a POMDP is
still computationally expensive and we do not wish to solve
it online. By defining all the problem offline we only need
to solve the POMDP once and thus gain access to a policy
which can be used online in a time efficient fashion.

This paper is organized as follows: In Section II, we
present the approach overview. In Section III we formalize
our problem as a POMDP, in Section IV we present our ex-
periments and results and in Section V we draw conclusions
and present future work.

II. A PPROACHOVERVIEW

In our object model, instead of associating one object to
each state and constructing a 3D model for the object, we
consider all the possible orientations of the object with rela-
tion to the robot. Each orientation for each object is a state.
For each state we can retrieve an observation. For example,
let N = {n1, ..., nN} be a set of N objects, each with M pos-
sible orientations. The total number of states related to ob-
jects will beS = {s1,1, s1,2, ..., s1,M , ..., sN,1, ..., sN,M}. To
these states we may have observationsO = {o1, o2, ..., oO},
where O < N × M . Due to ambiguity in states with
relation to observations, there is not a direct relation between
observations and states, i.e., observations provide us with
only partial information with respect to the object and its

orientation. The 3D structure of the object is coded by the
state transitions when the robot moves. If the robot decidesto
rotate left from statesni,m it will end up in statesni,m+1. To
each of these states there is an associated observationoni,m

and oni,m+1 which may be the same. The object structure
is thus represented by the fact that for the objectni we can
have access to observationoni,m+1 if we rotate left after
observingoni,m. One example is provided in Figure 1. In
this figure we have one object, a cube, and we are only
considering 4 possible orientations, which give rise to 4
possible states. From each of the states we there is a single
possible image which can be retrieved. However the same
image can correspond to more than one orientation. The 3D
shape of the object constrains the order of images that the
robot can obtain when it rotates.

The correct identification of the object is then mapped to
the identification of at least one of its possible orientations.
The robot is able to identify the objectni ∈ N if it is able
to do one of the following: (i) identify one of the object M
statessni,m; (ii) have uncertainty over a set of states, all
belonging to the same object. In other words, the robot will
do a correct identification of the objectni if and only if its
belief distribution respectsbj,k = 0, ∀j 6= ni.

III. POMDP FORMULATION

We formulate our POMDP as a tuple (S,A, O, T , Ω,
R, b0), where:
S is the set of states;
A is the set of actions;
O is the set of observations;
T is the set of conditional transition probabilities;
Ω is the set of conditional observations probabilities;
R is the set of rewards;
b0 is the initial belief.
States

States are the object orientations with respect to the robot. If
we consider that those orientations are spaced with angles of
∆θ, we haveM = 2π/∆θ per object. For a set of N objects,
the total number of states would beN×M . Furthermore, we
have an extra state, theSink, where the robot enters after an
attempt to identify the object. In the case of our example in 1
our object is a cube and thus we need∆θ = π/2 which lead
to 4 states per object. For two cubes we have2× 4+ 1 = 9
states:S = {s11, s12, s13, s14, s21, s22, s23, s24, Sink}
where, e.g,s11 corresponds to an orientation ofθ = 0 of the
object 1 with relation to the robot ands24 corresponds to an
orientation of3π/2 of object 2 with relation to the robot.

The advantage of this representation is that it enable us
to make a direct connection between states, orientations, and
movement actions.

Actions
Actions can be divided in three groups:Movement, Observa-
tion and Identification. We assume that the robot is moving
at a constant distance from the object and the onlyMovement
actions are rotate left or rotate right. Both actions correspond
to a rotation of∆θ, one clockwise and the other counter
clockwise. TheObservationaction involves processing a



Fig. 1. Example of how one object is defined. A state corresponds to an orientation of the object with relation to the robot. We move states by applying
movement actions such as rotate left. At any given state the robot may choose to do an observation. In the example, an observation corresponds to the
construction of a color histogram.

2d image of the object taken by the robot at its current
orientation. Identification actions correspond to the act of
attempting to identify the object. The identification of an
object is equivalent to the identification of one of the states
corresponding to the object. In the previous example of two
cubes, the correct identification of the object 1 corresponds to
the identification of at least one of the statess11, s12, s13, s14.

The set of actions is thus defined as:

A = {rotateLeft;

rotateRight;

observe;

identify1;

identify2;

...;

identifyN},

where N is the total number of objects being considered.
Observations

Observations are the result of processing one image from

the object at the current orientation. They form a discrete
set, since we are only observing the object from a finite set
of orientations. We assume that the observations from each
orientation are all known a priori. In this context, processing
one image refers to features retrieval and image matching
and theobservationaction becomes a classification process,
where the features of the new image are compared with the
a priori expected features for each state.

If the features chosen were good enough to completely
define the object, all states would be connected to an unique
observation and our problem would be reduced to a Markov
Decision Process. However, this is rarely the case and
commonly the features and the matching algorithm are not
discriminative enough. If we cannot discriminate two or more
states at all, we assign them the same observation. If we just
do not trust enough in the classification, we consider the ob-
servations as different, but assign them different probabilities
in the observation table.

For the POMDP formulation, the observations are a set
O = { o1, o2 , ... , oO, od}, whereO < N × M is



the number of different observations possible andod is the
null observation obtained for all the actions exceptobserve.
The type of features and matching algorithms used are not
relevant from the POMDP formulation perspective. What
matters is the classification output and all the computer vision
algorithm can be treated as a black box. In Section IV-C,
we will show how, for the specific example of this paper,
we process the image from acquisition to an observation
probability.

Transitions
MovementActions:
The actionrotateLeft corresponds to a rotation of∆θ and
as such shifts between states of the cube in an ascend-
ing order: if we start with an orientation ofθ = 0 and
rotate left we end up with an orientation ofθ = ∆θ.
In terms of states for the object 1, this is equivalent to
move from the states11 to the states12. Formally, we
can write: T (si′,j′ |rotateLeft, si,j) = δi,i′δj,(j′+1)%M

for all statessi,j exceptSink and whereδi,j is the Kro-
necker’s delta, M is the number of possible orientations and
%M is the operator modulo of M. There is no movement
action which directs the robot to the sink state and thus:
T (Sink|rotateLeft, si,j) = 0.

Following the previous example, we can also write:
T (si′,j′ |rotateRight, si,j) = δi,iδj,(j′−1)%M and for the
Sink: T (Sink|rotateRight, si,j) = 0

All movement action in theSink do not change
state. Formally:T (s|rotateLeft, Sink) = δs,Sink and
T (s|rotateRight, Sink) = δs,Sink.

ObserveAction:
Captures and processes an image. It affects the belief, but
the state remains the same.T (s|observe, si,j) = δs,si,j

IdentificationActions:
The identification action corresponds to an announcement
of the object identity. There is an identification action
per object class and all lead the robot to theSink state.
T (s′|identifyi′ , s) = δs,Sink, ∀s ∈ S.

Observations Probabilities The robot only collects data
when he deliberatly choses the actionobserve. For all the
other actions, he observes the default observationod and thus
we can write:Ω(ok|ai) = δk,d∀ai ∈ S{observe}.

When the robot explicitly chose the actionobserve,
Ω(ok|observe, si,j) is the probability that the classifier as-
signs the labelok to the image retrieved from statesi,j . If
we consider that the classifier is perfect, for each state there
is only one possible observation, but the same observation
can be retrieved from more than one state. Formally we
can write: Ω(ok|observe, si,j) = 1 if the observationk
corresponds to the statesi,j andΩ(ok|observe, si,j) = 0 if
not. If the classifier is not perfect,Ω(ok|observe, si,j) = 0
will correspond to the confusion matrix of the classifier.

Reward
The robot receives reward when it identifies an object cor-
rectly. The identification of the object corresponds to the
identification of at least one of its corresponding states.
This is encoded in the rewards the robot receives. In
the example of two cubes with 4 orientations per object

and 1 identify action per object, we have the rewards:
reward(identifyi, si′,j′) = 300×δi,i′−500(1−δi,i′). If the
robot chooses the actionidentifyi at any state corresponding
to the objecti, it will receive the reward 300. If the action
is chosen in any other state, it will receive a reward of -500.

Furthermore, we want to minimize the number of
moves and observations that the robot does, so per each
of these actions we will also add a negative reward.
reward(rotateLeft) = reward(rotateRight) = −10. The
observations will be a little less expensive since it should
take less time to process and classify an image than to move
the robot:reward(observe) = −2.

Solving POMDP’s
Policies were learned using Perseus algorithm [5]. This
algorithm is a variation of point based methods and is freely
available at the authors website.

IV. EXPERIMENTS

Our experiments are performed using simulations in Mat-
lab. In the following we describe those simulations, the type
of objects and the classification performed during theobserve
action. At the end of the section we present our results
and highlight the fact that algorithm always chooses the
observations which enable state desambiguation.

A. Simulation

The world simulation is done using the Matlab Simulink
Virtual Reality toolbox. Object orientation and image acqui-
sition and processing are controlled by a Matlab script.

There is a perfect match between states, observations and
actions between the simulator and the POMDP formulation.
The same actions in the same starting states in both worlds
lead to the same final states. Also, the relation between states
and observations follows the same probability distribution.

B. Objects

Objects are represented by 3D cubes. With the cubes, we
can represent objects variability by the colors of the faces.
Different object perspectives, are represented by faces with
different colors. Similar perspectives that cannot be correctly
distinguished are represented by faces with the same color.

The representation of objects as cubes, albeit simple,
illustrates the main characteristics of an active vision system.
If we assume the robot can only move in a plane by factors
of π/2, we do not need a more complicated object. All
the objects when looked from these directions only present
4 different observations. The number of possible angles
from which the robot can look at the object is linearly
connected to the number of faces of the object model we
need to consider and consequently to the number of states
per object and corresponding observations. If we want to
look at the object in intervals of∆θ = π/3, we would
need2π/∆θ = 6 different observations and consequently we
would need an object with hexagonal symmetry with relation
to the rotation axis. The interval∆θ used for all objects
corresponds to the smallest one required by all objects.
However, this would increase the number of states by 1.5



times. The main consequence of the change would be the
increase in the policy computation time, which is performed
offline.

The cube faces were chosen to highlight the fact that
policies obtained minimize the number of observations and
the number of movements. In particular, they show that the
policy resulting from the POMDP forces to robot to move
directly to those sides of the cube which are more infor-
mative, in the sense that observations perfomed from those
sides allow to disambiguate between states. To illustrate the
first situation we use cube 1 and cube 2 from Figure 2 and
for the second case we use cube 1 and cube 3. The policies
were constructed using just pairs of cubes.

C. Observations

Observations correspond to the aquisition of a new image
from the current orientation and its classification as one of
the a priori expected observations.

In the simulated world, we are dealing with controlled
and colored images and the classification process can be
greatly simplified. In these experiments, we used a nearest
neighbourgh classifier based on color histograms. Examples
of such histograms can be found in Figure 1. The histograms
are computed in gray scale and correspond to a vector in
R

M , where M is the number of bins used to discretize
the color space. To represent the distance between 2 his-
tograms, we measure the cosine of the angle formed by those
histograms,i.e. we compute the inner product between the
2 histograms. Two histograms from the same observation
ok ∈ O will have high cosine values (∼ 1) and 2 histograms
from different observations will have low cosine values. The
nearest neighbour classifier in this case will be perfect.

D. Results

Experiments were performed using the cubes in Figure 2.
In the first experiment we used cube 1 and cube 2. The two
cubes yield different observations from orientation 1 and 2,
but in orientations 3 and 4 the observations are the same.
The robot should be able to identify correctly the cubes after
performing anobserveaction in statess11, s12, s21 ands22.
However, when it is facing the object from orientation 3
or 4, the robot is not able to identify directly the object.
Furthermore, the robot should have different behaviors in
both orientations. While at orientation 3, the shortest way to
identify the objects is to go to orientation 2 where objects
can be desambiguated, in orientation 4 it should choose to go
to orientation 1. The actions that the robot needs to perform
in order to minimize the cost of identification are different.
In the first case it should chose to rotate right (moving from
statess∗,3 to s∗,2) and in the second case it should chose to
rotate left (moving from statess∗,4 to s∗,1).

In table I, we show the policy chosen by the robot, when
facing each of the orientations of cube 2. Note that the
policies described match what was just described.

In our second experiment, which is exemplified in table II,
we used the first and the third cube. The two cubes differ only
in one face, but have two identical faces from the point of

(a) Object 1

(b) Object 1 from a second perspective

(c) Object 2

(d) Object 3

Fig. 2. Objects used in the experiments. The objects have in total 6 different
faces. The first object has 2 identical faces,o1, plus 2 different ones,o2,
o3. The second object shares two faces with object 1:o1 ando3 and has 2
new faceso4 ando5. The third one is identical to the first, but only one face
changed,o6. The views represented do not correspond to any observation
obtained from the robot and are indented solelly for describing the objects.
In particular the viewpoints used were chosen to highlight the differences
and similarities between objects.

view of the observations, i.e., the color histograms retrieved
from orientations 2 and 4 are exactly the same. From the
point of view of recognition, there is one single orientation,
s∗,1, which allows the robot to differentiate the two objects.
From all the other states, the robot will have to rotate with
relation to the object in order to arive at that specific state.
All the observations that it may do in any other state will
not help the robot in the recognition task. In the example
in table II this is reflected in the policies presented for the



initial statess∗,1, s∗,2 ands∗,3. We also note that, due to the
ambiguity in observations from states∗,2 and s∗,4 in both
cubes, if the robot starts in one of these states the policy will
not be optimal in the sense that it produces more movements
than those strictly required to disambiguate between objects.
After the first observation, the belief state is the same for
both statess∗,2 and s∗,4 and thus the policy will dictate
the same action in both cases. While in one of the cases,
this action may lead the robot directly to the state where it
disambiguate the objects,s∗,1, in the second state, the same
action will take him to states∗,3.

Initial State Initial Image Actions
s2,1

observe
identify2

s2,2

observe
identify2

s2,3
observe

rotateRight
observe

identify2

s2,4

observe
rotateLeft
observe

identify2

TABLE I

SET OF ACTIONS PERFORMED BY THE ROBOT DURING EXPERIMENT1,

CONSIDERING THAT IT STARTS IN EACH OF THEINITIAL STATES.

V. CONCLUSIONS AND FUTURE WORK

In this work, we showed how to formalize an active
object recognition task as solving an offline POMDP and
provided evidence, through simulation, that the policies
obtained performed observations only from the viewpoints
which provided direct disambiguation between states.

The main relevance of our result is that we did not
formulate the problem in terms of the commonly used infor-
mation theory. Instead, we formulated the problem solely in
terms of control costs. The policies, obtained by solving our
POMDP problem, still ensure that the robot always chooses
the observations that provide most information. The robot
only performs observations which actually contribute to a
decrease on the uncertainty in the current state.

By formulating the problem uniquely in terms of control
costs, we can provide the robot with an a priori policy. There
is no need to re-solve the POMDP during run-time and the

Initial State Initial Image Actions
s2,1

observe
identify2

s2,2

observe
rotateRight

observe
identify2

s2,3
observe

rotateRight
rotateRight

observe
identify2

s2,4
observe

rotateRight
observe

rotateRight
rotateRight
identify2

TABLE II

POLICY FOR EXPERIMENT2

robot does not incur in the heavy time penality caused by
the extra computational effort.

As future work, it is important to study the impact of
adding multiple objects in the POMDP formulation. Adding
more objects leads to occlusions other than self occlusion
which are more difficult to model offline.
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