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~ Abstract— In this paper, we address the problem of recogniz- However, in spite of having highly accurate models of each
ing multlple known .Obje.C'[S l_Jnder_partlaI views and occlusion. object in a room, the robot may not be able to completely
We consider the situation in which the view of the camera distinguish between two different types of objects. Botlf se

can be controlled in the sense of an active perception planning lusion and lusion d by other obiects m ver
problem. One common approach consists of formulating such ©0CC!USION and occlusion caused by other objects may cove

active object recognition in terms of information theory, namely ~ the distinctive parts of an object, making the robot unable
to select actions that maximize the expected value of the to distinguish between two object classes: the object etass
_ob?er\:jation iP terrlns£ Ofththe ﬂi_cognition btr_alief. lln our work,  are ambiguous given the occlusion. This ambiguity appears,
instead we formulate the active perception planning as a

Partially Observable_Markoy Dec_is_icf)r] Pr_c?cess (pPOMDI%) y\(ith LC\)I:hexaf:]‘Ft)Le, betwelenka}[hcomputer ﬁ cretehn ang ta . Cgr d tt)lo X.
reward solely associated with minimization of the recognition ‘ oug ey mgy 00 € Same when _e robot is directly
time. The returned pohcy is the same as the one obtained N front of them, if the robot looks to the side of the screen
using the information value. By recognizing observations as it should be able to correctly differentiate the screen from
a time consuming process and imposing constrains on time, the card box. Since the robot will never have access to all
we minimize the number of observations and consequently the views of the object at a given time instant, the type of

maximize the value of each one for the recognition task. biquity d ibed ari hen th bot ¢
Separating the reward from the belief in the POMDP enables ambiguity described arises even when the robot periorms

solving the planning problem offline and the recognition process 3D object recognition. The robot only has access to partial

itself becomes less computationally intensive. In a focused information on the object until it decides to move with
simulation example we illustrate that the policy is optimal in  relation to the object.

the sense that it performs the mlnlmum_number of actions and We assume that most of the ambiguity in object recogni-
observation required to achieve recognition. fi b d by having th bot looking to obiect

Index Terms— ignore lon can be removed by having the robot looking to objects

through different angles. l.e., we assume that, in spite the

. INTRODUCTION ambiguity between object A and object B, there is always an

Object recognition is still an open problem. From thengle in A or B from which the objects can be disambiguated.

choice of features to the actual classification problem, ree a 1here is a vast literature on active perception and the
still far from a global recipe that would allow for a complete'®ader may find a detailed overview of the field with special
discriminative approach to recognition. The large majooit  [0CUS 0N multi-view object recognition at Chen et. al. [1].

object recognition community is focused on offline, databas™ récent years, the main contributions to the field concern
driven tasks. State of the art is measured with respect {B€ algorithms used to come up with a policy. In the early
performance in datasets gathered from web images sugh00: approaches (e.g. [2], [3]) focused on information

as the Pascal challenge datasets. Two problems arise frifC"y arguments to make decisions. The next viewpoint in a
the use of such datasets. The first is the large variabilif§*SK Was selected in order to minimize an entropy function,
of images. The second is the incapacity to look at thE® to minimize the uncertal_nty in the state. _The cost of
scenes from different poses that would provide differend, a the Whole plan in terms of time and energy is neglected.

probably more discriminative, views of objects that would" @ recent work of R. Eidenberger and J. Scharinger, [4],
help to segment objects from the background. an action control cost is added to the value of information

In the context of a robot moving in a constrained environ®€Ward. In this work, we consider the problem solely as the
ment, the object variability is no longer present. The chiir Minimization of time to recognition. Since time is spent in
an office building are all very similar to each other and WillbOth image processing and movement actions, by minimizing
be the same for long periods of time. For a robot moving iffMe We guarantee that the viewpoints selected for image

such a building, the model for a chair can be much simpldi0cessing are the most informative. _
and efficient than a model built from web datasets. So, in 10 Minimize the number of movement actions and the

this project, we assume that recognition can be feasible fin€ SPent in image processing we formalize our problem as
such an environment. a Partially Observable Markov Decision Process, POMDP.

The partial observability arises from the incapacity of the
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actions needs to be computed online, since it depends on thréentation. The 3D structure of the object is coded by the
entropy of the current state. The dependency of rewards state transitions when the robot moves. If the robot dediales
the current state means that the robot has to solve a POMD&Rate left from stata,,, ,, it will end up in states,,, ;,+1. To
after each observation, which is a very costly process. in oeach of these states there is an associated observatign
approach, we assign negative rewards to all time consumiagd o, »+1 Which may be the same. The object structure
actions and all the rewards are defined a priori. This enabie thus represented by the fact that for the objectve can

us to solve the POMDP problem offline. have access to observation, ., if we rotate left after

Another important feature of the current work is thatbservingo,, .. One example is provided in Figure 1. In
we only try to recognize one object at a time. In outhis figure we have one object, a cube, and we are only
formulation of the POMDP problem, states are linked t@onsidering 4 possible orientations, which give rise to 4
object orientation with respect to the robot. By considgrinpossible states. From each of the states we there is a single
only individual objects, we ensure that all possible states possible image which can be retrieved. However the same
known a priori, which is essential for solving the POMDPimage can correspond to more than one orientation. The 3D
offline. In their work, [4], the authors aim at having the rbboshape of the object constrains the order of images that the
identifying several objects at the same time. This mearts thabot can obtain when it rotates.
the state space is not initially known and hence the POMDP The correct identification of the object is then mapped to
solution cannot be determined beforehand. the identification of at least one of its possible orientadio

Contrary to what can be found in the literature and withouThe robot is able to identify the objeet € A/ if it is able
loss of generality, we define our state as the orientatict@ do one of the following: (i) identify one of the object M
between the robot and the object and neglect the relatigtatess,, .; (i) have uncertainty over a set of states, all
distance between the two. It is assumed that the robot fielonging to the same object. In other words, the robot will
able to control its distance to the object or that this distan do a correct identification of the objest if and only if its
will not pose a problem to recognition. The assumption igelief distribution respects; ;, = 0,V # n,.
valid since we could use (_jlstance invariant features foeabj _ ll. POMDP EORMULATION
recognition, or we could just expand the number of states in
our problem to accommodate relative distances between the've formulate our POMDP as a tupl&,A, O, T, &,
robot and the object. R, bo), where:

The main contribution of this work is how we represent S is the set of states;
the active object recognition as a POMDP problem. OurA is the set of actions;
objective is to minimize the overall time spent by the robot O is the set of observations;
in the object recognition task. As such, we want to minimize 7 is the set of conditional transition probabilities;
not only the time spent on movement and image processing§? is the set of conditional observations probabilities;
but also the time spent on planning. Solving a POMDP isR Iis the set of rewards;
still computationally expensive and we do not wish to solvebo is the initial belief.
it online. By defining all the problem offline we only need States
to solve the POMDP once and thus gain access to a poliStates are the object orientations with respect to the rdbot
which can be used online in a time efficient fashion. we consider that those orientations are spaced with an§les o

This paper is organized as follows: In Section Il, weA#, we haveM = 27 /A# per object. For a set of N objects,
present the approach overview. In Section Il we formalizéhe total number of states would Béx M. Furthermore, we
our problem as a POMDP, in Section IV we present our eXhave an extra state, tt&ink where the robot enters after an
periments and results and in Section V we draw conclusioratempt to identify the object. In the case of our example in 1
and present future work. our object is a cube and thus we ne&d = 7/2 which lead
to 4 states per object. For two cubes we have4 +1 =9
statesS = {8117 S12, S13, S14, S21, S22, S23, S24, SZ’/I]{}

In our object model, instead of associating one object twhere, e.gs;1 corresponds to an orientation 6 0 of the
each state and constructing a 3D model for the object, wabject 1 with relation to the robot and, corresponds to an
consider all the possible orientations of the object witlh+e orientation of37/2 of object 2 with relation to the robot.
tion to the robot. Each orientation for each object is a state The advantage of this representation is that it enable us
For each state we can retrieve an observation. For example,make a direct connection between states, orientatiowks, a
let V' = {n4,...,nx} be a set of N objects, each with M pos-movement actions.
sible orientations. The total number of states related to ob Actions
jects will beS = {s1,1, 51,2, -, S1.M» -, SN.1, -, SN,M |- TO  Actions can be divided in three grougdovementObserva-
these states we may have observatiéhs: {01, 09,...,00}, tion andldentification We assume that the robot is moving
where O < N x M. Due to ambiguity in states with at a constant distance from the object and the dfdyement
relation to observations, there is not a direct relatiomveen actions are rotate left or rotate right. Both actions cqroes!
observations and states, i.e., observations provide us wib a rotation of Ad, one clockwise and the other counter
only partial information with respect to the object and itsclockwise. TheObservationaction involves processing a

I[I. APPROACHOVERVIEW



3D object

Rotate left
Rotate left Rotate left Rotate left

s e

State S,

Observation 0, Observation 0,

maln ke

State S5 State S,

Observation 0, Observation 0,

Fig. 1. Example of how one object is defined. A state correspdndn orientation of the object with relation to the robot Wove states by applying
movement actions such as rotate left. At any given state thet nolay choose to do an observation. In the example, an observairesponds to the

construction of a color histogram.

2d image of the object taken by the robot at its currerthe object at the current orientation. They form a discrete
orientation. Identification actions correspond to the act of set, since we are only observing the object from a finite set
attempting to identify the object. The identification of anof orientations. We assume that the observations from each
object is equivalent to the identification of one of the stateorientation are all known a priori. In this context, prodegs
corresponding to the object. In the previous example of twone image refers to features retrieval and image matching
cubes, the correct identification of the object 1 correspdad and theobservationaction becomes a classification process,

the identification of at least one of the states, s12, 513, S14.

The set of actions is thus defined as:
A = {rotateLeft;
rotate Right;
observe;
identifyy;
identifyo;

identifyn},

where the features of the new image are compared with the
a priori expected features for each state.

If the features chosen were good enough to completely
define the object, all states would be connected to an unique
observation and our problem would be reduced to a Markov
Decision Process. However, this is rarely the case and
commonly the features and the matching algorithm are not
discriminative enough. If we cannot discriminate two or mor
states at all, we assign them the same observation. If we just
do not trust enough in the classification, we consider the ob-
servations as different, but assign them different prdhigsi

where N is the total number of objects being considered. in the observation table.

Observations

For the POMDP formulation, the observations are a set

Observations are the result of processing one image fro& = { 01, 02, ..., 00, 04}, WhereO < N x M is



the number of different observations possible apds the and 1 identify action per object, we have the rewards:
null observation obtained for all the actions excelterve. reward(identify;, sy ;) = 300xd; s —500(1—6; ). If the

The type of features and matching algorithms used are naibot chooses the actiatenti fy; at any state corresponding
relevant from the POMDP formulation perspective. Whato the objecti, it will receive the reward 300. If the action
matters is the classification output and all the computéonis is chosen in any other state, it will receive a reward of -500.
algorithm can be treated as a black box. In Section IV-C, Furthermore, we want to minimize the number of
we will show how, for the specific example of this papermoves and observations that the robot does, so per each
we process the image from acquisition to an observatioof these actions we will also add a negative reward.

probability. reward(rotateLeft) = reward(rotateRight) = —10. The
Transitions observations will be a little less expensive since it should
MovementActions: take less time to process and classify an image than to move

The actionrotateLeft corresponds to a rotation aké and the robot:reward(observe) = —2.

as such shifts between states of the cube in an ascendSolving POMDP’s

ing order: if we start with an orientation af = 0 and Policies were learned using Perseus algorithm [5]. This
rotate left we end up with an orientation &f = Af. algorithm is a variation of point based methods and is freely
In terms of states for the object 1, this is equivalent tavailable at the authors website.

move from the states;; to the states;s. Formally, we
can write: T(Si/,j/|T0tat6L€ft,Si’j) = 61«,,'/5.]‘)(47%1)%]\4
for all statess; ; exceptSink and whered; ; is the Kro- Our experiments are performed using simulations in Mat-
necker’s delta, M is the number of possible orientations andb. In the following we describe those simulations, theetyp
%M is the operator modulo of M. There is no movemenbf objects and the classification performed duringahserve
action which directs the robot to the sink state and thusiction. At the end of the section we present our results

IV. EXPERIMENTS

T(Sink|rotateLeft,s; ;) = O. and highlight the fact that algorithm always chooses the
Following the previous example, we can also writenbservations which enable state desambiguation.
T(Si/,j/|7'0t(1t6RZ’ght,Siyj) = 5115, i —1)% M and for the . .
Sink T'(Sink|rotateRight, s; ;) :](gj : A. Simulation
All movement action in theSink do not change  The world simulation is done using the Matlab Simulink
state. Formally: T'(s|rotateLeft, Sink) = 65 .smr and Virtual Reality toolbox. Object orientation and image aequ
T(s|rotateRight, Sink) = 05 sink- sition and processing are controlled by a Matlab script.
ObserveAction: There is a perfect match between states, observations and
Captures and processes an image. It affects the belief, tadtions between the simulator and the POMDP formulation.
the state remains the sani(s|observe, s; ;) = ds,, The same actions in the same starting states in both worlds
Identification Actions: lead to the same final states. Also, the relation betweeesstat

The identification action corresponds to an announcemeand observations follows the same probability distributio
of the object identity. There is an identification action i
per object class and all lead the robot to thenk state. B- Objects
T(s'|identifyi,s) = s gink, Vs € S. Objects are represented by 3D cubes. With the cubes, we
Observations Probabilities The robot only collects data can represent objects variability by the colors of the faces
when he deliberatly choses the actiobserve. For all the Different object perspectives, are represented by facés wi
other actions, he observes the default observatjcand thus different colors. Similar perspectives that cannot beexuity
we can write:Q(oy|a;) = dx qVa; € S{observe}. distinguished are represented by faces with the same color.
When the robot explicitly chose the actiosbserve, The representation of objects as cubes, albeit simple,
Q(ox|observe, s; ;) is the probability that the classifier as-illustrates the main characteristics of an active visiostem.
signs the labeb,, to the image retrieved from statg ;. If  If we assume the robot can only move in a plane by factors
we consider that the classifier is perfect, for each stateetheof 7/2, we do not need a more complicated object. All
is only one possible observation, but the same observatitime objects when looked from these directions only present
can be retrieved from more than one state. Formally wé different observations. The number of possible angles
can write: Q(oy|observe, s; ;) = 1 if the observationk  from which the robot can look at the object is linearly
corresponds to the statg ; and Q(og|observe, s; ;) = 0 if  connected to the number of faces of the object model we
not. If the classifier is not perfecf)(oy|observe,s; j) =0 need to consider and consequently to the number of states
will correspond to the confusion matrix of the classifier. per object and corresponding observations. If we want to
Reward look at the object in intervals oAd = x/3, we would
The robot receives reward when it identifies an object coreed2w/A# = 6 different observations and consequently we
rectly. The identification of the object corresponds to thevould need an object with hexagonal symmetry with relation
identification of at least one of its corresponding statego the rotation axis. The intervahd used for all objects
This is encoded in the rewards the robot receives. loorresponds to the smallest one required by all objects.
the example of two cubes with 4 orientations per objeddowever, this would increase the number of states by 1.5



times. The main consequence of the change would be the
increase in the policy computation time, which is performed
offline.

The cube faces were chosen to highlight the fact that
policies obtained minimize the number of observations and
the number of movements. In particular, they show that the
policy resulting from the POMDP forces to robot to move
directly to those sides of the cube which are more infor-
mative, in the sense that observations perfomed from those
sides allow to disambiguate between states. To illustfse t
first situation we use cube 1 and cube 2 from Figure 2 and
for the second case we use cube 1 and cube 3. The policies
were constructed using just pairs of cubes.

(a) Object 1

C. Observations

Observations correspond to the aquisition of a new image
from the current orientation and its classification as one of
the a priori expected observations.

In the simulated world, we are dealing with controlled
and colored images and the classification process can be
greatly simplified. In these experiments, we used a nearest
neighbourgh classifier based on color histograms. Examples
of such histograms can be found in Figure 1. The histograms
are computed in gray scale and correspond to a vector in
RM, where M is the number of bins used to discretize
the color space. To represent the distance between 2 his-
tograms, we measure the cosine of the angle formed by those
histograms,i.e. we compute the inner product between the
2 histograms. Two histograms from the same observation
or € O will have high cosine values+(1) and 2 histograms
from different observations will have low cosine valueseTh
nearest neighbour classifier in this case will be perfect.

(b) Object 1 from a second perspective

(c) Object 2

D. Results

Experiments were performed using the cubes in Figure 2.
In the first experiment we used cube 1 and cube 2. The two
cubes yield different observations from orientation 1 and 2
but in orientations 3 and 4 the observations are the same.
The robot should be able to identify correctly the cubesrafte (d) Object 3
performing ambs_er_veacupn in State?“’ S12 521 ?‘nd $22- Fig. 2. Objects used in the experiments. The objects havedh@dlifferent
However, when it is facing the object from orientation 3taces. The first object has 2 identical faces, plus 2 different onesgs,
or 4, the robot is not able to identify directly the object.cs- The second object shares two faces with objeat;landos and has 2
Furthermore, the robot shouid have diflerent benaviors 15057 19 T I one s gemca o e s ut o ne e
both orientations. While at orientation 3, the shortest way tobtained from the robot and are indented solelly for desugibhe objects.
identify the objects is to go to orientation 2 where objectdn particular the viewpoints used were chosen to highligiet differences
can be desambiguated, in orientation 4 it should choose to §& Similarities between objects.
to orientation 1. The actions that the robot needs to perform
in order to minimize the cost of identification are different
In the first case it should chose to rotate right (moving fronview of the observations, i.e., the color histograms regie
statess. 3 t0 s, 2) and in the second case it should chose térom orientations 2 and 4 are exactly the same. From the
rotate left (moving from states, 4 to s, 1). point of view of recognition, there is one single orientatio

In table I, we show the policy chosen by the robot, whes, ;, which allows the robot to differentiate the two objects.
facing each of the orientations of cube 2. Note that thErom all the other states, the robot will have to rotate with
policies described match what was just described. relation to the object in order to arive at that specific state

In our second experiment, which is exemplified in table lIIAll the observations that it may do in any other state will
we used the first and the third cube. The two cubes differ onlyot help the robot in the recognition task. In the example
in one face, but have two identical faces from the point oin table Il this is reflected in the policies presented for the




initial statess, 1, s..» ands, 5. We also note that, due to the 'n't'?; f’tate Initial Image Actions
ambiguity in observations from statg » and s, 4 in both ’ observe
cubes, if the robot starts in one of these states the politty wi identifysz
not be optimal in the sense that it produces more movements
than those strictly required to disambiguate between thjec
After the first observation, the belief state is the same for s2,2
both statess, » and s, 4 and thus the policy will dictate observe
the same action in both cases. While in one of the casegs, rotateRight
this action may lead the robot directly to the state where |t _observe
disambiguate the objects, ;, in the second state, the same identify:
action will take him to state, 3. 523
obserye
Initial State Initial Image Actions rotateRight
52,1 rotateRight
’ observe observe
identifys identifya
$2,4
observe
S22 rotateRight
’ . observe
observe rotateRight
. ; rotateRight
identifys identi fyo
POLICY FOR EXPERIMENTZ2
52,3
observe
rotateRight
observe
identifys robot does not incur in the heavy time penality caused by
the extra computational effort.
52,4 As future work, it is important to study the impact of
observe adding multiple objects in the POMDP formulation. Adding
rotateleft more objects leads to occlusions other than self occlusion
observe which are more difficult to model offline.
identi fyo

TABLE |
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V. CONCLUSIONS AND FUTURE WORK

In this work, we showed how to formalize an active
object recognition task as solving an offine POMDP an
provided evidence, through simulation, that the policies
obtained performed observations only from the viewpoints
which provided direct disambiguation between states. [1]

The main relevance of our result is that we did not
formulate the problem in terms of the commonly used infor-[Z]
mation theory. Instead, we formulated the problem solely in
terms of control costs. The policies, obtained by solving ou [3]
POMDP problem, still ensure that the robot always chooses
the observations that provide most information. The roboty
only performs observations which actually contribute to a
decrease on the uncertainty in the current state.

By formulating the problem uniquely in terms of control 5
costs, we can provide the robot with an a priori policy. There
is no need to re-solve the POMDP during run-time and the
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