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Abstract. Visual object detection in robot soccer is fundamental so the robots
can act to accomplish their tasks. Current techniques rely on manually highly
polished definitions of object models, that lead to accurate detection, but are quite
often computationally inefficient. In this work, we contribute an efficient object
detection through regression (ODR) method based on offline training. Webuild
upon the observation that objects in robot soccer are of a well defined color and
investigate an offline learning approach to model such objects. ODR consists of
two main phases: (i) offline training, where the objects are automatically labeled
offline by existing techniques, and (ii) online detection, where a given image is
efficiently processed in real-time with the learned models. For each image,ODR
determines whether the object is present and provides its position if so. Weshow
comparing results with current techniques for precision and computational load.

Keywords: Real-time Perception, Computer Vision

1 Introduction

In robot soccer, vision plays a crucial role on localizationand actuation since both task
rely on images to provide ground truth for landmarks and objects localization. One of
the biggest challenges faced by robot soccer teams is to provide the robot with adequate
models for each class of objects in the field. The current paper presents a highly efficient
way of recognizing objects in this environment.

We address the problem of object detection in the RoboCup Standard Platform
league that uses the humanoid NAO robots (www.aldebaran.com). In this league, the
robots have access to images of high-resolution at a fast acquisition rate and have to
process them without totally consuming the limited on-board robot computational re-
sources, which are also needed for all other non-vision taskfunctions. In this context,
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vision algorithms need to be not only highly reliable, but also computationally efficient
and easy to extent to all the objects in the field.

Two widely used approaches for object detection in this domain are: (i) a scan-
line based algorithm [1] that effectively reduces the size of the image to samples along
vertically spaced-apart scanned lines, but relies on the manual definition of elaborated
models of each object; and (ii) a run-length encoding region-based algorithm, CMVi-
sion [3], that effectively identifies colored blobs with objects, but is computationally
expensive in large images. Other successful more focused approaches include the use
of neural networks [5], circular Hough Transforms [6], and circle fitting [7].

Scan-line is a very thorough algorithm that relies mostly onhuman modeling of
the several elements in the field. It creates color segments based on the scanning of
just a few columns in the image. To compensate the information lost in the sampling,
the algorithm uses human imposed priors on what the segmentsshould be in the robot
soccer environment. By requiring the use of a reduced set of lines, the algorithm is very
fast. However, the modeling of each object in the field is quite time-consuming and the
algorithm is not easily extendable to new objects.

CMVision relies on color segmentation to create blobs that will then be identified
as objects. However, since blobs are created based on 4-connectedness, it requires color
thresholding of almost all the pixels in the image. Afterward, blobs have to be sorted by
color and size, and finally objects are detected based on how well the largest blobs of
their respective color fit to a given model, which is again imposed by humans. All this
process, albeit quite accurate and easier to extend to new objects than the previous, is
computationally expensive.

In this work, we introduce a new object detection approach, ODR, (for Object De-
tection by Regression), that relies on the offline creation of statistical models for the
relation between a whole image and the object position in that image. The use of statis-
tical models enables ODR to use a sampled version of the image, which greatly reduces
the online computational cost of the algorithm. Though morecomplex models could
have been used, a further reduction on the computational load is obtained by using
linear relations between object positions and images. State of the art offline detection
algorithms, e.g. [8], use local statistics of the image to detect an object and thus require
exhaustive search at all possible locations and scales, which is quite time consuming.
By using the whole image, together with priors provided by the environment such as
object colors, we are considering aglobal statistical representation of the image that
avoids this exhaustive search. Furthermore, ODR is easy to extend since it relies on
the also easy to extend CMVision algorithm to provide the object positions during the
offline learning stage.

The paper is organized as follows. Section 2 presents the overall ODR approach with
the description of the wide object detection problem to be solved. Section 3 presents the
pre-processing required by ODR. Section 4 and Section 5 describe the ODR offline and
online algorithms respectively. Section 6 shows experimental results that demonstrate
the accuracy and effectiveness in object detection with a rich set of real images taken
with a NAO robot, including truncated and occluded objects in noisy situations. We
review the contributions of the work and conclude in Section7.
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2 Object Detection By Regression

ODR detects an object position in an image with a robust and computationally efficient
algorithm. The algorithm leverages in the repeatability ofthe RoboCup environment
to create a statistical model of the relation between an image and the position of a
given object in that image. The statistical model can be learned offline and provides fast
online detection by allowing image sampling. Furthermore,it can be extended to other
objects without requiring extensive human modeling. As an output to the online stage,
the algorithm returns an object position and a confidence on the presence of the object.

To relate images to object positions we use a linear model represented by a matrix
W and affine vectorb0. The model is learned offline using a set of training images,
represented as a single matrixO. The images contain the object at different positions
and this position is know and represented also as a single matrix P . To avoid over
fitting to the training data and to provide filtering of noise,the training set is reduced by
means of a principal component analysis. The linear model learned relates not the object
positionsP and the image training set matrix,O, but the object position and the matrix
Or that corresponds to the projection ofO on the training set principal components,V .
However, since the projection into principal components isa linear operator, the relation
between the object position and the image will still be linear and thus efficient to use.

Clearly the relation between images and objects position ismore complex than just
linear. Typical images are cluttered, objects have different sizes, different colors and
suffer from occlusions and pose changes. To allow such a simplification, we consider
the existence of a pre-processing stage before ODR. There are no constrains to the type
of pre-processing as long as it returns a version of the original image where each pixel
is now assigned one of two values: 1 if the pixel is thought to belong to the object, 0 if
not. To the set of pixels labeled as 1, we refer to as object hypothesis.

If the object hypotheses was errorless, e.i., all the pixel labeled as 1 belonged to the
object and all the object pixels were assigned a value of 1, the object position could be
recovered by simple centroid estimation. The centroid estimation is a linear operation
over a normalized version of the pre-processed image such that the sum of the value
of all the pixels in this image version is 1. This normalization allows to compute the
centroid of images with objects with different sizes using the same set of coefficients.
Since there is currently no algorithm capable of determining the object hypothesis with-
out error, the pre-processed images will contain noise resulting from robot motion and
from illumination.

The objective of ODR is to determine in a robust way the objectposition in the
image, in spite of these errors. To decrease the impact of noise in the detection, we filter
the images by projecting them in the principal components ofa set of training images.
These training images are representative of the set of all possible images containing the
object at different positions and are the same as those used to create the statistical model.
We also note that ODR could still return a position in images where an object is not
present, but there is noise. Interestingly, we then includein ODR a method to estimate
a belief in the results of the detection performed using the linear model, inspired by
similar work in face classification [4]. During its online processing, ODR projects a
given test image into the principal components computed using the training set. It then
estimates the belief based on the distance between the imageand its projection into
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the linear subspace generated by the principal components.It detects false positives by
thresholding its belief.

ODR results are evaluated using real data acquired by a NAO robot while approach-
ing a ball and a second robot. The data contains all the complexities to be expected from
a robot moving. Objects are distorted by blur or/and are occluded and there are images
that just contains noise. We present ODR performance using three different metrics: (i)
the capacity to detect objects that are in the image, (ii) thecapacity to classify an image
on whether the object is present or not (iii) the time efficiency of the algorithm.

In Figure 1 we present a diagram for the whole ODR algorithm where we identify
each task to be performed in the online and offline stage. Eachstage follows three dif-
ferent steps that are closely related across stages. The first step consists in normalizing
the images. The normalization accounts for changes in size and fits all images into the
same distribution, which is a requirement for the principalcomponent analysis. The
second step consists in the projection into the principal components, which are learned
in the offline stage and then used for belief estimation in theonline stage. The third step
differs more significantly between the offline and online stages. In the offline stage, we
learn the linear relation between positions and image. In the online stage we use this
relation to compute the object position.

Fig. 1.Online and offline ODR

In the following sections we address the type of pre-processing required by ODR
and explain in-depth each of the tasks that compose the offline and online stage.

3 Pre-processing

In the general case of object recognition, the pre-processing required by ODR can be
the result of a segmentation or color threshold algorithm. In the case of humanoid robot
soccer, color threshold is particularly appealing, since objects in the field are well de-
fined by their color. Color thresholding is also a pre-processing stage in [3] and [1].
When the robot needs to detect the ball in those images, e.g., for kicking it into the
goal, the object hypothesis for the ball in each image would be the set of all orange pix-
els. When the robot wants to identify other robots from a distance, the object hypothesis
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would be the set of white pixels. In Figure 2, we present an example of a thresholded
image and the resulting object hypothesis for the ball and the robot.

(a) Thresholded Image (b) Obj. hypothesis forball (c) Obj. hypothesis forrobot

Fig. 2.Thresholded images and object hypothesis forrobot andball.

After such pre-processing, anN ×M imageI with pixels indexed as{i, j}, can be
represented as a binary vector in aNM space asI ′ ∈ {1, 0}NM : I ′k = 1 if the pixel
with indices{i, j : k = (i − 1)M + j, 0 < j ≤ M, 0 < i ≤ N} belongs to the object
hypothesis andI ′k = 0 if not.

However, the images retrieved by the NAOs humanoid robots have a high-resolution
that makes the color threshold of all the pixels a computationally heavy task. To over-
come the computational burden, ODR only makes use of a subsetof pixels. In a similar
approach to [1], ODR scans the image at regular intervals, but it performs the scanning
in the vector form of the image,I ′, not in the matricial form,I. We fix the sampling
interval as∆, and construct the image vector asI ′s ∈ {1, 0}D : I ′s,k = I ′∆k, where
D = NM/∆. To simplify notation, we drop the subscripts throughout the rest of the
paper and, except when stated otherwise and without any lossof generality to the algo-
rithm itself, refer to the sampled version of the image vector as the image vector in a
R

D space.

4 ODR Offline Learning

In the offline stage, we have access to a large dataset of labeled, pre-processed and
sampled images containing examples of different objects. The images corresponding to
a specific objectα are collected in an observation matrixOα and the labels, i.e., the
object positions, in a matrixPα. If the aim was to have the robot identifying n objects,
we would have n observation matrices,Oα and n position matricesPα. Since each
object is treated independently, we can again drop the subscript α and when we refer
to observations matrixO, it is meant that the matrix only contains observations froma
single object.

Each observations matrix,O, is constructed by assigning each pre-processed image
to a row in the matrix. For example, if we had a set of L images ,I1, ..., Il, ..., IL, with N
rows and M columns sampled at an interval of∆ pixels, our observation matrix would
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be defined as:
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whereI ′l,k = 1 if the pixel with coordinates{(n,m) ∈ N
2 : k = (n − 1)M + m}

belongs to imagel object hypothesis.
The label matrix,P ∈ R

L×2, contains the coordinates of the object in terms of its
centroidpl,c = [xl,c, yl,c].

Our training datasets are composed of both synthetic imagesand real images cap-
tured by the robot while it searches and follows a ball. For the synthetic dataset, we
simulate images containing a specific object plus random noise. In each image the ob-
ject is placed in different positions and those position uniformly cover the whole image.
The resulting images include random noise and occlusion in edges and corners. For each
object, the synthetic dataset is composed of 768 images. Examples can be found in Fig-
ure 3 for the ball example. The robot collected data includesballs in different parts of
the image, but the sampling is not thorough. The robot is acting according to the ball
position and keeps the ball, and the close by objects approximately in the center of
the image. The resulting dataset contains fewer examples ofball on the edges of the
image. However, real images introduce the variability on the object shape, pose and
illumination that the robot will experience during run-time.

From the total of 856 real images we have for Ball and the 204 for Robot, we have
occlusion on the image edges (Figure 4(e)) and by other objects (Figure 4(c)). We also
have several examples of motion blur (Figure 4(d)) and of random noise (Figure 4(f))
captured by the robot while searching for the ball in the environment. All the real images
were labeled automatically using CMVision.

All the offline tasks will be based on the observation matrixO constructed using the
training dataset and in the position matrixP . The main output of the online stage is the
set of the linear regression coefficients,W andb0.

Normalization
There are two stages of normalization: the first enable us to deal with objects of different
sizes, the second for standardizing the data before performing the PCA. To deal with

(a) (b) (c) (d) (e)

Fig. 3. Examples of synthetic images used in training. Images include objects in different posi-
tions (Figures 3(a)-3(c) for the ball; Figures 3(d)-3(e) for the robot), occlusion in image borders
(Figures 3(a) and 3(d)) and noise (Figures 3(a)-3(e)).
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(a) (b) (c) (d) (e) (f)

Fig. 4.Examples of real images used for training and testing. Examples include objects of differ-
ent sizes (Figures 4(a)- 4(e)), motion blur (Figure 4(c)) , occlusions (Figure 4(c) and 4(e)) and
random noise (Figure 4(f)).

objects of different sizes, we first need to normalize all theimagesI ′: I ′ρ = I ′/
∑

k I
′

k.
The observation matrix composed of the normalized images isrepresented asOρ.

For the principal components analysis we compute the observations sample covari-
ance matrix ([2]) and it is a best practice to normalize the values for each pixel so that
they follow a unitary zero mean Gaussian distribution.C(Oρ) = Σ−1(Oρ−Ōρ)

T (Oρ−
Ōρ)Σ

−1 whereOρ is the observation matrix corresponding toIρ, Ōρ is a matrix whose
lines are all equal and correspond to the mean of each pixel over all the dataset̄Iρ, and
Σ is a diagonal matrix, whose elements,σii, are the standard deviation of the pixeli
overOρ.

The mean and standard deviation estimated over the trainingdataset, will be used
in the online stage, where each new image is normalized to fit the same distribution.

Principal Components Analysis
The principal components,V , correspond to the sample covariance matrix,C(Oρ),
eigenvectors. The components form an orthogonal set of synthetic images that span the
subspace of images with the same object in different positions and with different sizes.

Examples of the principal components obtained using the ball dataset are repre-
sented in Figure 5. The examples highlight the hierarchy in resolution of the principal
components: the first components, which contain more information, have lower spatial
frequency. We can thus reduce the dimensionality on our datasets by projecting the im-
ages into the firstc components of this new basis, as seen in eq. (2). The effect will be
equivalent to filtering in the spatial frequencies domain.

Or = OρV
T
c (2)

The number of components used affects the regression results. If ODR uses a large
number of components, noise is added to the object model. Furthermore, the number of
coefficient to be estimated during regression increases andover-fitting to noise becomes
a possibility. If too few components are used, the reduced dataset observation matrix
Oρ may not have enough information to provide good regression results. In particular,
all the small examples of the object may be filtered out. Deciding on the number of
components to keep for the regression depends on the relative size of the smaller object
we want to be able to identify and of the type of noise we expectto find during the
online stage.

By training regression models using different number of components and computing
the mean detection error per image in an independent datasetwhich reflects our expec-
tations for the online stage, we can choose a priori the best number of components to
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use. The impact on precision of the number of components is illustrated in Figure 6(a)
for the ball example. In this case, the mean error per image becomes constant after
the use of 200 components, but the variance starts to increase. In the remaining of the
experiments in this paper, we use only the first 200 components for the ball. For the
robot, since it is considerably larger than the ball, we onlyneed to use 15 components
to estimate its position.

Regression
After the dataset dimensionality reduction, ODR performs alinear regression between
the reduced imagesI ′r,l and the known object positionspl = [xc,l, yc,l]. The result of
the linear regression is the set of coefficientsWr = (wr,x, wr,y) andb0 = [b0x, b0y],
which solve the linear least squares problem in eq. (3) and are given by eq. (4) ([2]).

min
Wr

‖P − ÕrW̃r‖ (3)

W̃r = (ÕT
r Õr)

−1ÕT
r P, (4)

whereP is the matrix which rowl is the position vectorpl corresponding to imagel,
Õr = (1, Or) and1 is a column vector with ones that allow us to incorporate the affine
bias term inW̃r = [bT

0
,W ]. The set of coefficients inW andb0 are the main output of

the offline stage.

5 ODR Online Testing

To find the object position in a new image,Inew, the robot needs to normalize the image
vector following the same steps as in the offline stage. Firstthe image is converted into
a probability distribution,Iρ,new. Then is normalized so it falls in the unitary zero mean
Gaussian distribution estimated in the offline process:IN,new = (Iρ,new − Ī ′ρ)Σ

−1.
Detection corresponds to the application of the linear model learned in the offline

stage using equation eq. (5).

pnew = ĨN,newW̃r = IN,newV
TWr + b0 (5)
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Fig. 5. Examples of principal components corresponding to a dataset composed of the synthetic
dataset for the ball.
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Fig. 6. Impact of the number of principal components used in detection and belief estimation in
the image case

wherepnew is the object position in the new image.
We can measure the degree of accuracy of this description by using eq. (6) to project

the image in the PCA basis and re-project it back into the images space. The resulting
image,I ′rep, corresponds to an image with coordinates in the original space ofI ′N , but
in the subspace generated by the principal components. IfI ′N is well described by the
components, theI ′N andI ′rep should be very similar and the angleθ formed between
the two vectors should be very close to 1. We use the cosine of the angleθ, eq. (7), as a
proxy for our belief in the existence of the object in the image.

I ′rep = V T Ir = V TV I ′N (6)

cos (θobject(IN )) =
I ′N · I ′rep

‖I ′N‖‖I ′rep‖
(7)

Due to the number of multiplications required, the belief estimation can be very
time - consuming. To reduce the computational load, we change equation eq. (6) and
choose carefully the number of principal components to be used at this stage.

We change equation eq. (6) by, instead of re-projecting the whole image back into
the regular image coordinates, re-projecting only the pixels that belong to the object
hypothesis. We are not comparing all the pixels ofI ′N andI ′rep, but only the fraction
that should had been correctly reconstructed.

Furthermore, we note that the number of principal components used at this stage
can differ from the number of components used for regression. To determine the mini-
mum number of components required for belief estimation, wecompute the mean and
standard deviation of belief in the independent dataset previously used for estimating
the position error. For the ball example we present the results in Figure 6(b). The mean
belief increases with the inclusion of more components, butbecomes approximately
constant after the inclusion of at least 10 principal components. Thus, by fixing the
number of components to 10 we retain most of the information needed to assert the
presence of the object. The number of components to be used depends on the object
level of detail. While for a ball, just 10 components are good enough for describing the
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object, the same is not true for the robot. Albeit larger thanthe ball, the robot has a more
detailed shape and thus required more high order componentsto be represented.

The selection of the decision threshold depends on the number of components used
to estimate the belief. Using 10 components and consideringonly the case of ball de-
tection a threshold of 0.65 takes into account all the examples inside the error bars as
exemplified in the plot in Figure 6(b).

6 Experimental Results

In this paper we analyze the results of ODR using elements of the RoboCup environ-
ment, such as the ball and other robots. In particular we evaluate the algorithm in three
different dimensions. First the capacity of object detection knowing that the object is
in the image. Second, the capacity of identifying if the object is in the image or not.
Third the time efficiency of the algorithm. We separate the problem of object detection
accuracy from the problem of belief estimation in our resultpresentation. This is moti-
vated by the possibility of changing either one of these parts of the algorithm without
affecting the other. Also, since they solve different problems, one provides a position
while the other classifies an image, we use different metricsto express results.

The capacity for detecting the object is measured by the percentage of correctly
detected objects over the total number of objects that were given to identify. I.e., over
all the set of testing images, we only consider those that contained the object. For the
ball example, ODR detects correctly92% of all the ball examples in the dataset. As for
to the identification of the second robot, ODR identifies the position of87.5% of all the
robots. These results include changes of pose and occlusion. Examples of detection are
provided in Figure 7

(a) Ball detection (b) Robot detection

Fig. 7. Examples of ball and robot detection.

The capacity for classifying each image according to whether the object is present
or not given a belief score is illustrated by the three usual metrics used to evaluate clas-
sification algorithms: the precision, the recall and the average precision. The precision
evaluates the capacity to differentiate between two classes and is given by the percent-
age of true positives over the total number of positives. Therecall evaluates the capacity
of identifying the objects from the desired class and is given by the percentage of true
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positives over the total number of true examples in the dataset. Both precision and re-
call metrics depend on the classification criterion. In ODR,the criterion corresponds to
a threshold in the belief. Only images with belief higher than the threshold are classified
as having the object. The average precision attempts to reconcile precision and recall
by considering both metrics at different threshold values.The average precision itself is
computed by measuring the area under a precision recall curve, where each point in the
curve corresponds to a precision and a recall computed at thesame threshold.

In the graphic of Figure 8 we present the precision recall curves for the ball and
robot. The average precision for the ball is0.96 while for the robot is0.67. We compare
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Fig. 8.Precision recall curves for both objects

the performance of both time and accuracy of ODR with respectto other methods. In
particular we compare them against CMVision, which was usedas the ground truth
in training. For the comparisons, we use both methods offline, running each one 1000
times per frame in a Pentium 4 at 3.20GHz. The processing for CMVision includes
thresholding, blob formation and ball detection, while ODRincludes only thresholding
and ball detection.

Results for processing time are presented in Figure 9. ODR achieves an average
processing time lower than that obtained by CMVision in bothcases.

7 Conclusions

In this paper, we have contributed a novel object detection by regression approach. Re-
sults, which were obtained for the RoboCup case study, show that our learning of offline
linear object models for object detection and position provides a fast and robust online
performance. ODR is best applicable in general, if the environment and the specific
objects to detect and if object presence hypotheses can be pre-computed.

The context of the RoboCup robot soccer is particularly adequate for ODR, as the
field and the objects are known ahead, and processing of theircolor provides a sim-
ple prior for the object hypotheses. Our learning models effectively capture the online
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Fig. 9.Comparison of processing times using both ODR and CMVision.

object images, even given the extreme variations of the images in real game situations.
The learned models by ODR are based on a small number of pixels, leading therefore to
fast online image processing. Experimental results show that such sampling did not ad-
versely affect position detection precision, which is close to par with the state of the art
algorithms when the object is present in the image. Furthermore ODR is significantly
more efficient.

ODR is also able to identify if the object is absent in the image based on the learned
models. The number of principal components used by ODR affects the ability to recon-
struct the image and hence, to identify the absence of the object. The higher the number
of principal components, the more precisely the absence of the object is detected, but
also the higher the computational cost. In our experiments,we favored a low computa-
tional cost, and ODR was still able to successfully identifythe absence of the objects
with the needed accuracy. In general, setting the tradeoff between the number of princi-
pal components used online and the computational cost will depend on the needs of the
domain.
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