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Abstract. Visual object detection in robot soccer is fundamental so the robots
can act to accomplish their tasks. Current techniques rely on manualiy hig
polished definitions of object models, that lead to accurate detectiomegtizie
often computationally inefficient. In this work, we contribute an efficierjeob
detection through regression (ODR) method based on offline trainindouilé
upon the observation that objects in robot soccer are of a well defoiedand
investigate an offline learning approach to model such objects. ODRst®0$
two main phases: (i) offline training, where the objects are automaticallieldbe
offline by existing techniques, and (ii) online detection, where a given énisg
efficiently processed in real-time with the learned models. For each irdaR,
determines whether the object is present and provides its position if sshavie
comparing results with current techniques for precision and compushtmad.

Keywords: Real-time Perception, Computer Vision

1 Introduction

In robot soccer, vision plays a crucial role on localizatéon actuation since both task
rely on images to provide ground truth for landmarks and abjecalization. One of
the biggest challenges faced by robot soccer teams is tiderthe robot with adequate
models for each class of objects in the field. The currentigaqesents a highly efficient
way of recognizing objects in this environment.

We address the problem of object detection in the RoboCupd&td Platform
league that uses the humanoid NAO robots (www.aldebarar).do this league, the
robots have access to images of high-resolution at a fasiisitign rate and have to
process them without totally consuming the limited on-boabot computational re-
sources, which are also needed for all other non-visionfizsitions. In this context,
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vision algorithms need to be not only highly reliable, bistoatomputationally efficient
and easy to extent to all the objects in the field.

Two widely used approaches for object detection in this dorage: (i) a scan-
line based algorithm [1] that effectively reduces the sizthe image to samples along
vertically spaced-apart scanned lines, but relies on theualalefinition of elaborated
models of each object; and (ii) a run-length encoding redpased algorithm, CMVi-
sion [3], that effectively identifies colored blobs with ebjs, but is computationally
expensive in large images. Other successful more focusawaghes include the use
of neural networks [5], circular Hough Transforms [6], anitle fitting [7].

Scan-line is a very thorough algorithm that relies mostlyhaiman modeling of
the several elements in the field. It creates color segmergscon the scanning of
just a few columns in the image. To compensate the informatist in the sampling,
the algorithm uses human imposed priors on what the segrakatdd be in the robot
soccer environment. By requiring the use of a reduced satas |the algorithm is very
fast. However, the modeling of each object in the field istiihe-consuming and the
algorithm is not easily extendable to new objects.

CMVision relies on color segmentation to create blobs thiltten be identified
as objects. However, since blobs are created based on £dedness, it requires color
thresholding of almost all the pixels in the image. Afterdidylobs have to be sorted by
color and size, and finally objects are detected based on redlittve largest blobs of
their respective color fit to a given model, which is again @sgd by humans. All this
process, albeit quite accurate and easier to extend to ngetstthan the previous, is
computationally expensive.

In this work, we introduce a new object detection approaddRQ(for Object De-
tection by Regression), that relies on the offline creatibstatistical models for the
relation between a whole image and the object position inithage. The use of statis-
tical models enables ODR to use a sampled version of the imdgeh greatly reduces
the online computational cost of the algorithm. Though nmmmplex models could
have been used, a further reduction on the computationdl iabtained by using
linear relations between object positions and imagese $tathe art offline detection
algorithms, e.g. [8], use local statistics of the image tiedean object and thus require
exhaustive search at all possible locations and scaleshvihiquite time consuming.
By using the whole image, together with priors provided by émvironment such as
object colors, we are consideringgbobal statistical representation of the image that
avoids this exhaustive search. Furthermore, ODR is easytéame since it relies on
the also easy to extend CMVision algorithm to provide theeobpositions during the
offline learning stage.

The paper is organized as follows. Section 2 presents thalb@R approach with
the description of the wide object detection problem to bheegb Section 3 presents the
pre-processing required by ODR. Section 4 and Section Fitdestbe ODR offline and
online algorithms respectively. Section 6 shows expertaleesults that demonstrate
the accuracy and effectiveness in object detection witlctaset of real images taken
with a NAO robot, including truncated and occluded objeatsidisy situations. We
review the contributions of the work and conclude in Sec#on
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2 Object Detection By Regression

ODR detects an object position in an image with a robust angpbcationally efficient

algorithm. The algorithm leverages in the repeatabilityttef RoboCup environment
to create a statistical model of the relation between an @reagd the position of a
given object in that image. The statistical model can benkedoffline and provides fast
online detection by allowing image sampling. Furthermdrean be extended to other
objects without requiring extensive human modeling. As atpat to the online stage,
the algorithm returns an object position and a confidencéemptesence of the object.

To relate images to object positions we use a linear mode¢septed by a matrix
W and affine vectoby. The model is learned offline using a set of training images,
represented as a single matfix The images contain the object at different positions
and this position is know and represented also as a singlexm@t To avoid over
fitting to the training data and to provide filtering of noitiee training set is reduced by
means of a principal component analysis. The linear modehéa relates not the object
positionsP and the image training set matri®, but the object position and the matrix
O, that corresponds to the projection@fon the training set principal components,
However, since the projection into principal componentslinear operator, the relation
between the object position and the image will still be linead thus efficient to use.

Clearly the relation between images and objects positiomise complex than just
linear. Typical images are cluttered, objects have diffesizes, different colors and
suffer from occlusions and pose changes. To allow such ali§itation, we consider
the existence of a pre-processing stage before ODR. Therearonstrains to the type
of pre-processing as long as it returns a version of thermldgmage where each pixel
is now assigned one of two values: 1 if the pixel is thoughteimbg to the object, O if
not. To the set of pixels labeled as 1, we refer to as objeabtingsis.

If the object hypotheses was errorless, e.i., all the padatled as 1 belonged to the
object and all the object pixels were assigned a value ofeloHject position could be
recovered by simple centroid estimation. The centroidestibn is a linear operation
over a normalized version of the pre-processed image swaththh sum of the value
of all the pixels in this image version is 1. This normalipatiallows to compute the
centroid of images with objects with different sizes using same set of coefficients.
Since there is currently no algorithm capable of deterngjiive object hypothesis with-
out error, the pre-processed images will contain noisdtieguirom robot motion and
from illumination.

The objective of ODR is to determine in a robust way the obdition in the
image, in spite of these errors. To decrease the impact sémioithe detection, we filter
the images by projecting them in the principal components st of training images.
These training images are representative of the set of sdliple images containing the
object at different positions and are the same as those oseeldte the statistical model.
We also note that ODR could still return a position in imagd®em an object is not
present, but there is noise. Interestingly, we then inclnd®@DR a method to estimate
a belief in the results of the detection performed using theak model, inspired by
similar work in face classification [4]. During its onlineqmessing, ODR projects a
given test image into the principal components computedguiie training set. It then
estimates the belief based on the distance between the iamabés projection into
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the linear subspace generated by the principal comporieditects false positives by
thresholding its belief.

ODR results are evaluated using real data acquired by a NAGt wehile approach-
ing a ball and a second robot. The data contains all the coditipeto be expected from
a robot moving. Objects are distorted by blur or/and areunted and there are images
that just contains noise. We present ODR performance ukneg tifferent metrics: (i)
the capacity to detect objects that are in the image, (iit&pacity to classify an image
on whether the object is present or not (iii) the time efficieof the algorithm.

In Figure 1 we present a diagram for the whole ODR algorithnenstwe identify
each task to be performed in the online and offline stage. Eiagje follows three dif-
ferent steps that are closely related across stages. Thstéipsconsists in normalizing
the images. The normalization accounts for changes in siddits all images into the
same distribution, which is a requirement for the principainponent analysis. The
second step consists in the projection into the principaimmnents, which are learned
in the offline stage and then used for belief estimation irothléne stage. The third step
differs more significantly between the offline and onlinggst In the offline stage, we
learn the linear relation between positions and image. énatfline stage we use this
relation to compute the object position.
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Fig. 1. Online and offline ODR

In the following sections we address the type of pre-prangsequired by ODR
and explain in-depth each of the tasks that compose thee#tial online stage.

3 Pre-processing

In the general case of object recognition, the pre-prongssiquired by ODR can be
the result of a segmentation or color threshold algorithmthé case of humanoid robot
soccer, color threshold is particularly appealing, sinccts in the field are well de-
fined by their color. Color thresholding is also a pre-preaes stage in [3] and [1].

When the robot needs to detect the ball in those images, ergkidking it into the

goal, the object hypothesis for the ball in each image woaslthle set of all orange pix-
els. When the robot wants to identify other robots from a distathe object hypothesis
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would be the set of white pixels. In Figure 2, we present anmgte of a thresholded
image and the resulting object hypothesis for the ball arddbot.

(a) Thresholded Image  (b) Obj. hypothesis foball ~ (c) Obj. hypothesis forobot

Fig. 2. Thresholded images and object hypothesigdbot andball.

After such pre-processing, ai x M imagel with pixels indexed a$i, j}, can be
represented as a binary vector itNGa// space ag’ € {1,0}¥M . I; = 1if the pixel
with indices{é,j : k = (1 — 1)M + 5,0 < j < M,0 < i < N} belongs to the object
hypothesis and;, = 0 if not.

However, the images retrieved by the NAOs humanoid robats &digh-resolution
that makes the color threshold of all the pixels a computatig heavy task. To over-
come the computational burden, ODR only makes use of a sabpiegls. In a similar
approach to [1], ODR scans the image at regular intervatst parforms the scanning
in the vector form of the imagd,’, not in the matricial form]. We fix the sampling
interval asA, and construct the image vector Ese {1,0}" : I/, = Iy, where
D = NM/A. To simplify notation, we drop the subscripthroughout the rest of the
paper and, except when stated otherwise and without anpfagnerality to the algo-
rithm itself, refer to the sampled version of the image veetwthe image vector in a
RP space.

4 ODR Offline Learning

In the offline stage, we have access to a large dataset oethbgte-processed and
sampled images containing examples of different objedts.ifhages corresponding to
a specific objectv are collected in an observation matrix, and the labels, i.e., the
object positions, in a matri®,. If the aim was to have the robot identifying n objects,
we would have n observation matrice3, and n position matrice®,. Since each
object is treated independently, we can again drop the spbscand when we refer
to observations matrig), it is meant that the matrix only contains observations feom
single object.

Each observations matrig), is constructed by assigning each pre-processed image
to arow in the matrix. For example, if we had a set of L imagks.,., I, ..., I, with N
rows and M columns sampled at an intervalbpixels, our observation matrix would
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be defined as:
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wherel], = 1if the pixel with coordinateq(n,m) € N> : k = (n — 1)M + m}
belongs to imagéobject hypothesis.

The label matrix,”? € RY*2, contains the coordinates of the object in terms of its
centroidp; . = [Z1,¢, Yi,c)-

Our training datasets are composed of both synthetic imaggseal images cap-
tured by the robot while it searches and follows a ball. Fer ghinthetic dataset, we
simulate images containing a specific object plus randorsendn each image the ob-
jectis placed in different positions and those positiorfamily cover the whole image.
The resulting images include random noise and occlusioddegand corners. For each
object, the synthetic dataset is composed of 768 imagesnfra can be found in Fig-
ure 3 for the ball example. The robot collected data inclumtdks in different parts of
the image, but the sampling is not thorough. The robot is\gaiccording to the ball
position and keeps the ball, and the close by objects appaigly in the center of
the image. The resulting dataset contains fewer exampléslbbn the edges of the
image. However, real images introduce the variability om dfvject shape, pose and
illumination that the robot will experience during run-gm

From the total of 856 real images we have for Ball and the 204Rfibot, we have
occlusion on the image edges (Figure 4(e)) and by other tshjEgure 4(c)). We also
have several examples of motion blur (Figure 4(d)) and ofioam noise (Figure 4(f))
captured by the robot while searching for the ball in the emment. All the real images
were labeled automatically using CMVision.

All the offline tasks will be based on the observation mattigonstructed using the
training dataset and in the position matfx The main output of the online stage is the
set of the linear regression coefficieritg,andby.

Normalization
There are two stages of normalization: the first enable usabwiith objects of different
sizes, the second for standardizing the data before perigrthe PCA. To deal with

@) (b) (© (d) (e)

Fig. 3. Examples of synthetic images used in training. Images include objects énediffposi-
tions (Figures 3(a)-3(c) for the ball; Figures 3(d)-3(e) for the thhacclusion in image borders
(Figures 3(a) and 3(d)) and noise (Figures 3(a)-3(¢e)).
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Fig. 4. Examples of real images used for training and testing. Examples inchjeet® of differ-
ent sizes (Figures 4(a)- 4(e)), motion blur (Figure 4(c)) , occlssigigure 4(c) and 4(e)) and
random noise (Figure 4(f)).

objects of different sizes, we first need to normalize allithages!”: I;, = I'/ >, I;.
The observation matrix composed of the normalized imagepigsented a@,,.

For the principal components analysis we compute the obhSens sample covari-
ance matrix ([2]) and it is a best practice to normalize tHees for each pixel so that
they follow a unitary zero mean Gaussian distribution0O,) = *~1(0,-0,)7(0,—
0,)X~1 whereO,, is the observation matrix corresponding/tn O, is a matrix whose
lines are all equal and correspond to the mean of each pieelathe dataset,, and
X is a diagonal matrix, whose elements;, are the standard deviation of the pixel
overO,.

The mean and standard deviation estimated over the tradf@taget, will be used
in the online stage, where each new image is normalized tosfisdme distribution.

Principal Components Analysis
The principal components/, correspond to the sample covariance matfixQ,),
eigenvectors. The components form an orthogonal set ofistintimages that span the
subspace of images with the same object in different positeond with different sizes.
Examples of the principal components obtained using thedadhset are repre-
sented in Figure 5. The examples highlight the hierarche#olution of the principal
components: the first components, which contain more irdtion, have lower spatial
frequency. We can thus reduce the dimensionality on ousdtgdy projecting the im-
ages into the first components of this new basis, as seen in eq. (2). The effddievi
equivalent to filtering in the spatial frequencies domain.

0, =0,V )

The number of components used affects the regressionseuDR uses a large
number of components, noise is added to the object modehétanore, the number of
coefficient to be estimated during regression increases\warefitting to noise becomes
a possibility. If too few components are used, the reducedsea observation matrix
O, may not have enough information to provide good regresseults. In particular,
all the small examples of the object may be filtered out. Dagieon the number of
components to keep for the regression depends on the eetdtiv of the smaller object
we want to be able to identify and of the type of noise we expedind during the
online stage.

By training regression models using different number of porrents and computing
the mean detection error per image in an independent davaseh reflects our expec-
tations for the online stage, we can choose a priori the hasber of components to

7
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use. The impact on precision of the number of componenthistriated in Figure 6(a)
for the ball example. In this case, the mean error per imagerhes constant after
the use of 200 components, but the variance starts to irerfathe remaining of the
experiments in this paper, we use only the first 200 comparfentthe ball. For the
robot, since it is considerably larger than the ball, we ardgd to use 15 components
to estimate its position.

Regression

After the dataset dimensionality reduction, ODR perfornis@ar regression between
the reduced imageE;’l and the known object positions = [z, y..]. The result of
the linear regression is the set of coefficielits = (w, 4, wr,,) andbgy = [bo, boy],
which solve the linear least squares problem in eq. (3) aadigen by eq. (4) ([2]).

min [P — O, W, | 3)
W, = (070,) 'O!'P, (4)

where P is the matrix which row is the position vectop; corresponding to imagk
0, = (1,0,) andl is a column vector with ones that allow us to incorporate ffiea
bias term ini¥,, = [b{, W]. The set of coefficients ifi” andb, are the main output of
the offline stage.

5 ODR Online Testing

To find the object position in a new imagk,..,, the robot needs to normalize the image
vector following the same steps as in the offline stage. Fiesstimage is converted into
a probability distribution/, ,..,. Then is normalized so it falls in the unitary zero mean
Gaussian distribution estimated in the offline procéss;ec.w = (I, new — I_/’))E—l.

Detection corresponds to the application of the linear rbeened in the offline
stage using equation eq. (5).

Pnew = INN,newVNVT' = IN,newVTWT + bO (5)

(a) 1st component (b) 10th component (c) 34th component

Fig. 5. Examples of principal components corresponding to a dataset cechpbshe synthetic
dataset for the ball.
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Fig. 6. Impact of the number of principal components used in detection and bstieation in
the image case

wherep,,.., is the object position in the new image.

We can measure the degree of accuracy of this descriptiosibyg aq. (6) to project
the image in the PCA basis and re-project it back into the esagpace. The resulting
image,I,Cep, corresponds to an image with coordinates in the originatemfI};, but
in the subspace generated by the principal component§ i§ well described by the
components, théy, and ;. should be very similar and the angldormed between
the two vectors should be very close to 1. We use the cosifedngle), eq. (7), as a
proxy for our belief in the existence of the object in the imag

L, =V'L=VTVIy (6)
I, T

cos (Oppicet(IN)) = ————L 7

Ootiect IN)) = 7 T, T ")

Due to the number of multiplications required, the beligireation can be very
time - consuming. To reduce the computational load, we chagyation eq. (6) and
choose carefully the number of principal components to leel a$ this stage.

We change equation eq. (6) by, instead of re-projecting thelevimage back into
the regular image coordinates, re-projecting only the lpikeat belong to the object
hypothesis. We are not comparing all the pixelsgfandI].,, but only the fraction
that should had been correctly reconstructed.

Furthermore, we note that the number of principal compaased at this stage
can differ from the number of components used for regresJiometermine the mini-
mum number of components required for belief estimationcampute the mean and
standard deviation of belief in the independent datasefiquely used for estimating
the position error. For the ball example we present the teguFigure 6(b). The mean
belief increases with the inclusion of more components,bagomes approximately
constant after the inclusion of at least 10 principal conguds. Thus, by fixing the
number of components to 10 we retain most of the informatieaded to assert the
presence of the object. The number of components to be ugeshde on the object
level of detail. While for a ball, just 10 components are gondwgh for describing the

ep?

9
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object, the same is not true for the robot. Albeit larger ttherball, the robot has a more
detailed shape and thus required more high order compottebésrepresented.

The selection of the decision threshold depends on the nuaflsemponents used
to estimate the belief. Using 10 components and considenhgthe case of ball de-
tection a threshold of 0.65 takes into account all the examiside the error bars as
exemplified in the plot in Figure 6(b).

6 Experimental Results

In this paper we analyze the results of ODR using elementseoRbboCup environ-
ment, such as the ball and other robots. In particular weuetalthe algorithm in three
different dimensions. First the capacity of object detattknowing that the object is
in the image. Second, the capacity of identifying if the obje in the image or not.
Third the time efficiency of the algorithm. We separate thabfgm of object detection
accuracy from the problem of belief estimation in our repudtsentation. This is moti-
vated by the possibility of changing either one of thesespafthe algorithm without
affecting the other. Also, since they solve different pewb$, one provides a position
while the other classifies an image, we use different metmiexpress results.

The capacity for detecting the object is measured by theeptaige of correctly
detected objects over the total number of objects that wigendo identify. l.e., over
all the set of testing images, we only consider those thatadoed the object. For the
ball example, ODR detects correcfl§% of all the ball examples in the dataset. As for
to the identification of the second robot, ODR identifies thsifion of87.5% of all the
robots. These results include changes of pose and occlistamples of detection are
provided in Figure 7

(a) Ball detection (b) Robot detection

Fig. 7. Examples of ball and robot detection.

The capacity for classifying each image according to whetthe object is present
or not given a belief score is illustrated by the three uswettics used to evaluate clas-
sification algorithms: the precision, the recall and therage precision. The precision
evaluates the capacity to differentiate between two ctaard is given by the percent-
age of true positives over the total number of positives. fBeall evaluates the capacity
of identifying the objects from the desired class and is mjilvg the percentage of true



Fast Object Detection By Regression in Robot Soccer 11

positives over the total number of true examples in the @éat@woth precision and re-
call metrics depend on the classification criterion. In OB}, criterion corresponds to
a threshold in the belief. Only images with belief highenmttfae threshold are classified
as having the object. The average precision attempts taecéde@recision and recall
by considering both metrics at different threshold valUés average precision itself is
computed by measuring the area under a precision recak cwhere each point in the
curve corresponds to a precision and a recall computed atthe threshold.

In the graphic of Figure 8 we present the precision recaNesifor the ball and
robot. The average precision for the baldi86 while for the robot i€.67. We compare

17/’ﬁ

—Ball
---Robot

o
2}

Precision

I
~

0.2

0 0.2 0.4 0.6 0.8 1
Recall

Fig. 8. Precision recall curves for both objects

the performance of both time and accuracy of ODR with resfzeother methods. In
particular we compare them against CMVision, which was wsedhe ground truth
in training. For the comparisons, we use both methods offtimening each one 1000
times per frame in a Pentium 4 at 3.20GHz. The processing k¥i€ion includes
thresholding, blob formation and ball detection, while ODBRudes only thresholding
and ball detection.

Results for processing time are presented in Figure 9. ODieeEs an average
processing time lower than that obtained by CMVision in bxakes.

7 Conclusions

In this paper, we have contributed a novel object detectjoregression approach. Re-
sults, which were obtained for the RoboCup case study, shaiotr learning of offline
linear object models for object detection and position tes a fast and robust online
performance. ODR is best applicable in general, if the emvitent and the specific
objects to detect and if object presence hypotheses carebmprputed.

The context of the RoboCup robot soccer is particularly adegfor ODR, as the
field and the objects are known ahead, and processing ofcblkeir provides a sim-
ple prior for the object hypotheses. Our learning modelsatiffely capture the online
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Fig. 9. Comparison of processing times using both ODR and CMVision.

object images, even given the extreme variations of the é@magreal game situations.
The learned models by ODR are based on a small number of gieating therefore to
fast online image processing. Experimental results shaistiinch sampling did not ad-
versely affect position detection precision, which is elés par with the state of the art
algorithms when the object is present in the image. Furtbezr®DR is significantly
more efficient.

ODR is also able to identify if the object is absent in the imbagsed on the learned
models. The number of principal components used by ODR{affbe ability to recon-
struct the image and hence, to identify the absence of tleebjhe higher the number
of principal components, the more precisely the absenckeobbject is detected, but
also the higher the computational cost. In our experimemtsavored a low computa-
tional cost, and ODR was still able to successfully identifg absence of the objects
with the needed accuracy. In general, setting the tradedfiden the number of princi-
pal components used online and the computational cost epédd on the needs of the
domain.
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