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Abstract
In this work, we contribute a method that takes advantage
of the powerful corpus of the Web data to automatically
evaluate the truth of propositions that are stated as multi-
argument instantiated predicates, e.g., City In Country
(Beijing,China). Our approach, OpenEval, automatically
converts a given instantiated predicate into a Web search
query, then extracts a corresponding set of features from
the web pages returned. Initially, OpenEval trains a clas-
sifier on a list of predicates by using a set of seed positive
examples for each predicate. Each such set furthermore
provides negative examples for the other predicates. To
evaluate a new query, OpenEval again converts the query
into a corresponding set of features extracted from the
Web. The extracted features are then used as input to the
learned classifier. The classifier output is used to calcu-
late the correctness probability of the input predicate. We
experimentally show that OpenEval is significantly supe-
rior to the previous related techniques, in particular the
Pointwise Mutual Information (PMI) and Never-Ending
Language Learner (NELL).

1 Introduction
“Is yogurt healthy?”, “Is zero a number?”, “Is pumpkin a fruit?”,
these are a few examples of the most popular questions that have
been searched in Google.1 These questions can be converted to
propositions that require assessment of their correct value. In gen-
eral, evaluating correctness of a proposition is of interest to informa-
tion processing applications, such as automated Question Answer-
ing (QA). Most of the questions and their candidate answers can be
converted to a proposition that requires assessment. For example
the question “where is Beijing located?” and the corresponding an-
swer “China” can be converted to a proposition “Beijing is located
in China”. It has been shown that the accuracy of a QA system can
be improved by using automated answer validation techniques [4]
that assess the correctness of the answers found by the QA system.

Evaluating correctness of a proposition can also be used in Infor-
mation Extraction (IE) systems to assess the probability that infor-
mation is extracted correctly [3]. IE systems such as KnowItAll [3],
TextRunner [2] and NELL [1] extract a large set of facts from their
input text corpus. Etzioni et al. showed [3] that the accuracy of
IE systems can be improved by validating the correctness of the ex-
tracted facts. In particular, they used search engine hit counts to

1Similar popular questions can be obtained by entering words,
such as “Is” or “Does” in Google, and seeing Google’s suggestions.

assign the probability of correctness to the facts that are extracted
by their KnowItAll system.

This paper presents OpenEval, a new IE approach that is able to
learn how to evaluate correctness of a proposition. OpenEval uses
multi-argument predicates such as City In Country(Beijing,China)
[‘Is Beijing a city in China?’] to represent the extracted information.
A predicate such as p(x1, ..., xn) defines a relationship between en-
tities (x1, ..., xn). We call (x1, ..., xn) an instance of predicate p.
As part of training, OpenEval is provided a set of predicates P (e.g.,
City(x), City In Country(x,y)) and a few seed examples for each
predicate p ∈ P (e.g., Los Angeles and New York for predicate City).
For each predicate p ∈ P and ip, an instance of p, OpenEval first
automatically converts ip into a Web search query and then extracts
the corresponding set of features from the Webpages returned by the
search engine. Each of the extracted features consists of a single
word or a combination of a set of words (e.g., located-in). The ex-
tracted features are then used to train a classifier (e.g., SVM). The
goal of the classifier is to classify each set of the input features to
one of the predicates in P .

To validate correctness of an input predicate instance, OpenEval
converts the input predicate instance to a search query and extracts a
corresponding set of features from the Web. The extracted features
are then used as input to the learned classifier. The classifier output
is used to calculate the correctness probability of the input predicate.

The baseline for our work is the Pointwise Mutual Informa-
tion (PMI) technique, that has been widely used in IE [5; 6;
3], and Never-Ending Language Learner(NELL) [1]. We train
OpenEval on a set of mutually exclusive predicates that are chosen
randomly from 400 predicates in NELL’s ontology. We experimen-
tally show that OpenEval improves F1 measure on the test data at
least by a factor of two compared to PMI and NELL techniques.

2 Related Work
Researchers have worked on the problem of evaluating correctness
of a proposition from both information extraction and question an-
swering points of view. Turney [6] presented an unsupervised tech-
nique that uses search engine hit counts to measure the similarity of
pairs of words. They also used the PMI technique to measure se-
mantic similarity between two words. Other researchers have used
PMI to validate information extraction [5] or to validate a candi-
date answer in a question answering system [4]. Soderland et al. [5]
showed different methods of using PMI which can be used to assign
a correctness probability to the extracted facts.

The performance of all the above techniques depends on the ac-
curacy of the search engine hit counts. However, the search engine
hit counts are only a crude estimate of the number of matching doc-
uments and it has been shown that hit count estimates are not accu-
rate [7]. However, our approach uses the content of the webpages



————————————————————————
New York is a vibrant and eclectic place. There is an in-
credibly diverse range of things to see and do- but there
are a few attractions like no other. No visit to New York

City is complete without visiting the Empire State Building, the
Statue of Liberty and the Ellis Island Immigration Museum.
Ellis Island is where it all began. You will receive a free ferry
ride to the Island and the Statue of Liberty with the New York

Pass.
——————————————————————————–

Figure 1: An example of the text that is found for predicate
City Attraction(Statue of Liberty, New York).

that are returned by the search engines for the evaluation and does
not rely on the search hit counts.

NELL (Never-Ending Language Learning) [1] is a semi-super-
vised learning that has been developed as part of the Read the Web
(RTW) project at Carnegie Mellon University. It extracts structured
information from the unstructured web pages. The input of NELL
is an initial ontology (e.g. hundreds of predicates with one or two
arguments) and 10 to 15 seed examples for each predicate that is de-
fined in its ontology. Given this input, NELL extracts new instances
of predicates from a collection of 500 million webpages. Given an
instance of predicate p, we can simply validate it by checking if the
input instance is in the NELL’s Knowledge Base (KB). In our exper-
imental result, we compare result of OpenEval to NELL.

3 OpenEval
OpenEval considers a set P of predicates p with optional associated
keywords Kp for each p, and instantiation ip for each predicate.
For example, for p = City, values of ip are New York and Beijing,
and for p = City Country, values of ip are (New York, USA) and
(Beijing, China). OpenEval evaluates the correctness of a combined
tuple t = 〈p, ip〉, using the keywords Kp, if any.

We describe next in detail the components of OpenEval.
Throughout the presentation, we exemplify with a set of predicates
P ={City Attraction, Country Currency} and a set of correspond-
ing instantiations as two subsets of seed examples of attractions of
cities and currencies of varied countries. We further use a set of key-
words Kca ={popular, unique} for City Attraction, and Kcc = ∅
(empty set) for Country Currency.

3.1 Feature Extractor
The input to the feature extractor is the tuple t = 〈p, ip,Kp, N〉,
where p ∈ P is the input predicate, ip is an instance of predicate
p, Kp ∈ K is a set of optional keywords, and N is the number of
webpages that the feature extractor should extract feature from. The
output of the feature extractor is a set of bag-of-features, denoted by
Bip . Each b ∈ Bip is a bag-of-features that is extracted for the input
instance ip. Each feature is a single word or a combination of a set
of words (e.g., located-in). A bag-of-features contains a set of fea-
tures (there may be multiple instances of a feature) that are extracted
by the feature extractor. For example, {must-See, maps, nearby-
restaurants, Admission, tickets, prices, entry} is part of one of the
bag-of-features that is extracted for the predicate City Attraction. In
our explanation, Bip indicates a set of bag-of-features that are ex-
tracted for instance ip ∈ Ip.

Algorithm 1 shows the feature extraction procedure. Given the
input tuple t =< p, ip,Kp, N >, the feature extractor first builds
the query Q (Lines 3-4). The query Q is built from the name of the
predicate p, arguments of the input instance ip, and the keywords
Kp. For example, suppose that (Statue of Liberty , New York) is
given as an instance of the predicate City Attraction. The query Q

Algorithm 1 Feature Extractor
Input: t =< p, ip,Kp, N >←Input Tuple
1: Function: FeatureExtractor (T =< p, ip,Kp, N >)
2: Bip ← φ //Bip is the set of all the bag-of-features for ip
3: pArgs← Arguments of ip separated by space
4: Q← “p pArgs Kp //Q is the search query
5: W ← Get the first N results of Google for query Q
6: BWi ← φ //BWi is the list of all the bag-of-features that are

extracted from webpage Wi

7: for all Webpages Wi ∈W do
8: for all occurrences pj of pArgs in Wi do
9: T̄j ← extract text around pArgs

10: b← all the words and bigrams in T̄j

11: Add b to BWi

12: end for
13: Merge all the bag-of-features in BWi and add to Bip

14: end for
15: return Bip

would then be {“Statue of Liberty” “New York” popular unique}.
The feature extractor then searches the queryQ in Google and down-
loads the first N webpages (Line 5). For each webpage Wi that is
found by Google, the feature extractor searches the content of Wi

and extracts all the features in Wi. The feature extractor finds all
the positions pj in Wi whose words in pArgs appear “close” to
each other (Line 8). “Close” means we allow words in pArgs to
appear in any arbitrary order and up to a maximum of 10 words can
be in between, before, and after them. For each position pj , con-
sider T̄j as the text that occurs around pArgs. The bag-of-features
b is then built from all the words and bigrams in T̄j . All the stop
words and also the bigrams that contain two stop words are deleted
from b. All the bag-of-features b that are found in webpage Wi are
added to BWi (Line 11). Figure 3.1 shows an example of the text
that is found in one of the returned webpages for query Q. The ar-
guments of the predicate City Attraction are shown in bold. Only in
two places a maximum of 10 words occur between words in pArgs.
The underlined text shows the value of T̄j for each occurrence of
words in pArgs. The feature extractor returns two bag-of-features
in this case: b1 ={attractions, few-attractions, attractions-like, visit,
No-visit, visit-to, ... }, and b2 ={receive, receive-a, free, a-free, free-
berry, berry, ...}.

The final step of the algorithm is to build the set of bag-of-features
Bip from each element of BWi (Lines 13). To do this, all the fea-
tures that are extracted from the same webpage Wi, are merged to a
single bag-of-features. In this case, only one single bag-of-features
is built for eachWi ∈W . The extracted bag-of-features contains all
the words that appear around words in pArgs at different positions
of the webpage Wi. For example, b1 and b2 are merged to a single
bag-of-features: v ={attractions, few-attractions, attractions-like,
visit, No-visit, visit-to, receive, receive-a, free, a-free, free-berry,
berry, ...}.

3.2 Training Data Constructor

The role of the training data constructor is to build a set of training
data that are later used to train a classifier. The algorithm takes the
tuple T =< P, I,K,N > as an input. For each predicate p ∈ P
and each instance ip ∈ Ip, the feature extractor is called by given the
tuple < p, ip,Kp, N > as its input. The feature extractor extracts
and returns a set of bag-of-features Bip that are extracted for ip.
Each of the bag-of-features b ∈ Bip is used as one of the training
examples. The label for b is the same as the name of predicate p.



3.3 Classifier
The next step is to train a classifier on a set of bag-of-featuresB that
is built by the training data constructor. First, each of the bag-of-
features b ∈ B is transformed into a feature vector f , where each
element corresponds to the frequency of a distinct feature in b. The
dimension of the vector is equal to the total number of distinct fea-
tures (i.e., words and bigrams) that exist in B. The label for the
feature vector f is the same as the label of the input bag-of-features
b. We train a classifier such as SVM to classify the constructed fea-
ture vectors to different classes. Each class represents a predicate
p ∈ P .

The trained classifier is later used in the evaluation part of
OpenEval to classify the input bag-of-features bip to one of the pred-
icates p ∈ P . In this case, bip is first transformed to a feature vector
and then is given to the trained classifier. The classifier classifies the
input feature vector to one of the predicates p ∈ P .

3.4 Evaluator
The input of the evaluator is a tuple t =< p, ip,Kp, N >, where p
is a predicate p ∈ P , ip is a candidate instance of predicate p that the
evaluator is required to make an assessment,Kp is a set of keywords
for predicate p, and N is the number of webpages that evaluator
should process. The input keywords Kp should be the same as the
set of keywords that are used in the training. The evaluator first calls
the feature extractor to extract a set of bag-of-features for the input
tuple t. The feature extractor returns Bip which contains a set of
bag-of-features related to the predicate ip. For each bip ∈ Bip , the
trained classifier is then called to classify bip to one of the predicates
in P .

The correctness probability of the input predicate instance ip is
calculated by dividing the number of times that b ∈ Bip is classified
as p to the size of Bip . For example, suppose that City Attraction
and (Statue of Liberty, New York) are given as p and ip. Also suppose
that feature extractor extracts features from 8 webpages (i.e., N =
8). In this case, Bip contains the maximum of eight bag-of-features,
each of which is a set of features that are extracted from the same
website. Each b ∈ Bip is given to the classifier that is trained in the
classification part. The classifier classifies b to one of the predicates
p ∈ P . The correctness probability is obtained by the number
of times that b is classified as City Attraction divided by the total
number of bag-of-features in Bip (maximum is eight).

To decide if ip is an instance of predicate p, one can check if the
correctness probability that is found by the evaluator is greater than
a predefined threshold. Given a set of seed examples as an input,
the process of choosing a threshold Trp for each predicate p is as
follows. First, for each predicate p ∈ P , the seed examples are
split into two sets, T1 and T2. OpenEval is then trained using all
the seed examples in T1. Now in order to set the value of Trp, we
calculate the F1 score for all integers between 0 and 100 using the
seed examples in set T2, and the integer which achieves the best F1
score is assigned to Trp.

4 Experimental Evaluation
4.1 Setup
OpenEval is tested on two sets of predicates, one set contains pred-
icates with one argument (i.e., categories) and the other contains
predicates with two arguments (i.e., relations) that are chosen ran-
domly from 400 predicates of NELL’s knowledge base. 2 Our ap-
proach is general and can be used for predicates with any number
of arguments. However to be able to compare our results with other

2The predicates are chosen randomly under the condition that
they should be mutually exclusive.

related work, we have tested OpenEval only on the predicates with
one and two arguments. Table 1 lists all of the categories in the
leftmost column, and Table 2 lists all the relations in the leftmost
column. For each predicate, 15-25 positive seed examples are pro-
vided as an input to the OpenEval. OpenEval is trained and tested
separately on each set of the predicates with one and two arguments.
We have used Support Vector Machines (SVM) as the classification
technique in OpenEval.

To evaluate OpenEval, 30 random positive instances are chosen
for each of the input predicates from Wikipedia.org. Wikipedia
contains a set of webpages that have listed instances of different
categories and relations (e.g., http://en.wikipedia.org/
wiki/List_of_academic_disciplines). Each positive
test example for one of the predicates is considered as a negative
test example for the other predicates since all the predicates are mu-
tually exclusive.

We have compared our technique to both NELL and PMI using
standard performance metrics of precision, recall, and F1. NELL
extracts instances of categories and relations that are defined in its
ontology from a large Web corpus that contains 500 million web-
pages (the ClueWeb09 corpus) [1]. Given an instance ip of predicate
p, we can simply use NELL to check if ip is an instance of p. This
can be done by checking if ip exists in the NELL’s Knowledge Base
(KB) as an instance of predicate p. We have used NELL’s KB that
is built from 196 iterations. Another baseline for our comparison is
PMI technique. Given a predicate p and a predicate instance ip, the
PMI score is calculated as described in [6]. The thresholds for both
PMI and OpenEval techniques are calculated using the the same
technique that is explained in Section 3.4.

4.2 Experimental Results
Tables 1 and 2 show the Precision (Pr), Recall (Re) and F1 score
(F1) of PMI, NELL, and OpenEval for predicates with one argument
(i.e., categories) and predicates with two arguments (i.e., relations).
The predicates are randomly chosen from NELL’s ontology. The
experiments are obtained when OpenEval uses 56 webpages (i.e.,
N = 56) for the training and 8 webpages (i.e., N = 8) for the
evaluation. The first column shows the predicates that are used in
the experiments. Across all the predicates, we can see that OpenEval
has achieved the best average F1 score (48% for categories and 45%
for relations).

Comparing the result of NELL and OpenEval, it can be seen that
performance of both NELL and OpenEval are almost the same for
the categories. NELL and OpenEval have achieved average F1 score
of 43% and 48% while the F1 score of PMI is 13%. NELL’s accu-
racy for relations is significantly less compared to categories. Carl-
son et al. [1] have also stated that NELL’s performance is signifi-
cantly better for categories compared to relations. Comparing the
average F1 score of OpenEval, NELL, and PMI on relations, it can
be seen that accuracy of OpenEval is about 2.5 times higher than
both NELL and PMI.

5 Conclusion
This paper introduced OpenEval, a novel information extraction ap-
proach that is able to automatically evaluate correctness of a pred-
icate instance. OpenEval can be used to validate information that
extracted by IE systems or to validate a candidate answer that is ex-
tracted by a QA system. We described two main components of
OpenEval in detail: learning and evaluation, and experimentally
showed that OpenEval massively outperforms the PMI technique.
We also compared the result of our system to NELL’s KB. Com-
parison of the average F1 score of NELL and OpenEval shows that
OpenEval outperforms NELL on predicates with two arguments at
least by a factor of six. Both NELL and OpenEval have achieved



Predicate PMI NELL OpenEval
Name Pr(%) Re(%) F1(%) Pr(%) Re(%) F1(%) Pr(%) Re(%) F1(%)
Academic Field 14 37 21 100 20 33 26 47 33
Animal 5 100 9 100 77 87 22 57 32
Board Game 5 100 9 86 20 32 49 60 54
Emotion 12 70 20 97 93 95 19 67 29
Furniture 8 13 10 100 60 75 38 50 43
Geometric Shape 5 100 9 100 17 29 63 50 56
Sports Equipment 31 13 19 100 5 9 43 20 27
Ethnic Group 10 13 12 100 17 29 23 73 35
ML Algorithm 14 13 14 100 30 46 33 33 33
Religion 5 100 9 100 27 42 66 46 54
Protein 100 13 24 93 47 62 85 77 81
Programming Language 5 100 9 100 5 9 16 57 25
Musician 71 17 27 100 13 24 61 73 67
Scientist 5 100 9 100 5 9 29 63 40
Park 5 100 9 100 27 42 36 67 47
Mountain 5 100 9 100 47 64 53 60 56
Food 5 100 9 100 7 13 62 77 69
Film Festival 5 100 9 100 40 57 69 97 81
Building Material 12 17 14 100 5 9 33 50 39
Disease 67 7 12 100 50 67 50 60 55
Model 5 100 9 100 50 67 57 67 62
Average 19 63 13 99 31 43 44 60 48

Table 1: The performance (F1, precision, recall) of PMI, NELL, and OpenEval techniques for predicates with one argument.

Predicate PMI NELL OpenEval
Name Pr(%) Re(%) F1(%) Pr(%) Re(%) F1(%) Pr(%) Re(%) F1(%)
Language of Country 31 13 19 100 33 50 29 53 38
Musician Plays Instrument 7 80 13 100 3 6 39 30 34
Company’s Office In City 6 93 11 0 0 0 13 13 13
Country Currency 21 23 22 0 0 0 70 70 70
Team Plays Sport 10 83 17 100 40 57 32 73 44
Company Produces Product 8 53 15 0 0 0 30 50 38
Sport Uses Equipment 9 66 16 0 0 0 46 45 46
Airport In City 6 100 12 100 16 28 71 48 58
Politician US Holds Office 6 100 11 0 0 0 33 40 36
Park In City 6 93 12 66 7 13 63 40 49
Stadium Located In City 6 80 11 100 10 18 38 57 45
Museum In City 6 100 12 100 3 6 75 50 60
Aquarium In City 7 83 13 0 0 0 45 43 44
Person Born In City 7 77 12 0 0 0 45 17 24
Team Plays In League 8 93 15 100 100 100 54 47 50
Body part Contains Body part 7 90 12 0 0 0 58 47 52
Drug Has Side Effect 6 100 11 100 13 23 64 53 58
Average 9 78 14 51 13 18 47 46 45

Table 2: The performance (F1, precision, recall) of PMI, NELL, and OpenEval techniques for predicates with two arguments.

almost the same results on predicates with one argument. OpenEval
is a general technique, easy to implement, and has relatively low
training time.
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