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Abstract Learning from demonstration algorithms enable
a robot to learn a new policy based on demonstrations
provided by a teacher. In this article, we explore a novel
research direction, multi-robot learning from demonstra-
tion, which extends demonstration based learning meth-
ods to collaborative multi-robot domains. Specifically, we
study the problem of enabling a single person to teach in-
dividual policies to multiple robots at the same time. We
present flexMLfD, a task and platform independent multi-
robot demonstration learning framework that supports both
independent and collaborative multi-robot behaviors. Build-
ing upon this framework, we contribute three approaches
to teaching collaborative multi-robot behaviors based on
different information sharing strategies, and evaluate these
approaches by teaching two Sony QRIO humanoid robots
to perform three collaborative ball sorting tasks. We then
present scalability analysis of flexMLfD using up to seven
Sony AIBO robots. We conclude the article by propos-
ing a formalization for a broader multi-robot learning from
demonstration research area.

Keywords Learning from demonstration · Multi-robot
learning · Human–robot interaction · Multi-robot systems

1 Introduction

Research on robot learning from demonstration (LfD) ex-
plores techniques for learning a policy from examples, or
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demonstrations, provided by a teacher [2]. LfD algorithms
utilize a dataset of state-action pairs recorded during teacher
demonstrations to derive a policy that reproduces and gener-
alizes the demonstrated behavior. Proposed techniques span
a wide range of policy learning methods, ranging from rein-
forcement learning [3, 24, 38, 46] to classification [13, 43]
and regression [7, 23], and utilizing a variety of interaction
methods, such as natural language [6, 42], teleoperation [23,
43], kinesthetic teaching [8, 25] and observation [5, 39].

Despite this rich diversity of approaches, all of the above
algorithms are designed for single-robot domains in which
the teacher instructs a single robot learner. We are interested
in tasks that require the collaboration of multiple robots, in
which by combining their unique abilities, or by simply ex-
tending their coverage, multiple robots are able to perform
more complex tasks than a single robot alone. The develop-
ment of algorithms for the management and coordination of
multiple robots is a challenging problem that has been exten-
sively studied in existing literature [16, 26, 49]. However, no
previous work has yet explored methods for teaching multi-
robot interaction and control through demonstration.

In this work, we extend LfD to introduce multi-robot
learning from demonstration (MLfD), which we define
as the problem of teaching multiple independent robots
through demonstration by a single teacher. MLfD presents
many novel research challenges. Interaction between the
robots and the teacher must allow the teacher to per-
form demonstrations to individuals, while also maintaining
awareness of the group as a whole. However, when working
with multiple robots, the teacher is not able to pay full atten-
tion to all robots at the same time. Each robot must therefore
be tolerant of periods of neglect from the teacher during
the learning process. Finally, most collaborative tasks re-
quire robots to coordinate their actions through the exchange
of information. The demonstration learning algorithm must
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therefore not only support inter-robot communication, but
also enable the teacher to teach collaborative elements of
the task.

In this article, we explore the problem of enabling a sin-
gle person to teach individual policies to multiple robots at
the same time. We present flexMLfD, a task and platform
independent multi-robot demonstration learning framework
that supports both independent and collaborative multi-robot
behaviors. Our approach is based on the Confidence-Based
Autonomy (CBA) single robot demonstration learning al-
gorithm, an interactive mixed-initiative approach to demon-
stration learning that enables the robot and teacher to jointly
control the learning process and selection of demonstration
training data [10, 11, 13]. The CBA algorithm enables the
robot to identify the need for and request demonstrations for
specific parts of the state space based on confidence thresh-
olds characterizing the uncertainty of the learned policy. Our
multi-robot framework takes advantage of the adjustable ro-
bot autonomy provided by CBA to enable each robot to learn
a unique task policy. The resulting learning method can be
applied to a single or multiple, independent or collaborative,
robot learners.

Building upon the flexMLfD framework, we formalize
three approaches to teaching emergent collaborative behav-
ior based on different information sharing strategies: im-
plicit coordination, coordination through active communi-
cation, and coordination through shared state. We evaluate
and compare these techniques by teaching two Sony QRIO
humanoid robots to perform three collaborative ball sorting
tasks utilizing a continuous and noisy state representation.

Additionally, we present a case study analysis of the scal-
ability of flexMLfD using up to seven Sony AIBO robots.
For three different learning conditions, we examine how the
number of robots being taught by the teacher at the same
time affects the number of demonstrations required to learn
the task, the time and attention demands on the teacher, and
the delay each robot experiences in obtaining a demonstra-
tion.

We conclude the paper by discussing the broader research
questions posed by the challenge of teaching multiple ro-
bots at the same time. We propose a formal definition of the
MLfD learning problem, as well as key design choices and
evaluation metrics, with the goal of providing a foundational
structure for future work in this research area.

2 The FlexMLfD Framework

We investigate multi-robot learning from demonstration in
the context of loosely-coordinated tasks, which we define as
tasks that contain elements that can be independently per-
formed by individual robots, but that require a degree of co-
ordination to couple their execution. We present flexMLfD,

a task and platform independent multi-robot demonstration
learning framework that enables a single person to teach
multiple robots to perform collaborative tasks.

Our multi-robot approach is based on the Confidence-
Based Autonomy single-robot learning from demonstration
algorithm [10, 11, 13]. We begin with definitions of the no-
tation used throughout this article, followed by an overview
of CBA. We then present the flexMLfD learning framework
and introduce three techniques for teaching multi-robot col-
laboration through demonstration.

2.1 Definitions

The robot’s state is represented by the n-dimensional vector
s ∈ R

n. Elements of the vector, called features, have contin-
uous or discrete numerical values representing information
known to the robot. The robot’s actions, a, are bound to a
finite set A of action primitives, which are the basic actions
that can be combined to perform the overall task.

Each demonstration performed by the teacher is recorded
as the pair (s, a), representing the correct action a the robot
should perform from state s. Given a sequence of demon-
strations (si , ai), the goal is for the robot to learn to imitate
the teacher’s behavior by generalizing from the demonstra-
tions and learning a policy π : S → A mapping from all pos-
sible states S to actions in A. The Confidence-Based Auton-
omy algorithm represents and learns the policy using a clas-
sifier; the algorithm can be combined with any supervised
learning approach that provides a measure of confidence in
its classification.

Our goal and definitions reflect several assumptions that
we make in designing our approach. First, we assume that
the teacher is able to demonstrate the task being taught, and
that the robot’s goal is to imitate the behavior of the teacher.
Second, we assume that the robot’s state information con-
tains all sensory information necessary to learn the task pol-
icy (e.g., if some information, for example the time of day,
is required to correctly select among different actions, we
assume that this information is available to the robot). Fi-
nally, this learning approach is aimed at high level behav-
ioral tasks, which is reflected in our representation by the
discrete action space.

2.2 Confidence-Based Autonomy

The Confidence-Based Autonomy algorithm enables the ro-
bot to learn a policy imitating the behavior of the teacher.
It is a mixed-initiative approach that enables the robot and
teacher to jointly control the learning process and selection
of demonstration training data. The algorithm consists of
two components:

• Confident Execution: an algorithm that enables the robot
to learn a policy based on demonstrations obtained by reg-
ulating its autonomy and requesting help from the teacher.
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Fig. 1 Confidence-Based
Autonomy: overview of the
Confident Execution and
Corrective Demonstration
learning components

Demonstrations are selected based on automatically cal-
culated classification confidence thresholds.

• Corrective Demonstration: an algorithm that enables the
teacher to provide supplementary demonstrations and im-
prove the learned policy by correcting possible mistakes
made by the robot during autonomous execution.

Figure 1 presents an overview of the CBA algorithm,
highlighting the interplay between its two components. At
the beginning of each execution timestep, the robot’s cur-
rent state, si , is used to query the robot’s policy. The pol-
icy returns the recommended action, a, and a classification
summary, C, that provides information from the classifier
regarding the query, including the classification confidence.
The Confident Execution algorithm uses the classification
summary to regulate the autonomy of the robot and decide
between executing the policy action or requesting a demon-
stration from the teacher.

If autonomous execution is selected by the algorithm, the
robot performs the policy selected action a. Alternatively, if
a demonstration is required, the robot pauses and attracts the
attention of the teacher through speech, lights, movement,
or some other behavior. Once the teacher provides a demon-
stration action adem, the algorithm updates the policy with
the new datapoint (si , adem) and executes the demonstrated
action.

Note that while waiting for a demonstration, the environ-
ment around the robot may change. It is therefore impor-
tant that the robot continues to update its state information
and re-evaluate its decision for a demonstration request. This

mechanism serves two purposes. First, there is a possibility
that the environment will change in such a way that the robot
will find itself in a high confidence state. In this case, the ro-
bot will abandon its demonstration request and perform the
policy action autonomously. Second, it is possible that the
teacher may be distracted and take some time to pay atten-
tion to the robot. In this case, the update ensures that once
a demonstration action is received, that it is associated with
the robot’s most current state.

At a high level, the Confident Execution algorithm can be
viewed as a supplementary layer added over a classification-
based action policy. The algorithm serves two purposes: the
selection of training data (our experimental results show that
Confident Execution can often select more informative train-
ing data than a human) and the regulation of robot autonomy
in new or uncertain situations by preventing autonomous ex-
ecution in such states. However, since the algorithm inter-
leaves learning and execution, the policy used to select ac-
tions and regulate autonomy is typically incomplete. As a
result, the algorithm sometimes selects an incorrect action
for autonomous execution.

Our second algorithmic component, Corrective Demon-
stration, addresses this problem by enabling the teacher to
provide corrections for the robot’s mistakes. If an incorrect
action is executed by the robot, the teacher can provide a
corrective demonstration, acorr , during the execution of the
incorrect action to indicate which action should have been
executed in its place. The resulting demonstration datapoint,



198 Int J Soc Robot (2010) 2: 195–215

(si , acorr ), associates the new action with the original deci-
sion state si .

Together, Confident Execution and Corrective Demon-
stration form an interactive, mixed-initiative online learning
algorithm in which both the robot and human teacher have
the ability to identify situations in which additional training
data is required. The complete definition of the algorithm
can be found in [13]. Learning is complete once the robot
is able to perform the task correctly multiple times without
requesting demonstrations or requiring corrections. If mul-
tiple variations of the task exist (e.g., interaction with dif-
ferent objects, or navigation in different environments), all
variations the robot is expected to encounter during opera-
tion should be performed.

2.3 Multi-Robot Learning Approach

Within the flexMLfD framework, each robot acquires its own
set of demonstrations and learns an individual task policy
using an independent instance of the CBA algorithm [12].
This approach is in contrast to learning a single joint action
for the complete multi-robot system.

The unique feature of the Confidence-Based Autonomy
algorithm that enables it to be applied to multi-robot learn-
ing is the Confident Execution component, which enables
each robot to regulate its own autonomy, and to pause exe-
cution when faced with an uncertain situation. The resulting
self-regulation achieved by each learner enables the teacher
to switch attention between robots on an as-needed basis.

Given a group of robots R, each robot r ∈ R uses
Confidence-Based Autonomy to learn a policy πr : Sr → Ar

from the robot’s states to its actions. Each robot may have a
unique state and action set, allowing distinct policies to be
learned by possibly heterogeneous robots. The general rep-
resentation and modularity provided by the CBA learning
approach and interface result in a flexible task-independent
and robot-independent learning framework.

Algorithm 1 outlines the general procedure followed by
the teacher in performing multi-robot demonstrations. The
teacher alternates between responding to demonstration re-
quests when they are present, and correcting any mistakes in
the autonomous behavior of the robots. The function f (D),
represents a demonstration request selection policy, such as
first-in-first-out or round-robin ordering. In evaluations pre-
sented in this article f (D) represents random selection.

Robots operating in the same space are likely to be in-
teracting in some way, whether simply as obstacles in each
other’s way or through direct action. However, each robot is
controlled by its own action policy, and during each demon-
stration the teacher interacts independently with only a sin-
gle robot by instructing it what to do given its current world
state. In the following section, we discuss how to teach ro-
bots to perform collaborative tasks by encoding relevant
data about the interaction into the state information of each
robot.

Algorithm 1 Multi-robot demonstration
Let D be set of current demonstration requests
while the robots request demonstrations or incorrect be-
havior is observed do

if D �= ∅ then
– Select robot demonstration request r according
to function f (D)

– Perform demonstration for robot r

else
– Observe autonomous execution of the robots
if correction is required for robot r then

– Perform correction for robot r

2.4 Teaching Multi-Robot Collaboration

The approach we present for teaching collaborative behavior
through demonstration relies on emergent multi-robot co-
ordination [36], in which the solution to the shared multi-
robot task emerges from the complementary actions per-
formed by robots based on their independent policies. To
achieve this coordination, each robot’s action abilities may
include communication. We define each robot’s action set
by A = Ap ∪ Ac , where Ap is the set of physical robot ac-
tions and Ac is the set of communication actions. All actions
within A are available to the teacher for demonstration.

Multi-robot coordination requires a rich state represen-
tation consisting of both local and communicated informa-
tion. To this end, we categorize the robot’s state features
based on their source and purpose; for example, informa-
tion locally observed by the robot’s sensors may be pri-
vate to the robot (e.g., current wheel angle), shared with its
teammates at all times (e.g., robot position), or shared only
under particular conditions (e.g., robot position only when
known with high confidence). We define the robot’s state as
s = {Fo ∪ Fs ∪ Fc ∪ Fe ∪ Ft }, where

• Fo = locally observed state features that are private to the
robot

• Fs = shared state features that are automatically commu-
nicated to teammates each time their value changes

• Fc = state features communicated using communication
actions Ac as defined by policy π

• Fe = state features extrapolated from other features or ro-
bot actions

• Ft = state features containing data either directly con-
tained in, or calculated based on, information communi-
cated from teammates

In this representation, we differentiate local and commu-
nicated data, as in [41], but seamlessly integrate both into
the robot’s state. Coordination between robots occurs when
complementary actions are selected by the policy based on
this input. Using this representation, we present three meth-
ods for teaching emergent multi-robot coordination using
demonstration.



Int J Soc Robot (2010) 2: 195–215 199

2.4.1 Implicit Coordination

The most basic level of multi-robot coordination is implicit
coordination, in which physical actions and observed state
allow complementary behaviors to occur without communi-
cation or shared intent [27, 28, 37]. Using implicit coordina-
tion, robots make decisions based only on locally observed
information and are often not aware of the coordination or
even of each other’s presence. Teaching implicit coordina-
tion through demonstration can therefore be reduced to the
problem of teaching multiple robots to perform independent
tasks at the same time. Within our framework, implicit co-
ordination is represented by the policy:

π : {Fo,∅,∅,∅,∅} → {Ap,∅}
which maps the robot’s locally observed state directly to the
physical actions. Coordination occurs through the environ-
mental changes resulting from the executed actions.

2.4.2 Explicit Communication

Domains in which a robot cannot acquire all needed infor-
mation solely through its own sensors require explicit com-
munication through the use of actions, such as by sending
wireless messages. Explicit communication is widely used
in multi-robot research, and a broad range of algorithms
have been proposed with different approaches to what data
is to be communicated, how often, and to whom [9, 18, 20].
Below we present two approaches for teaching collaboration
based on explicit state communication [4].

Coordination Through Active Communication

Coordination through active communication enables the
teacher to use demonstration to explicitly teach when com-
munication is required. Based on demonstrations of com-
munication actions Ac obtained from the teacher, commu-
nication is incorporated directly into a robot’s policy along
with the physical actions Ap . This technique enables the
teacher to specify the conditions under which communica-
tion should take place. The resulting policy is defined as:

π : {Fo,∅,Fc,Fe,Ft } → {Ap,Ac}
While most physical actions have an observable effect

that changes the robot’s state (i.e., moving an object changes
its location), the immediate effect of communication actions
is not observable. To prevent the robot from remaining in
the same state following a communication action, we utilize
internal state features Fe to represent the last communicated
value of each element of Fc (∀f ∈ Fc → f ∈ Fe). A mis-
match between the value of a particular feature in Fe and
Fc indicates that the local state no longer matches the team-
mates’ knowledge. All state information received from other
robots through communication is stored within the set Ft .

Coordination Through Shared State

Robot coordination frequently relies on shared state infor-
mation that must be maintained up to date at all times, not
just under specific conditions. For example, a robot perform-
ing a navigation task with its teammates may always need to
know their locations. Coordination through shared state au-
tomates the communication process for this common case,
enabling robot coordination based on automatically updated
state features. Specifically, we define Fs as the set of local
features that are automatically communicated to teammates
each time their value changes. We therefore define coordi-
nation through shared by the policy:

π : {Fo,Fs,∅,∅,Ft } → {Ap,∅}

Since communication occurs automatically in this approach,
communication actions are not demonstrated or incorpo-
rated into the robot policy. Using this technique, the teacher
is able to focus on demonstrating only the physical actions to
be performed based on state information shared between ro-
bots. Note that this approach assumes that shared features do
not change very rapidly; attempting to share a sensor value
which changes at a high frequency would quickly cause net-
work congestion.

2.4.3 Discussion

Implicit coordination allows collaborative behaviors to be
performed without communication, while active communi-
cation and shared state rely on communication to coordi-
nate the robots’ actions. The difference between the two
communication-based approaches is most significant in do-
mains in which communicated state features take on a range
of values, and in which such features have importance only
over a narrow segment of that range. Such features are com-
monly encountered in robotic problems. Consider, for ex-
ample, a robot that only needs to know the location of its
teammate if the teammate has located an object of inter-
est. Under all other conditions, the teammate’s position, if
known, would be ignored. In this scenario, the teammate
can choose between two communication strategies: (1) to
communicate its location only when it finds an interesting
object, or (2) to communicate its location at all times and
rely on its teammate to ignore this information when it is
not relevant. Both of the approaches are valid, and prefer-
ence between them depends on the relative costs of sending
communication messages and learning to ignore irrelevant
information. This tradeoff between the amount of commu-
nication and information is captured by the active commu-
nication and shared state techniques.
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Fig. 2 The Sony QRIO robots performing ball sorting task

3 Evaluation Domains

Evaluation of multi-robot learning and the scalability of the
presented approach was performed in two robotic domains
using Sony AIBO and QRIO robots.

3.1 Ball Sorting Domain

In the ball sorting domain, which we designed, two Sony
QRIO humanoid robots are located at two sorting stations
connected by ramps (Fig. 2). Each station has an individual
queue of colored balls (red, yellow or blue) that arrive via a
sloped ramp for sorting. The robots’ task is to sort the balls
by color into four bins.

The following set of physical actions is available to each
robot: Ap = {SortLeft, SortRight, PassRamp, Wait, Leave}.
Actions SortLeft and SortRight enable the robot to pick up
a ball and place it into a bin on either side. The PassRamp
action causes the ball to be placed into the teammate’s ramp,
where it rolls down and takes position at the tail end of the
other robot’s queue. The Wait and Leave actions enable the
robot to wait for a short duration or walk away from the
table, respectively. Passing a ball to the teammate’s ramp
causes the ball to roll down and take the position at the tail
end of the other robot’s queue. The color and location of
the balls is determined by each robot using its onboard vi-
sion system. Using these abilities, the robots are taught to
perform the following three tasks:

Task 1: Each robot begins with multiple balls of various
colors in its queue. QRIO A sorts red and yellow balls into
the left and right bins, respectively, and passes blue balls to
QRIO B. QRIO B sorts blue and yellow balls into the left
and right bins, respectively, and passes red balls to QRIO A.
If a robot’s queue is empty, it should wait until additional
balls arrive.

Task 2: Extend Task 1 such that each robot communi-
cates to its teammate the status of its queue, empty or full.
When its teammate’s queue is empty, a robot in possession

of a ball should pass the ball to the teammate’s queue. How-
ever, only balls that can be sorted by the other robot should
be passed. For example, QRIO A should pass only the blue
and yellow balls, and QRIO B should pass only the red and
yellow balls. If both queues are empty, the robots should
wait.

Task 3: Each robot begins with multiple balls of various
colors in its queue. QRIO A first sorts all of the red balls on
the table into its left bin, while QRIO B passes balls of all
colors, thereby helping to rotate the queue. Once all the red
balls are sorted, QRIO B sorts all the blue balls into its left
bin while QRIO A passes. Once all the blue balls are sorted,
both robots sort the remaining yellow balls into their right
bins. Whenever both queues are empty, the task is complete
and the robots leave the table.

Each of the above tasks is designed to test different as-
pects of multi-robot teaching and coordination. In the first
task, coordination between robots emerges naturally based
solely on the physical actions of the robots and communi-
cation is not required. Task 2 requires coordination through
communication to ensure that the sorted balls are distributed
more evenly between the robots, while Task 3 adds ordering
constraints and additional coordination requirements. State
and action representations for each task will be defined in
Sect. 4.

Our evaluation of the learning algorithm and teaching ap-
proaches utilizes continuous and noisy features. Before pre-
senting this evaluation, we provide a walk-though of a sim-
plified example of Task 1 with a noiseless, boolean state
representation. Only a single demonstration of each state
is required in this representation, helping to illustrate ele-
ments of the learning process. To achieve this representa-
tion, we calibrate the robot’s onboard vision system to clas-
sify each ball into one of the discrete color classes, such that
Fo = {red, yellow,blue}.

Figure 3 presents an interactive learning sequence be-
tween the teacher (T) and the robots (R). The robots be-
gin in the top configuration, with no initial knowledge about
the task. Both robots request a demonstration upon encoun-
tering the first state, and are instructed by the teacher to
SortLeft, i.e., place their respective balls, red and blue, into
the left bin. Upon receiving their individual instructions,
each robot executes the specified action.

Step two in the figure shows the task state after both ro-
bots have completed their first action. One ball has been
sorted on each side, and the next ball in the queue is now
available to each robot. QRIO B receives a second blue ball,
and therefore executes the previously demonstrated action
autonomously. QRIO A requests a demonstration request for
the new ball color, yellow.

At each following timestep, the robots observe their state,
invoke the CBA classifier, and select between autonomous
execution and demonstration. At steps 3 and 5 the robots are
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taught to pass balls to their teammate, causing these balls to
appear at the end of the other robot’s queue. The learned pol-
icy also allows the robots to wait while no balls are present,
and respond once a ball has been received (QRIO A, steps
4–6). Although the figure presents the learning process as a
sequence of synchronized steps, no synchronization occurs
in real-life learning. In this representation, learning the en-
tire task requires 8 demonstrations, 4 per robot.

Fig. 3 Collaborative ball sorting example

3.2 Beacon Homing Domain

Figure 4 shows three examples of AIBO robots operating
in the beacon homing domain, which we designed, consist-
ing of an open area with three uniquely-colored beacons
(B = {B1,B2,B3}) located around the perimeter. Each ro-
bot is able to observe the relative position of a beacon us-
ing its onboard camera, and to communicate information
via the wireless network. The set of action available to
each robot is limited to basic movement commands, Ap =
{Forward,Left,Right,Search,Stop}, used by each robot to
navigate in the environment.

Using the representation defined in Sect. 6.1, we define
the robot’s state as:

• Fo = {d1, d2, d3, a1, a2, a3}
• Fs = {myBeacon}
• Ft = {n1, n2, n3}
• Fc = Fe = ∅
The set of observed features, Fo, contains information about
the robot’s relative distance di and angle ai to each beacon
i ∈ B . For any beacon not currently in view, the distance and
angle are set to the default values 4000 mm and 1.8 rad, re-
spectively, to indicate that this beacon is far away. The set of
shared state features, Fs , contains a single value, myBeacon,
which is set to a beacon’s ID number if the robot is within a
set distance x of a beacon, and −1 if the robot is not lo-
cated near a beacon. Each robot communicates the value
of this feature to its teammates. In turn, all robots use this
shared information to determine the values of state features
Ft = {n1, n2, n3}, which maintain the count of the current
number of robots occupying each beacon.

In summary, using the above representation, each robot
knows its position relative to beacons that it observes, and
the number of other robots already located at each of the
beacons. Using this information, the teacher can teach each
robot to navigate from a random initial location in the center

Fig. 4 Beacon homing domain: (a) Example starting configuration, 3 robots. (b) Example intermediate stage, 5 robots. (c) Example final config-
uration, 7 robots
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of the open region to one of the colored beacons. Specifi-
cally, the teacher instructs the selection of a beacon accord-
ing to the following rules: Given a maximum limit m for the
number of robots that can occupy a marker, search until bea-
con i is found for which the number of robots, ni , is less than
m. Navigate to that beacon and occupy it by stopping within
a set distance d . If at any point the number of robots at the
selected beacon exceeds m, search for another beacon.

These explicit rules of the task are known only to the
teacher. During the learning process, each robot in the ex-
periment learns an independent policy representing this be-
havior from demonstrations. All robots were taught the same
task to ensure a fair comparison between robots for the scal-
ability evaluation. We set the maximum number of robots
allowed per beacon for each experiment to m = � #Robots

#Beacons	,
such that at least one beacon must contain the maximum
number of robots. Each experiment began with all robots lo-
cated in the center of the open region (Fig. 4(a)) and ended
once all robots had reached a beacon (Fig. 4(c)). Training
continued until all robots executed the desired behavior effi-
ciently and correctly without requesting demonstrations.

4 Evaluation of Coordination

We now present an evaluation of our three approaches to
teaching multi-robot coordination. We begin by evaluat-
ing each coordination approach independently by applying
it to one of the ball sorting tasks. We then evaluate the
performance of the communication-based coordination ap-
proaches in greater detail using Task 3.

For all evaluations, the robots observe ball color as the
average RGB values of the pixels in the detected ball region.
Results are reported as the total number of demonstrations
required to learn the task, averaged over ten trials. Note that
in this discussion we are not distinguishing between demon-
strations obtained from Confident Execution and Corrective
Demonstration algorithms. While most demonstrations are
initiated by the robot through Confident Execution, the Cor-
rective Demonstration algorithm does play a significant role
in aiding policy learning of each individual robot. Consider,
for example, a robot that first observes demonstrations of
passing both a blue and a yellow ball to a teammate. Upon
encountering a red ball, the robot may assume, due to gen-
eralization of the classifier, that the same action should also
be performed for this new color. Corrective Demonstration
enables the teacher to correct this assumption if necessary.

4.1 Implicit Coordination Without Communication

We evaluate implicit coordination learning by training
Task 1, in which the teacher’s demonstrations are limited
to the robot’s physical actions Ap (the Leave action is not

used for tasks 1 and 2). The following state representation,
consisting only of locally observed information, is used:

• Fo = {R,G,B}
• Fs = Fc = Fe = Ft = ∅

Using this representation, both robots successfully learned
their individual policies, which enabled them to collabora-
tively sort the balls by coordinating through their actions.
Training the entire task required an average of 20 demon-
strations (10 per robot), with a standard deviation of 1.1.

During the execution of the task, the robots encounter
both noisy and noiseless states. The number of demonstra-
tions required to learn each state-action mapping is propor-
tional to the level of noise in the sensor readings. For exam-
ple, an empty queue contains no ball color information and
consistently results in the state vector S = {0,0,0}. Since
this value is not affected by noise, only a single demonstra-
tion is required to teach each robot to Wait when the queue
is empty. Ball color readings, on the other hand, vary due
to both sensor noise and slight variations in the robot’s view
angle and ball distance between actions. An average of 3.1
demonstrations is therefore required for the model to learn
to generalize over each ball color class.

4.2 Coordination Through Active Communication

Coordination through active communication enables com-
munication to be represented directly within each robot’s
policy. We evaluate this approach using Task 2 and the fol-
lowing state representation:

• Fo = {R,G,B}
• Fs = ∅
• Fc = Fe = Ft = {Empty}

We define a new boolean feature, Fc = {Empty}, to
represent the status of the robot’s ball queue, empty or
full. This feature is locally observed and communicated to
each robot’s teammate using communication action Ac =
{SendEmpty}. For each robot, feature sets Fe and Ft con-
tain the robot’s own last communicated value of Empty and
the most recent value of Empty received from its teammate,
respectively.

The complete state vector consists of six features. Note
that all of the information available to a robot, whether con-
tinuous or discrete, locally observed or communicated, is
combined to form the robot’s state vector, allowing the al-
gorithm to generalize over all of these variations. Each fea-
ture value is typically normalized by the classifier prior to
analysis to give each feature equal weight.

Using the above setup, the teacher required an average of
35 demonstrations to teach Task 2. While each ball color still
required multiple demonstrations, the algorithm was able to
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Fig. 5 Example Task 2 learning sequence using coordination through active communication

rapidly generalize over the boolean Empty features. For ex-
ample, learning that communication updates must be per-
formed each time the value of the feature Empty in Fc and
Fe does not match, regardless of the ball color being ob-
served, required only two demonstrations.

Figure 5 presents a sequence of images showing how the
teacher uses demonstration to teach the ball sorting task us-
ing active communication. The teacher uses the laptop com-
puter shown at the bottom of the image to perform demon-
strations independently for each robot using its own instance
of the CBA GUI interface. Each figure is annotated with the
robot’s current state, shown at the top of the image.

In Fig. 5(a), the QRIO on the left sorts a red ball into
its left bin, while the QRIO on the right sorts its yellow
ball into its right bin. After completing its action, the left
QRIO observes that its ramp is empty and stops to request a
demonstration from the teacher. During this time, the right
QRIO continues to perform its task, sorting the next ball in
its queue, which is blue, into its left bin. Since communi-
cation between robots has not yet occurred, the state of the
right QRIO does not accurately reflect its teammate’s status
because the teammate’s empty (TE) state feature value is 0.

In response to the demonstration request, the teacher in-
structs the left QRIO to communicate its queue status us-
ing the SendEmpty action. Figure 5(b) shows the robot im-
mediately following this step—the right robot is now aware
that its teammate’s queue is empty. The left QRIO requests
a demonstration for its new state, and the teacher instructs it

to Wait. In Fig. 5(c) the right QRIO requests a demonstra-
tion for what to do given that it has a yellow ball and its
teammate’s queue is empty. The teacher instructs the robot
to pass this ball to its teammate; the robot is shown perform-
ing this action in Fig. 5(d). Once the left QRIO observes that
a yellow ball has arrived, it requests a demonstration (5(e))
and the teacher instructs the robot to communicate its up-
dated ramp status to its teammate to indicate that the queue
is no longer empty. Once this information is updated, the
left QRIO continues by sorting the yellow ball into its right
bin (5(f)). During this time the right QRIO autonomously
continues with the ball sorting task, sorting its next yellow
ball into the right bin. Once the left robot’s queue becomes
empty again, it will autonomously communicate the status
of its queue to the other robot, and the ball sharing process
will repeat autonomously.

4.3 Coordination Through Shared State

Coordination through shared state automates the communi-
cation process, leaving the teacher to demonstrate the ro-
bot’s physical behavior based on shared information. In the
place of explicit communication actions, this technique uti-
lizes a set of shared state features. Any of the robot’s locally
observed state features may be selected by the teacher to be
shared with a teammate. The status of each shared feature is
then tracked by the system, and updates are communicated
to the teammate each time the value changes.
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Fig. 6 Example Task 2 learning sequence using coordination through shared state

Coordination through shared state was similarly evalu-
ated using Task 2. State information shared between robots
consists of the state feature Empty. The complete state is
represented by:

• Fo = {R,G,B}
• Fs = Ft = {Empty}
• Fc = Fe = ∅
where Fs = {Empty} represents a robot’s local shared ramp
status, and Ft = {Empty} represents the ramp status of its
teammate. The complete state contains five features, and
the entire task required an average of 27 demonstrations to
learn.

Figure 6 presents a sequence of images that shows the ro-
bots learning to perform Task 2 using collaboration through
shared state. Figure 6(a) begins with both robots perform-
ing autonomous sorting, with the left robot sorting its last
ball into its left bin. Figure 6(b) shows what happens once
the left QRIO observes that its queue is now empty. Un-
like the active communication approach described in the
previous section, the value of the robot’s Empty feature is
automatically communicated to its teammate, such that the
teammate’s empty (TE) state feature for the right QRIO is
set to 1. The left QRIO requests a demonstration, asking
for instructions about what to do when its queue is empty.
The teacher instructs the robot to Wait. In Fig. 6(c), in re-
sponse to a demonstration request the teacher instructs the
right QRIO to pass its yellow ball to its teammate, as shown

in Fig. 6(d). Once the ball arrives at the bottom of the ramp,
the left QRIO automatically communicates its updated ramp
status to its teammate and autonomously resumes the sorting
process, Fig. 6(e).

4.4 Combined Approach and Comparison

In the above evaluation, we showed that each of the pre-
sented coordination approaches can be successfully used to
learn a variation of the ball sorting task. In this section, we
further compare and evaluate our two communication-based
methods—coordination through shared state and coordina-
tion through active communication—as well as a combined
approach utilizing a combination of these techniques.

While our evaluation of Task 2 shows the feasibility of
both active communication and shared state, it provides little
information about the tradeoffs between the two approaches.
The communication requirements of Task 2 are very limited,
with only a single communicated boolean feature that had to
be updated each time its value changed. A more informative
analysis can be obtained by examining a domain with com-
municated state features that take on a range of values, and
in which such features have importance only over a narrow
segment of that range.

In this section, we use Task 3 to compare the performance
of the three communication-based coordination approaches
with respect to the number of demonstrations and number
of communication messages. Task 3 is a variation of the ball
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sorting task, in which the robots must sort balls in the or-
der of their color class, such that all red balls are sorted into
their bin first, then blue, and finally yellow. Once sorting is
complete, the robots turn around and walk away from their
sorting stations. To represent this domain, we add two new
types of state features. The feature SortColor is used to rep-
resent the current color being sorted (red, blue or yellow),
and the feature PassCount is used to represent the number of
consecutive PassRamp actions that have been executed by a
particular robot. Since the robots do not have a global view
of the world, the PassCount feature is required to determine
when all balls of a particular color have been removed. For
example, when sorting red balls, both robots pass any blue
or yellow balls they encounter into their teammate’s ramp.
The resulting effect is that the entire queue of balls rotates,
enabling the robots to examine all balls one at a time. Once
the value of the PassCount feature for both robots passes
some threshold, in our case 10, this indicates that the en-
tire queue has been examined and no additional balls of the
current SortColor remain on the table.

In total, three pieces of information are communi-
cated between robots: 1) the current color being sorted
(SortColor), 2) the number of consecutive passes each ro-
bot has performed (PassCount), and 3) the status of each
robot’s ball queue (Empty). Actions available to the robots
for performing this task include the previously defined phys-
ical actions Ap , and the communication actions SendEmpty,
IncrementSortColor, and SendPassCount.

Before discussing each coordination approach, we de-
fine the SortColor state feature in detail. Unlike previously
encountered communicated features, the sorting color is a
value that is common to both robots; to achieve accurate
performance, the robots must maintain the same value for
this feature at all times. As a result, instead of representing
this value both as a local and teammate copy of the informa-
tion, we use a single value for each robot. The value of this
feature can be updated both locally and through communi-
cation from the teammate using the IncrementSortColor ac-
tion. Specifically, the execution of IncrementSortColor by a
robot first increments its local copy of the variable, and then
communicates the new value to its teammate where it im-
mediately updates the other robot’s state. Additionally, this
action resets the value of the PassCount feature to 0. In sum-
mary, this approach achieves state synchrony between robots
through the use of a single feature and a multi-function com-
munication action.

The above representation for the SortColor feature is
used for each coordination approach applied to Task 3. Ta-
ble 1 presents a summary of the complete state representa-
tions used by each learning method for this task. Note that
for each approach, the information locally observed by each
robot (Fo) and received from its teammate (Ft ) remains the
same. The differences consist in the local representation of

Table 1 Representation of Task 3 using active communication, shared
state and a combined approach

Active Shared Combined

Communication State

Fo {R,G,B} {R,G,B} {R,G,B}
Fs ∅ {PassCount, {Empty}

Empty}
Fc {PassCount, ∅ {PassCount}

Empty}
Fe {PassCount, ∅ {PassCount}

Empty}
{PassCount, {PassCount, {PassCount,

Ft Empty, Empty, Empty,

SortColor} SortColor} SortColor}
{IncSortColor {IncSortColor} {IncSortColor,

Ac SendPassCount, SendPassCount}
SendEmpty}

the state features to be communicated. Below we summarize
the distinguishing features of each approach.

Active Communication—In the active communication
approach, both the PassCount and Empty features are com-
municated explicitly using communication actions. The
teacher selects the PassCount feature to be communicated
each time its value reaches 10. This representation requires
a total of 10 state features and 8 action classes.

Shared State—In the shared state approach, the values
of all communicated features are shared each time their
value changes. The main difference between this approach
and the active communication method is that each robot al-
ways knows the exact number of passes that its teammate
has performed. This approach utilizes a more compact rep-
resentation, requiring 8 state features and 6 action classes.

Combined Approach—In the combined approach, ac-
tive communication is used for some state features, and
shared state for others. Specifically, shared state is used for
the Empty feature, the value of which must be communi-
cated each time it changes. Active communication is used
for the PassCount feature, the value of which is communi-
cated only once it passes a set threshold.1 This representa-
tion uses a total of 9 state features and 7 action classes.

Table 2 presents the results of this experiment in terms
of the number of demonstrations required to learn the task
policy, and the average number of communication messages
sent by each robot during the execution of this policy. We
find that the shared state approach requires significantly
fewer demonstrations than both active communication and

1Alternatively, PassCount could also be defined as a boolean feature
representing whether enough passes have occurred or not. We do not
use this representation here for evaluation purposes.
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Table 2 Task 3 evaluation result summary. Comparison of the average
number of demonstrations required per robot to learn the task policy,
and the average number of communication messages sent by each robot
while applying the final policy to sorting 10 randomly colored balls

Number of Number of

Demonstrations Communication Messages

Active Communication 135.0 ± 5.9 5.8 ± 1.1

Shared State 52.6 ± 6.6 37.7 ± 2.6

Combined 92.2 ± 4.8 5.8 ± 1.1

the combined approach. Even in the presence of variables
spanning a range of values that contain no useful informa-
tion, the shared state approach requires less training data.
This suggests that learning a threshold for a particular in-
put feature (in our case PassCount) is easier for the under-
lying classifier than dealing with an additional state feature
(Fe = PassCount) and class label (SendPassCount).

The number of communication messages required to per-
form the task is dependent upon the number, order and color
of balls to be sorted. Table 2 presents the average number
of communication messages required to sort 10 balls of ran-
dom color and sequence. Analysis of the average number
of communication messages reveals the tradeoff between
the coordination approaches. The active communication ap-
proach utilizes significantly fewer communication messages
than shared state since it does not communicate the value of
PassCount each time it changes.

Additionally, this evaluation highlights the benefit of us-
ing a combined approach that takes advantage of both train-
ing methods. The combined approach provides the commu-
nication benefits of active communication by communicat-
ing PassCount only when necessary, while also reducing the
number of demonstrations by using state sharing for features
that must be communicated each time they change. The re-
sult is a low communication rate and demonstration require-
ments in between those of either method alone.

In summary, we find that complex domains are likely to
benefit from a combination of active communication and
shared state techniques if a cost is associated with com-
munication. If communication is free, the shared state ap-
proach should be used since it results in the fewest number
of demonstrations.

5 Evaluation of Scalability

We present a case study analysis the scalability of the
flexMLfD framework. Scalability was evaluated in the bea-
con homing domain using 1, 3, 5, and 7 robots and commu-
nication through shared state. Through experimental evalua-
tion, we examine how the number of robots being taught by

the teacher affects the following metrics: number of demon-
strations, learning time, teacher workload, teacher response
time, and number of simultaneous interaction requests.

We evaluate three approaches to teaching multiple robots
at the same time:

• Synchronous Learning Start Times—Each robot learns
an individual task policy. All robots begin learning at the
same time.

• Offset Learning Start Times—Each robot learns an in-
dividual task policy. Learning begins with a single robot.
All remaining robots are introduced incrementally, one at
a time, once all previous robots have gained partial auton-
omy at the task.

• Common Policy Learning—All robots begin learning
at the same time and learn a single common policy by
consolidating their knowledge and sharing demonstration
data.

In each approach, robots begin with no knowledge about
the task, and learning is complete once all robots are able
to perform the task correctly. The synchronous and offset
learning approaches examine the most general learning sce-
nario, one in which each robot learns an individual policy,
allowing different tasks or roles to be taught at the same
time. In the synchronous learning approach, all robots be-
gin at the same time. As we show in our evaluation, this
approach places great demand on the teacher for demon-
strations early in the training process. The offset learning
approach presents an alternate method in which robots are
introduced one at a time, after all active learners have al-
ready gained partial autonomy at the task, thereby helping to
disperse the demand for demonstrations over a longer time
period. Common policy learning examines a special case of
demonstration learning in which robots consolidate all their
demonstration knowledge to learn a single common pol-
icy. We evaluate the scalability of our multi-robot learning
framework in a beacon homing domain using Sony AIBO
robots.

All evaluations were performed with a single teacher. As
with all human user trials, we must account for the fact that
the human teacher also learns and adapts over the course of
the evaluation. To counter this effect, the teacher performed
a practice run of each experiment, which we then discarded
from the evaluation. Results averaged over three additional
trials are presented. An alternate evaluation method would
be to eliminate the human factor by using a standard con-
troller to respond to all demonstration requests in a consis-
tent manner. This approach, however, would prevent us from
evaluating the demands multiple robots place on a human
teacher.

5.1 Synchronous Learning Start Times

First, we present a detailed evaluation of the scalability of
the synchronous learning start times approach in which all
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Fig. 7 Average level of autonomy of a single robot over the course of
training

robots begin learning at the same time. In Sects. 5.2 and 5.3,
we compare the performance of the other two techniques—
offset learning start times and common policy learning—in
the 7-robot beacon homing domain. We begin by presenting
the typical autonomy curve for CBA-based learning meth-
ods.

5.1.1 Robot Autonomy

Figure 7 shows how the level of autonomy, which is mea-
sured as the percentage of autonomous actions versus
demonstrations, changes for an individual robot over the
course of training. The data presents the average autonomy
of robots in the 5-robot beacon homing experiment. The
shape of the curve is typical of CBA learning, in which
robots begin with no initial knowledge about the task and
request many demonstrations early in the training process.
These initial demonstrations provide the robot with the ex-
perience for handling most commonly encountered domain
states. As a result, following the initial burst of demon-
stration requests, the robot quickly achieves 80–95% au-
tonomous execution. The remainder of the training process
then focuses on refining the policy and addressing previ-
ously unencountered states. The duration of this learning
time is dependent upon the frequency with which novel and
unusual states are encountered.

5.1.2 Number of Demonstrations

Figure 8 shows how the number of demonstrations per-
formed by the teacher on average for each robot, and in total
for each experiment, changes with respect to the number of
robots. As the number of robots grows, we observe a slight
increase in the number of demonstrations required per robot.

Fig. 8 Average number of demonstrations performed by the teacher
for each robot and in each experiment

This increase is due to the fact that, although the number of
state features in the representation of our domain does not
change, the range of possible feature values does.

Specifically, in an N -robot experiment, the value of fea-
tures representing the number of robots located at a beacon,
ni , has the range [0,N ]. As a result, extra demonstrations
are required in the presence of a greater number of robots
to provide guidance in the additional states. While similar
effects are present in many domain representations, state
features can often be designed or modified in such a way
that their range is independent of factors such as the number
of robots. For example, in the beacon homing domain this
could be achieved by converting ni to a boolean feature that
indicates whether the beacon’s capacity has been reached or
not.

The total number of demonstrations required for each ex-
periment grows at a nearly linear rate with respect to the
number of robots. The overall number of demonstrations
that the teacher must perform has a significant effect on the
overall training time, as discussed in the next section. Seven
robots require a total of approximately 300 demonstrations
to learn the task.

5.1.3 Training Time

Figure 9 presents the change in the overall experiment train-
ing time with respect to the number of robots. Importantly
for the scalability of flexMLfD, the data shows a strongly
linear trend, with seven robots requiring just over 1.5 hours
to train. This result is significant as it suggests that this ap-
proach will continue to scale linearly with the number of
robots if the size of the state space remains the same. In the
following sections, we examine the factors that contribute to
the training time, such as the number of demonstrations and
demonstration delay.
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Fig. 9 Total training time with respect to number of robots

Fig. 10 Attention demand on the teacher

5.1.4 Teacher Workload

In addition to the overall training time and number of
demonstrations, it is important to understand the demands
that multiple robots place on the teacher. The teacher experi-
ences the greatest number of demonstration requests during
the earliest stages of learning, possibly from multiple robots
at the same time. As the level of autonomy of the robots in-
creases over time, the teacher receives fewer requests, until
finally all robots become fully autonomous. To evaluate the
demand on the teacher’s attention during this most laborious
training segment, we calculate the longest continuous period
of time during which the teacher has at least one demonstra-
tion request pending. This value provides insight into the
degree of effort that is required from the teacher.

Figure 10 plots the duration of the longest continuous
period of demonstration requests for each experiment. The

Fig. 11 Histograms showing the distribution of the number of simul-
taneous requests for each experiment

data shows that the length of this time period grows quickly,
possibly exponentially, with the number of robots. In ex-
periments with only a single robot, demonstration requests
last only a few seconds at a time; as soon as the teacher
responds to the request, the robot switches to performing
the demonstrated action. As the number of robots increases,
however, so does the number of simultaneous requests from
multiple robots. In the 7-robot experiment, this results in a
3.5 minute uninterrupted segment of demonstration requests
for the teacher. In Sect. 5.2, we examine an alternate ap-
proach to teaching multiple robots in which novice learners
are added incrementally, reducing the demand for demon-
strations.

Additionally, we examine the total time per experiment
that multiple demonstration requests are pending. Figure 11
presents a set of bar graphs showing the distribution of the
number of simultaneous requests for each experiment. This
data indicates that for all experiments, the teacher spends the
greatest percentage of time with only a single demonstration
request. However, the teacher spends over 3 minutes in the
5-robot experiment, and over 13 minutes in the 7-robot ex-
periment, faced with multiple queries. This growing number
of simultaneous queries has a significant impact on demon-
stration delay, the amount of time that passes between the
robot’s initial request and the teacher’s response.

5.1.5 Teacher Response Time

As discussed in the previous section, multiple simultaneous
demonstration requests become common as the number of
robots increases. As a result, robots often must wait while
the teacher responds to other robots. Figure 12(a) shows that
the average time a robot spends waiting for a demonstration
grows with the number of learners from only 2 seconds for
a single robot to 12 seconds for seven robots.
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Fig. 12 (a) Average amount of time a robot spends waiting for a
demonstration response from the teacher. (b) Average percentage of
time a robot spends waiting for a demonstration over the course of
training

Figure 12(b) plots the percentage of time a robot spends
waiting on average for a demonstration over the course of
training. Not surprisingly, we observe that the demonstra-
tion delay is greatest early in the training process when the
teacher is most busy with initial demonstration requests.
Staggering the times at which novice robots are introduced
to the task may help to alleviate this problem by reducing
the demand of the initial training phase on the teacher.

5.2 Offset Learning Start Times

Analysis of the synchronous start times approach presented
in the previous section shows that when multiple robots be-

Fig. 13 Comparison of the synchronous and offset learning start
time approaches. (a) Total training time. (b) Attention demand on the
teacher

gin learning a new task at the same time, they place great
demand on the teacher for demonstrations early in the train-
ing process. This, in turn, leads to longer demonstration de-
lays for each robot. In this section, we examine an alternate
approach in which novice robots are introduced incremen-
tally. Each new robot is added once all previous learners
have gained proficiency at the task and are able to act au-
tonomously approximately 80% of the time. We refer to this
learning process as offset start time learning.

We compare the performance of offset start time learn-
ing to the synchronous start time approach in the 7-robot
beacon homing domain. Note that as we add each additional
robot learner, the range of domain states experienced by pre-
viously active robots expands. For example, a single robot
alone can be taught to navigate to various beacons, but with-
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out the presence of other robots it will never learn the col-
laborative aspects of the task. As each additional robot is
introduced to the domain, the robot will learn how to act in
the presence of others.

Figure 13 shows the effect of offset start time learning
on total training time and attention demand on the teacher.
Figure 13(a) shows that by offsetting the learning start time
of the robots, the total learning time of the experiment in-
creases by approximately 12%. This increase is due to the
fact that robots experience novel states over a longer pe-
riod of time. Since the task itself remains unchanged, the
total number of demonstrations required to teach all seven
robots their individual policies remains approximately the
same (284 demonstrations using offset start times compared
to 298 using the synchronous start times approach). How-
ever, since the demonstrations are disbursed over a longer
period of time, the attention demand on the teacher is signif-
icantly reduced, as shown in Fig. 13(b). The longest period
of continuous demonstration requests falls to approximately
1 minute, compared to 3.5 minutes in the synchronous learn-
ing start case, and the average time a robot waits to receive
a demonstration falls from 12 seconds to 4.5 seconds.

In summary, by offsetting the learning start times of the
robots we are able to distribute demonstration requests over
a longer time period. This approach leads to a slight in-
crease in the overall learning time, but reduces the number
of simultaneous demonstration requests the teacher receives,
which in turn leads to faster response times, reducing the
demonstration delay.

5.3 Common Policy Learning

In the standard formulation of the flexMLfD learning ap-
proach, the teacher provides each robot with an individual
set of demonstrations from which a unique policy is de-
rived. This generalized approach is highly suitable for do-
mains in which robots perform different roles and functions.
However, in some domains, as in our experiments, the same
behavior may be desirable for each robot. In such cases,
teaching the same policy to multiple robots results in a large
number of redundant demonstrations. To address this case,
we propose that all robots learning the same task learn a
single, common, policy by consolidating all demonstration
data. The sharing of information can occur by collecting all
data within a single dataset, or by freely exchanging each
demonstration among all robots so as to maintain a distrib-
uted set of identical policies. In this section, we evaluate the
performance of the common policy approach using the 7-
robot beacon homing domain.

Note that common policy learning in domains indepen-
dent robots, results in the same final policy as if each of
those robots was taught alone. Using multiple robots in this
case may speed up learning since uncommon states are more

Fig. 14 Comparison of the single common policy and multiple indi-
vidual policy flexMLfD learning approaches. (a) Total training time.
(b) Attention demand on the teacher

likely to be encountered with many learners. Common pol-
icy learning in domains with non-independent robots, as in
our example of the beacon homing domain, differs from
training and replicating a single robot policy as it addition-
ally allows the robots to experience the collaborative aspects
of the task.

Using this technique, the teacher was required to per-
form a total of only 44 demonstrations, compared to nearly
300 total demonstrations previously required for this task.
Figure 14(a) shows that the overall training time of the ex-
periment is similarly reduced to only 23 minutes, compared
to the 95 minutes for the standard approach. In fact, while
seven robots learning a common policy require more of the
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teacher’s time than a single learner, they require less time
than three robots learning individual policies.

Figure 14(b) shows that a common policy similarly re-
duces the attention demand that seven robots require of the
teacher. This effect can be attributed to the fact that fre-
quently a demonstration performed for one robot addresses
the queries of other currently waiting robots. An additional
effect of this occurrence is that the average waiting time of
the common policy approach is reduced from 12 seconds to
1.2 seconds.

5.4 Discussion

In summary, our scalability case study demonstrates the first
example of a single person training up to seven indepen-
dent robots. Our analysis has shown promising trends with
respect to scalability, but further work is necessary to con-
tinue to reduce the overall learning time. The impact of mul-
tiple robots on the teacher is a particularly important fac-
tor to consider in future research, both in terms of effect on
the maximum number of robots that can be taught by a sin-
gle person, as well as overall task performance. Our exper-
iments found that increasing the number of robots signifi-
cantly increased the workload of the teacher, as measured
by the number of pending demonstration requests. This,
in turn, impacted demonstration delay and the time robots
spent waiting for the teacher’s response. While this has no
negative impact on learning in the presented domain, delay
may impact performance in other tasks. Additional research
is also needed to determine what impact state representation,
action duration, and degree of collaboration between robots
have on learning performance and scalability.

6 Multi-Robot Learning from Demonstration

In this article, we have examined the problem of teaching
collaborative policies to multiple robots by a single teacher.
In this section, we consider a broader definition for multi-
robot learning from demonstration as a new research area in
which we expand the problem definition to include multiple
teachers, as well as the ability for robots to teach one an-
other. A number of projects on software agents have already
explored research in this direction, such as communities of
social agents that are able to observe each other’s actions or
exchange advice [14, 35, 40].

In this section, we propose a formal definition for the
broad multi-robot learning from demonstration problem,
with the goal of providing a foundational structure for future
work in this area. We then discuss the open research ques-
tions of MLfD in the context of already established fields
and propose a range of evaluation metrics.

6.1 Problem Definition

Formally, we define the MLfD problem as follows. The
world consists of the set R of robots, and the set T of teach-
ers. Each robot r ∈ R observes the world as a set of states Sr .
The robot’s actions, a, are bound to a finite set Ar of action
primitives, which are the basic actions that can be combined
to perform the overall task. The set of states Sr and actions
Ar may be unique to each robot.

During the course of training, each robot r incrementally
accumulates an independent set of demonstrations, Dr , con-
sisting of jr demonstration sequences:

dt
m = {(si , ai), si ∈ Sr, a

i ∈ Ar, i = 0 . . . km, t ∈ {T ∪ R}}
for m = 0, . . . , jr . Each demonstration sequence contains a
temporally sequential series of km state-action pairs repre-
senting the demonstration performed by a teacher t , where t

could be either a human or robot teacher, or another robot.
Given the set of demonstrations, the robot’s goal is to learn
to imitate the teacher’s behavior by generalizing from the
demonstrations and learning the policy πr : Sr → Ar map-
ping from all possible states to actions in Ar .

6.2 Context and Design Choices

Multi-robot learning from demonstration combines ele-
ments of three research fields: robot learning from demon-
stration, multi-robot systems, and human–robot interaction
(HRI). We have chosen, therefore, to analyse MLfD in the
context of these fields as a way of categorizing the factors
and open challenges that must be considered in designing an
MLfD system.

6.2.1 Robot Learning from Demonstration

Single–robot learning from demonstration algorithms may
form a natural basis for MLfD approaches. However, with
the exception of work presented in this article, all LfD ap-
proaches developed to date have been designed for single-
robot applications, and have relied on close one-to-one in-
teraction between the robot and the teacher. As a result,
these techniques do not scale to multi-robot domains due
to the problem of limited human attention—the fact that the
teacher is not able to pay attention to, and interact with, all
robots at the same time.

However, most of the common design choices and chal-
lenges of single-robot LfD extend to the multi-robot case.
LfD algorithms can be analyzed along two dimensions: the
demonstration technique used to gather data, and the learn-
ing method used to learn a policy [2]. Many demonstra-
tion techniques have been shown to be successful for dif-
ferent applications, including teleoperation [23], kinesthetic
teaching [8], and external observation of the teacher [31].
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Once training data is collected, algorithms further differ by
what algorithm is applied to learn an action policy. Learn-
ing methods vary from exploration-based methods, such as
reinforcement learning [3, 46], to classification [13] and re-
gression [7].

Additionally, a broad range of other factors must be con-
sidered in designing an MLfD system. Is learning performed
online or as batch learning? Is learning interactive, allowing
the robot to provide feedback or ask for help? Does the ro-
bot have the ability to perform self evaluation in order to
learn independently, or in order to provide feedback about
its confidence in certain tasks? Can the robot expand its state
representation and gather data about the world through tech-
niques such as symbol grounding [33]? Does the robot have
varying degrees of autonomy? Can the robot learn indepen-
dently and surpass the performance of its teacher?

Each of the above questions represents an open research
problem, and we expect that no single right answer exists to
satisfy the specific needs of all applications [2, 32, 44].

6.2.2 Multi-Robot Systems

The problems of management, coordination, and control of
multiple robots have been extensively studied within the
multi-robot systems community [16, 26, 49], and potential
transfer exists from these to MLfD. One of the most im-
portant factors to consider in designing a multi-robot sys-
tem is the issue of communication. How does the teacher
communicate with each robot? Can the teacher communi-
cate with the group as a whole or with individuals? Do ro-
bots have the ability to communicate with each other? Can
robots observe and imitate each other’s actions [1]? Can ro-
bots request demonstrations from and provide aid to their
peers [35]?

6.2.3 Human–Robot Interaction

Human–robot interaction [21] is a critical component of
any demonstration learning system, and a number of im-
portant questions need to be considered in the development
process. How is the robot’s state information presented to
the teacher? For example, does the teacher observe the com-
plete internal state of the robot, or is the teacher limited to
external visual observation? What means does the teacher
use to communicate information back to the robot? Can
the robot provide feedback beyond state information to the
teacher, such as demonstration requests or indicators of con-
fidence? Is the robot able to recognize and interpret human
social cues?

6.3 Evaluation Metrics

Common evaluation metrics are invaluable to any research
field to facilitate knowledge transfer through comparison

and benchmarking. A major challenge of defining metrics
for MLfD, and the reason for the relative absence of stan-
dard evaluation techniques in single-robot LfD, is the broad
diversity of applications and demonstration styles. Differ-
ences in data representation, demonstration and interaction
methods, as well as the interactive nature of the learning
process, make it difficult to perform broad comparisons be-
tween algorithms. Researchers within LfD thus traditionally
rely on task-specific metrics, such as the effectiveness and
efficiency of the performance of a particular task, as well as
the number of demonstrations and overall learning time.

While it may not be possible to define evaluation met-
rics that will work across all algorithms, here we attempt
to identify metrics targeted at specific aspects of the MLfD
problem based on established metrics from the multi-robot
systems and HRI communities. This list is far from exhaus-
tive, but is meant to be a starting point to promote further
discussion within the community.

6.3.1 Multi-Robot Systems

Much research on multi-robot systems has focused on the
problems of multi-robot teaming and the management of
multiple robots by human operators [15, 34, 50]. This has
led to the introduction of metrics such as fan-out, defined
as the upper bound on the number of independent, homoge-
neous robots that can be managed by a single person [22].
Within MLfD, we generalize fan-out to be the number of in-
dependent robots that can be managed and taught by a sin-
gle teacher. Factors such as neglect tolerance, the robot’s
robustness to operating without close operator supervision,
demonstration technique and levels of autonomy all affect
fan-out.

Measures with respect to the teacher’s cognitive work-
load of managing multiple robots must also be taken into
account. In the context of interactive MLfD algorithms, the
number of simultaneous interaction requests to the teacher
is an important metric to consider in determining teacher
workload and calculating factors such as the fan-out.

Another useful metric to consider is teacher response
time, or intervention response time [19], which we defined
as the delay between the time that a robot encounters a
problem and when the human intervenes. This metric can
be directly applicable to MLfD, with intervention ranging
from the physical takeover of robot control by the teacher to
teacher guidance or advice.

6.3.2 Human–Robot Interaction

Human–robot interaction research promotes standard eval-
uation metrics [48], many of which may be inherently im-
portant in MLfD. One of the most commonly used metrics
in HRI are subjective ratings, such as the Lickert scale [30],
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that can be used to provide common scoring strategies for
vastly different approaches.

Another important evaluation is with regard to the appro-
priate level of autonomy. An increasing number of robotic
systems are being designed to allow varying degrees of ro-
bot autonomy, both as a means to regulate learning [13] and
to divide a task into parts better performed by a robot or
a human operator [47]. Evaluations measuring level of au-
tonomy discrepancies provide information as to whether the
appropriate level of autonomy is used for different elements
of the task. Closely related is the metric of appropriate uti-
lization of mixed initiative, which is defined as the robot’s
ability to effectively regulate who has greater control over
the robot’s actions [19].

Finally, HRI metrics can be used to evaluate the demands
on the human teacher in order to facilitate the develop-
ment of improved interaction interfaces and demonstration
methods. Methods for evaluating situation awareness, such
as the Situation Awareness Global Assessment Technique
(SAGAT) [17], can aid in assessing teacher performance and
workload levels and their impact on decision-making [45].
Social metrics, such as the degree of the operator’s trust in
the robot, can further impact both training performance, as
well as the potential for adaptability of a technology by fu-
ture users [29].

7 Conclusion

In this article, we presented flexMLfD, the first multi-robot
demonstration learning framework. Our approach is based
on the Confidence-Based Autonomy algorithm, which es-
tablishes a general state and action representation and pro-
vides a means for single-robot policy learning through ad-
justable autonomy. Using an independent instance of the
CBA algorithm, each robot acquires its own set of demon-
strations and learns an individual task policy. The unique
feature of the CBA algorithm that enables it to be applied to
multi-robot learning is the Confident Execution component,
which enables each robot to regulate its own autonomy, and
to pause execution when faced with uncertain situations.

Using the flexMLfD framework, we examined techniques
for teaching emergent multi-robot coordination, in which
the solution to the shared multi-robot task emerges from the
complementary actions performed by robots based on their
independent policies. We contributed three approaches to
teaching collaborative behavior based on different informa-
tion sharing strategies: implicit coordination, coordination
through active communication, and coordination through
shared state.

Additionally, we contributed a case study analysis of the
scalability of the flexMLfD learning framework in a beacon
homing domain using up to seven AIBO robots. We believe

this is the first experiment examining demonstration learn-
ing at this scale. We compared three approaches to teaching
multiple robots at the same time: synchronous learning start
times, offset learning start times, and common policy learn-
ing. Learning performance was evaluated with regard to the
number of demonstrations required to learn the task, the de-
mands for time and attention placed on the teacher, and the
delay that each robot experiences in obtaining a demonstra-
tion.

Finally, we contributed a formalization of a broader
multi-robot learning from demonstration problem, which we
hope will serve as a starting point for further research in this
area.
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