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Abstract— A humanoid robot can perform a task through a
policy mapping from its sensed state to the appropriate task
actions. We assume that a hand-coded controller can capture
such a mapping only for the basic cases of the given task. As
the complexity of the situation increases, the harder it becomes
to refine the controller, and such refinements are often tedious
and error prone. Based on the fact that a human can detect
the failures of a robot executing the hand-coded controller, in
this paper we present a corrective learning from demonstration
approach to improve the robot performance. Corrections are
captured as new state action pairs, and during the autonomous
humanoid robot execution, the controller is replaced by the
demonstration corrections when the new state is found to be
similar to the corrected state. We focus on the Aldebaran Nao
humanoid robot and a concrete complex ball dribbling task in
an environment with obstacles. We present experimental results
showing an improvement in the humanoid task performance
when the corrective demonstration is used in addition to the
basic hand-coded controller.

I. INTRODUCTION

Creating a humanoid robot to effectively perform a task or
a skill, even trivial ones, remains a difficult problem due to
the high dimensional state and action spaces resulting from
the large number of degrees of freedom for their motion and
sensors. The partial observability of the environment due to
limited and noisy sensing, and imperfect actuation makes the
problem even more challenging.

Developers typically transfer task knowledge to a robot
through a custom controller for performing the task or skill.
Although it is relatively easy to develop a controller that can
handle straightforward cases, it usually requires substantial
changes in the controller to handle the real and complex
cases, and as the number of such cases increases, it becomes
cumbersome and time consuming to add new cases without
interfering with the existing ones.

Learning from demonstration (LfD) is a recently pop-
ularized approach to policy learning from examples, or
demonstrations, provided by a teacher [1]. LfD approaches
are not only suitable for transferring task and skill knowledge
via natural ways for humans, they are also suitable for
the problems in which an overall analytical model for the
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task or skill is not available but a human teacher can tell
which action to take in a particular situation. However,
providing sufficient examples is a very time consuming
process for robots with highly complex body configurations,
like humanoids, and for sophisticated tasks with very high
dimensional state and action spaces.

Multiple approaches to robot policy learning utilize learn-
ing from demonstration, in particular biped walk learning
from human demonstrated joint trajectories using dynamical
movement primitives [2], and quadruped walk learning for
a Sony AIBO robot using a regression-based approach [3].
Learning from demonstration was introduced in the form of
advice operators as functional transformations for low level
robot motion, and was demonstrated for a Segway RMP
robot [4], [5]. Furthermore the “confidence based autonomy”
approach enables robot learning from demonstration of gen-
eral behavior policies for both single robots [6] and multi-
robot systems [7].

In our previous work, we utilized real-time corrective
human demonstration to improve the biped walk stability
of the Nao humanoid robot [8], [9]. We used an existing
walk algorithm and we captured a complete walk cycle using
the computed joint commands by the algorithm as the robot
walks. We played back the obtained walk cycle to have a
computationally cheap open-loop walking behavior. Finally
we utilized a wireless game controller to allow the human
demonstrator to modify the joint commands in real-time
to keep the robot stable as the robot walks. We used the
recorded demonstration values along with the sensor readings
to derive a policy for computing proper modification values
to the joint commands for a given sensory reading to recover
the balance of the robot.

In this paper, we present a new corrective demonstration
approach for task and skill improvement where a hand-coded
algorithm exists but is imperfect in terms of being able to
handle complex cases. The human demonstrator observes
the robot doing the task and provides corrective feedback
when necessary by taking over the control of the robot.
The received demonstration points are stored along with
the state of the robot as a complement to the initial hand-
coded algorithm. During autonomous execution, if there
is a demonstration point given in a state similar to the
current state, the robot executes the demonstration action
instead of the action computed by the hand-coded algorithm.
The key idea is instead of deriving a policy out of the
demonstrations and the output of the hand-coded algorithm,
keep the algorithm as the primary source of the action policy,
and use the demonstration data only to make exceptions



as needed. Furthermore, those exceptions do not have to
be applied to the entire task space. Instead, assuming a
decomposition of the task or skill into smaller tasks and skills
is available to the demonstrator, a subspace of the task space
can be selected and corrective demonstration can be given
only for the selected subspace.

The organization of the rest of the paper is as follows: In
Section II we give the problem definition and the hardware
platform. In Section III we thoroughly describe the hand-
coded behavior for a difficult humanoid dribbling task. In
Section IV we present the special vision processing system
and the corrective demonstration framework. We present
experimental results in Section V yielding an improvement
in the task completion time using corrective demonstration
over the original hand-coded algorithm. The conclusions are
given in Section VI.

II. PROBLEM DEFINITION AND THE HARDWARE
PLATFORM

We use the Aldebaran Nao robot, (Fig. 1), which is
a 4.5 kg, 58 cm tall humanoid robot with 21 degrees of
freedom (www.aldebaran-robotics.com). The Nao has an on-
board 500 MHz processor, to be shared between the low level
control system and the autonomous perception, cognition,
and motion algorithms. It is equipped with a variety of
sensors including two color cameras, two ultrasound distance
sensors, a 3-axis accelerometer, a 2-axis, gyroscope (X-Y),
an inertial measurement unit for computing the absolute
orientation of the torso, 4 pressure sensors on the sole of
each foot, and a bump sensor at the tiptoe of each foot.
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Fig. 1. The Aldebaran Nao robot.

Since 2008, the Nao has been used as the robot
for the RoboCup Standard Platform League (SPL)
(www.robocup.org), in which teams of autonomous hu-
manoid Nao robots play robot soccer autonomously in teams
of 3 robots each on a 6 meters by 4 meters green carpeted
field (www.tzi.de/spl).

Technical challenges are a part of the RoboCup SPL
competitions with the aim of fostering research on complex
soccer playing skills. In 2010, there is a dribbling challenge,
where a robot needs to score a goal in up to three minutes on
a field where three stationary robots are placed in a way that
a direct shot is not available from the starting position. The
humanoid has to manipulate the ball placed at the middle of
its own half in such a way to move the ball into the goal.
During dribbling, if the ball or the robot touches one of the

stationary robots, the ball is placed back to the starting point.
We use the dribbling challenge as our evaluation domain.

ITII. THE HAND-CODED ALGORITHM

The Nao humanoid robots perceive their environment via
their sensors, namely the two color cameras, the ultrasound
distance sensors, and the accelerometer. The objects in the
game (i.e., the field, the goals, the ball, and the robots)
are all color coded to facilitate object recognition. However,
perception of the environment remains the most challenging
problem due to the extremely limited field of view (FoV)
of the camera of the humanoid robot (=~ 58° diagonal), the
sensitivity of the camera to changes in light characteristics
like the temperature and luminance levels, and the inevitably
limited on-board processing power that prevents the use of
intensive and sophisticated vision approaches.

A. Free Space Detection

We model the free space in front of the robot to decide
where to dribble the ball over. The soccer field is a green
carpet, with white field lines. The robots are also white and
gray, and they wear pink or blue waist bands as uniforms so
any non-green thing lying on the field is an obstacle, except
for the field lines which are white. We utilize a simplified
version of the Visual Sonar algorithm by Lenser and Veloso
[10] and the algorithm by Hoffmann ef al. [11]. We scan the
image along evenly spaced vertical lines starting from the
bottom end and continue until we see a certain number of
non-green pixels. If we do not encounter any green pixels
along a scanline, we consider that scanline as fully occupied.
Otherwise, the point where the non-green block started is
considered the end of the free space towards that direction.
To save computation time, we do not process every vertical
line in the image. Instead, we skip every 4 pixels and process
the line along the fifth pixel and we process every other
pixel along a line. As a result, we effectively process only
1/10%" of the image (Fig. 2(a)). We project the pixel on the
scanline denoting the end of the green onto the ground to
have a rough estimate of the distance of that obstacle towards
the direction of the scanned line. The robot does a horizontal
scan, covering the entire 180° space in front of the it and we
combine the computed free space end points along the lines
computed during the scan into 15 slots, each covering 12°.
In addition, we tag each slot with a flag indicating whether
that slot points toward the opponent goal or not (Fig. 2(c)).

B. Dribbling Behavior

We developed a base controller implemented as a finite
state machine (FSM). The robot looks for the ball, ap-
proaches the ball once sees it, selects an action, and finally
kicks the ball towards a target point computed according to
the selected action. If it loses the ball at any stage, it goes
back to the search state to look for the ball again (Fig. 3).

We use existing low level skills without any change,
namely, looking for the ball, approaching to the ball, lining
up for a kick, and kicking the ball to a specified point with
respect to the robot by selecting an appropriate kick from
the portfolio of available kicks.
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Fig. 3. The state diagram of the base system.

C. Action and Dribble Direction Selection

The “Select action” and the “Select dribble direction”
states constitute the main decision points of the system we
aim to improve. Both of the algorithms utilize the model

of the free space in front of the robot detected using the
color camera. Action selection tries to decide either to take
a shoot or to dribble to the ball. Action selection algorithm
checks if any of the slots pointing towards the opponent goal
has a distance less than a certain fraction of the distance to
the goal. If so, the path to the opponent goal is considered
“occupied” and dribble is selected as the action. Otherwise,
the path is considered “clear” and shoot is selected as the
action with the center of the opponent goal being set as
the kick target. The pseudo-code of the action selection
algorithm is given in Alg. 1.

Algorithm 1 Action selection algorithm. I' € [0,1] is
a coefficient for specifying the maximum distance to be
considered as free space in terms of goal distance. In our
implementation, we use I' = 0.5.
goalDist — getGoal Dist()
goal Angle — getGoal Angle()
if goalAngle < —F or goalAngle > 5 then
return dribble
else
for all i € getGoalSlots() do
distDif f «— |goalDist — dist;]
if distDif f > I'goal Dist then
return dribble
end if
end for
end if
return shoot

If the action selection algorithm deduces that the path to
the opponent goal is blocked, and subsequently selects the
dribbling action, a second algorithm comes in to determine
the best way to dribble the ball over. All slots are examined
and the slot with the maximum weighted distance is selected
as the dribble slot. The weighted distance is calculated as a
weighted sum of the slot distance and the distances of its left
and right neighbor slots. The algorithm for dribble direction
selection is given in Alg. 2.

IV. CORRECTIVE DEMONSTRATION

Argall et al. defines the learning from demonstration
problem formally as follows. The world consists of states
S, and A is the set of actions the robot can take. Transitions
between states are defined with a probabilistic transition
function T'(s'|s,a) : Sx Ax S — [0, 1]. The state is not fully
observable, instead, the robot has access to an observed state
Z with the mapping M : S — Z. A policy 7 : Z — A is
employed for selecting the next action based on the current
observed state.

Corrective demonstration is a form of teacher demon-
stration focused on correcting an action the robot performed
by proposing an alternative action to be executed in that
state. The usual form of employing corrective demonstration
is to either add the corrective demonstration example to the
demonstration dataset, or replacing an example in the dataset
with the corrective example, and then re-deriving the action



Algorithm 2 Dribble direction selection algorithm. NV is the
number of free space slots.

Algorithm 3 The algorithm for computing the similarity of
two given states

goalAngle — getGoal Angle()
if goalAngle < —% or goalAngle > 7 then
if |angley — goalAngle| < |anglen—_1 — goal Angle|
then
dribble Angle «— angleg
else
dribbleAngle «— anglen _1
end if
else
maxDist «— 0
fori — 1;i < N—1;i«—i+1do
distance < 0.25dist;_1 + 0.5dist; + 0.25dist;41
if distance > maxDist then
maxDist «— distance
maxSlot «— 1
end if
end for
dribble Angle «— anglemazsiot
end if
return dribbleAngle

policy using the updated demonstration dataset. This way
of applying corrective demonstration requires either to have
a demonstration dataset which is large enough to derive a
generalized policy, or, in case of an existing algorithm for the
task, to have an understanding and access to the underlying
analytical model of the algorithm.

We define the observed state of the robot as

Z =< slotDisty, ..., slot Dist y_1, goaly, ..., goal ny_1 >

where slotDist; is the distance to the nearest obstacle
towards the slot 4, and goal; € {true, false} is a Boolean
flag which has the value true if the slot ¢ intersects with the
goal, and false otherwise.

Since the robot is expected to move the ball into the
opponent goal, the distribution of the free space with respect
to the direction to the goal needs to be taken into account
rather than the position of the robot on the field. Therefore,
we calculate the sum of absolute differences of the free space
slots using the slot pointing towards the center of the goal as
origin, if the goal is in sight. If the goal is not within the 180°
area in front of the robot, we calculate the sum of absolute
differences of the free space slots using the rightmost slot as
the origin. The similarity value which is in the range [0, 1]
is then calculated as

similarity = e~ Kdiff*
where K is a coefficient for shaping the similarity function,
and diff is the calculated sum of absolute differences of the
slot distances. In our implementation, we selected K = 5.
The algorithm for similarity calculation is given in Alg 3.

During the execution, when the robot reaches to the action
selection or dribble direction selection states, it first searches

disteyrr — getSlotDist(Zeyrr)
distgemo — getSlotDist(Zgemo)
diff <0
if goalAngle < —F or goalAngle > 7 then
for : — 0;i < N;i— i+ 1do
diff — diff + |disteyrr (i) — distiemo(?)]
end for
diff — diff /N
else
goalSlot cyrr — getGoalSlot(Zyrr)
goalSlot gemo «— getGoal Slot(Zgemo)
num «— 0
s1 < goalSlot cyrr, S2 — goalSlotgemo
while s; < N and s; < N do
diff — diff + |disteyrr(51) — distgemo(s2)]
num «—num 4+ 1,51 «— 51+ 1,50 «— 59+ 1
end while
s1 < goalSlot .y, S2 — goalSlot gemo
while s; >= 0 and s> >=0 do
diff — diff + |disteyrr(s1) — distgemo(s2)]
num «—num 4+ 1,51 «— 51 — 1,50 «— 590 — 1
end while
diff — diff /num
end if
stmilarity «— e
return similarity

— K diff>

its demonstration database and fetches the demonstration
point with the highest similarity to the current state. If the
similarity value is higher than a threshold value 7, the robot
executes the demonstration action instead of the action com-
puted by the hand-coded algorithm. In our implementation,
we use 7 = 0.9

V. EXPERIMENTAL RESULTS

We evaluated the efficiency of the corrective demonstration
using three different robot placement cases. We defined the
cases in a way that the robot using the hand-coded action
selection algorithm can score a goal, but not following an
optimal sequence of actions (Fig. 4). The cases are as
follows:

o Case 1: We put two robots on the periphery of the

center circle, leaving a narrow, but passable corridor.
We place the last robot at the penalty point distance
from the center point, and 1 meter to the left from the
penalty point. The hand-coded behavior tries to avoid
the two robots at the center, and mostly chooses a right
dribbling direction to also avoid the third robot. During
the demonstration, we advised the robot to take a direct
shot between the two robots at the center (Fig. 5(a)).

o Case 2: This is a position where a direct shot is not
possible, and the robots are placed asymmetrically on
the field so dribbling the ball towards the direction
where the robot placed further away gives an advantage.
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Fig. 4. Three different configurations used in the experiments. a) Case 1,
b) Case 2, and c¢) Case 3.

During the demonstration, the given advice was first to
dribble the ball to the left, and then to take a direct shot
on the goal (Fig. 5(b)).

o Case 3: This is also a situation where a direct shot is
not possible, and the robots are placed symmetrically
so no clear advantage in choosing an initial dribbling
direction over another exists. During the demonstration,
we gave a very similar advice to the Case 2 advice
to investigate whether we can create a bias towards a
specific action in certain cases or not (Fig. 5(c)).

(a) Advised path for (b) Advised path for (c) Advised path for
Case 1 Case 2 Case 3

Fig. 5. The advised paths for different cases.

We gathered corrective demonstration data from all three
cases, forming a common database. We collected a total of 42
action demonstration and 21 dribble direction demonstration
points in a demonstration session of roughly 30 minutes.
We then evaluated the performance of the system with and

without the use of corrective demonstration database by
means of the time required to score a goal.

We ran 10 trials for each case, 5 with the hand-coded
action and dribble direction selection algorithm (HA), and
another 5 trials with the corrective demonstration data (CD)
on top of the HA. The sequence of actions taken by the robot
at each trial are given in Fig. 6- 8, and the timing information
given in Table I. In the figures, a dashed line indicates a
dribble action, a solid line indicates a shoot action, and a
thin line indicates the replacement of the ball to the initial
position after committing a foul. In the table, ’out’ means
that the robot kicked the ball out of the field from sides,
’missed’ means that the robot did the right actions but due
to imperfect actuation, the kick missed the goal and went
outside, and own goal’ means that the robot accidentally
kicked the ball into its own goal. The failed attempts are
excluded in the given mean and standard deviation values.
The failures were mostly due to the imperfection of the lower
level skills like aligning with the ball, and the high variance
in both the kick distance, and the kick direction.

(a) Case 1 HA (b) Case 1 HA+CD

Fig. 6. The followed paths in Case 1.

(a) Case 2 HA

(b) Case 2 HA+CD

Fig. 7. The followed paths in Case 2.

The decrease in the timings in HA+CB case compared
to the HA base case shows an improvement in the overall
performance since according to the problem definition, the
shorter completion times are considered more successful.



TABLE I
ELAPSED TIMES DURING TRIALS.

Case 1 Case 2 Case 3

Trial HA HA+CD HA HA+CD HA HA+CD
1 2:38 1:35 6:34 - out 1:42 2:10 1:57 - out

2 2:27 1:49 3:31 1:47 2:31 1:57

3 1:48 1:32 2:02 2:08 2:24 1:03

4 2:36 1:27 3:52 3:47 - out 3:45 - own goal 1:53

5 3:57 1:31 2:56 1:29 - missed 1:54 2:52

mean 2:41 1:34 3:05 1:52 2:14 1:56

std 0.0326 0.006 0.033 0:009 0.011 0.031

(a) Case 3 HA

(b) Case 3 HA+CD

Fig. 8. The followed paths in Case 3.

In Case 1, the corrective demonstration created a bias
towards taking direct shots as opposed to the dribbling action
computed by the hand-coded algorithm and reduced the
completion time. In Case 3, the corrective demonstration
was again proven to be effective in creating bias in situations
where it is not analytically possible to prefer an action over
another.

VI. CONCLUSIONS

In this paper, we contributed a task and skill improvement
method which utilizes corrective human demonstration on
top of an existing algorithm. We applied the method on one
of the technical challenge tasks of RoboCup 2010 Standard
Platform League competitions called “Dribbling Challenge”.
We applied corrective demonstration at two levels: action
selection and dribble direction selection. We developed a
hand-coded base system for performing the task which can
handle most basic cases but is unable to perform well on
all the cases. A human demonstrator monitors the execution
of the task by the robot and intervenes as needed to correct
the output of the hand-coded algorithm. The robot saves the
received demonstration examples in a database, and fetches
the demonstration example received from the most similar
state in the database using a domain specific similarity
measure. If the similarity of the state of the received demon-
stration and the current state of the robot is above a certain
threshold, the robot executes the fetched demonstrated action

instead of the output of its own algorithm. We presented
empirical results in which the proposed method is evaluated

in three different field setups. The results show that it is
possible to apply “patches” to the hand-coded algorithm
which improves the task performance with only a small
number of demonstrations.

Investigating the possibility to develop a domain-free
similarity measure, applying the corrective demonstration
to the other subspaces of the task space, and applying the
proposed method to more sophisticated tasks can be listed
among the possible future work we aim to address.
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