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ABSTRACT
In all of the RoboCup soccer leagues, teams of robots com-
pete to score goals in the presence of opponent robots. We
focus on the RoboCup Standard Platform League (SPL),
in which the robot platform is the same for all the com-
peting teams, and the robots are fully autonomous with
onboard directional perception, computation, action, and
wireless communication among them. We address the prob-
lem of each robot building a model of the world in real-time,
given a combination of its own limited sensing, known mod-
els of actuation, and the communicated information from
its teammates. Such multi-robot world modelling is quite
complicated due to the limited perception and the tight
coupling between behaviors, sensing, localization, and com-
munication. We describe the world model problem for the
RoboCup SPL in detail, in particular with respect to the
real-world constraints and limitations imposed by the Nao
humanoid robots. We present the modelling challenges to-
wards different objects in the world in terms of their dy-
namics, namely the static landmarks (e.g., goal posts, lines,
corners), the passive moving ball, and the controlled mov-
ing robots, both teammates and adversaries. We discuss the
approaches to model each such type of object depending on
its motion model. Although our presentation is based on
the specifics of the RoboCup SPL, the challenges and ap-
proaches we present are general to any multi-robot world

modelling problem, as we state them in terms of classes of
objects which should be part of general scenarios.

1. INTRODUCTION
For several years, we have witnessed and experienced the

robot soccer challenge towards having a team of robots au-
tonomously perform a “scoring” task (pushing a ball into a
goal location) on a predefined space in the presence of an op-
ponent robot team. We are focused on the teams of robots
with onboard perception, control, actuation, and commu-
nication capabilities. While many complete robot soccer
teams have been devised with varied levels of success, one
of the main challenges is still the “world modelling” problem
for such robot teams, where robots have limited, directional
perception. Each robot needs to build a model of the state
of the world, e.g., the positioning of all the objects in the
world, in order to be able to make decisions towards achiev-
ing its goals. World modelling is the result of the robot’s
own perception,the robot’s models of the objects, and the
communicated information from its teammates. This world
modelling problem is complicated by the fact we consider
that the robot relies only on visual perception of the objects
in the environment, which is typically noisy and inaccurate.
In addition, the robots have a limited field-of-view which
allows the robot to detect only a small subset of objects at
a particular time. Interestingly, we note that the primary
goal of the robots is not to track the multiple objects in
the world, but to accomplish some other task, e.g., scoring
a goal. However, effectively performing the task directly
depends on an accurate model of world objects. We view
this world modelling problem of a group of robots with lim-
ited perception and communication capabilities relevant to a
very general future environment when robots will naturally
need to perform tasks involving identifying and manipulat-
ing objects in a world with other moving robots and towards
achieving specific goals.

World modelling clearly includes object tracking and there



is extensive previous related work. Multi-model motion track-
ers incorporate the robot’s actions as well as its teammates’
actions (e.g., [3]), to allow a robot to track an object even
if its view is obscured, and if teammates take actions on
the object. Rao-Blackwellised particle filters have been ex-
tensively used to effectively track a ball in the robot soc-
cer domain (e.g., [4]). In the presence of multiple robots
communicating among themselves, a variety of approaches
have been developed to fuse the information from multiple
sources, using subjective maps [7], in high-latency scenar-
ios [10], with heterogeneous robots [12], and using a priori-
tizing function [11].

In this paper, we drive our presentation using the RoboCup
Standard Platform League [8] [9] with the Nao humanoid
robots [1] in detail, to carefully present the general world
modelling problem. We identify different classes of objects
in the world in terms of their motion models. We discuss and
contribute the world model updating approaches for each of
the identified object classes.

2. PROBLEM STATEMENT
We are interested in modelling objects in the world, such

that the robot has an accurate estimate of the location of
the objects, even if the objects are not currently visible to
the robot. The world model maintains hypotheses of the po-
sitions of the objects in the world, given the sensor readings
of the robot and the models of the objects.

Definition 1. A World Model is a tuple {O, X, S, M ,
H, U}, where:

• O is the set of labels of objects that are modelled

• X is the set of possible object states, i.e., x ∈ X is a
tuple representing the state of an object, such as its
position in egocentric coordinates, velocity, and confi-
dence

• S is the set of possible sensor readings, i.e., s ∈ S is
a tuple representing all currently sensed objects, and
the internal state of the robot

• M is the set of models of the objects, where mo ∈ M
is the model of object o

• H : M ×O → X is a hypothesis function that returns
the state of an object given its model

• U : M × O × S → M is the model update function,
i.e., m′

o = U(mo, o, s)

In multi-robot scenarios, such as RoboCup, communica-
tion between teammates, e.g., sharing of ball information,
can be viewed as a sensor reading of the receiving robot.
Also, at any point in time, there can be some objects that
are not sensed by the robot. As such, the update function
U must be capable of updating the models of objects that
are not currently sensed.

2.1 Objects in the World
There are multiple types of objects in the world, and

[13] structure objects in the world into different categories
— static, passive, actively-controlled, and foreign-controlled
(see Fig. 1). Static objects, as their name implies, are sta-
tionary objects. Passive objects are objects that do not move

on their own, but can be actuated by other objects, e.g., a
ball in the RoboCup domain. Models of passive objects
include a motion model for tracking their velocity and tra-
jectory, as well as the effects of other robots’ actions on
the object, for example, when a teammate kicks the ball.
Actively-controlled and foreign-controlled objects are those
that move on their own, and are differentiated by whether we
have full knowledge of the actions taken by the objects. In
the robot soccer domain, the robot’s teammates are actively-
controlled and the opponents are foreign-controlled.

Figure 1: Types of objects, as introduced by [13].

Definition 2. Let O be the set of all objects in the world
model. Os, Op, Oa, Of are static, passive, actively-controlled,
and foreign-controlled objects, respectively, where Os, Op,
Oa, Of ⊆ O.

In RoboCup domain, Os is comprised of the goals (yellow
and blue) and other fixed landmarks on the field, such as
field lines and corners. Op contains the ball, and Oa and Of

consist of teammates and opponent robots respectively.
For each object in the world model, we maintain a model

of its position in egocentric coordinates. The model of the
object is updated according to the category of that object.
For example, static objects are updated only based on visual
cues (e.g., a goal post is detected in the camera image), and
by the robot’s movement, as they do not move. The models
of such objects do not include velocity, since static objects
do not move in the environment. In contrast, passive objects
have an associated velocity model, which is updated based
on both visual cues and actions taken by the robot and its
teammates, e.g., kicking the ball.

2.2 Challenges in Modelling the World
Creating an accurate world model for the RoboCup do-

main is a challenging problem. Firstly, the Nao humanoid
robot used in the RoboCup Standard Platform League has
limited sensing capabilities (see Fig. 2). The internal sensors
of the Nao, i.e., accelerometers and gyroscopes, are useful to
determine the robot’s state, but are unable to sense external
objects in the world. Ultrasonic sensors are used to detect
obstacles in front of the robot, but the obstacle informa-
tion is not incorporated into the world model. Perception
of external objects is performed using computer vision on
the images from the on-board cameras located in the Nao’s
head. Due to the narrow field-of-view of the cameras, the
robots are only able to sense a subset of the objects in the
world at any one time, and must actively choose which ob-
jects to perceive. Also, the field is 4m × 6m, while the robot
is only 30cm across, and so the robot is typically unable to
perceive some objects in the world without turning around.



Figure 2: Aldebaran Nao humanoid robot used in
the Standard Platform League of RoboCup, and its
on-board sensors.

Secondly, the environment is highly dynamic and adver-
sarial. The position of the ball varies over time, as the robots
on the field interact with it. Furthermore, the robots are
constantly moving across the field, limiting line-of-sight to
the ball and other landmarks. The actions of teammates
are shared across the team, therefore modelling teammates
is relatively easier than modelling opponents, whose actions
are unknown and are difficult to track. The goal of the
robot team is to kick the ball into the opponent’s goal, and
as such, modelling objects is not the primary objective of the
robots. The robots typically maximize the amount of time
perceiving the ball (as its the most important object in the
domain), but have to maintain an accurate model of other
objects in order to carry out the high-level goal of scoring.

Thirdly, landmarks in the environment are ambiguous.
Goals are colored blue and yellow, and are distinguishable.
However, it is difficult to differentiate the left and right goal
posts of the same color, especially when the robot is standing
close to the goal. In addition, the soccer field is marked by
non-unique lines and corners, which are impossible to differ-
entiate based on a single camera image, e.g., a straight line
looks identical when the robot stands on either side of it.
Fig. 3 shows a yellow goal, an ambiguous (left/right) yellow
goal post, and an ambiguous corner.

Figure 3: a) A yellow goal. b) An ambiguous yellow
goal post. c) An ambiguous corner.

3. ROLE OF THE WORLD MODEL
The world model, which contains the positions of objects

in the environment, is only a part of a larger system. To
fully understand the design and function of the world model
in the RoboCup domain, a brief explanation of the other
components and their interactions with the world model is
necessary.

On a low level, the vision component processes images
from the camera and returns the positions of visible objects.
Since the objects on the field are color-coded (the field is
green, goals are yellow and blue, the ball is orange), vision
uses color segmentation and blob formation to identify ob-
jects. All of the robot’s motions are controlled by a motion
component. The motion component receives motion com-
mands such as walk forward, turn, or kick, and executes
them by manipulating the joint angles. A walk algorithm
based on the Zero Moment Point (ZMP) approach is em-
ployed [6]. The motion component outputs odometry infor-
mation (i.e., the displacement of the robot).

The world model maintains the positions of objects in ego-
centric coordinates. However, to make sense of the world
models of their teammates or execute cooperative behav-
iors, they must communicate using global coordinates. The
self-localization component takes the observations of goals,
lines and corners from vision along with odometry informa-
tion from motion as input, and estimates the robot’s global
position using a particle filter [5].

The referees communicate their rulings through a wireless
network with the robots. The information received from
referees is processed to determine the current state of the
game, such as when a goal is scored, when kickoff occurs, or
when a penalty is called.

At the highest level are the Nao’s behaviors, which decide
the robot’s actions. These include skills, tactics, and plays,
which model low-level abilities (such as kicking the ball),
the behavior of a single robot, and the behaviors of multiple
robots, respectively [2]. Behaviors issue motion commands
to the motion component. They retrieve information about
the environment from the world model, and the robot’s own
global position from localization.

In this architecture, the world model fills the essential role
of determining the positions of objects on the field, merg-
ing observations from vision, messages from teammates, and
odometry information from the motion component. The
world model’s position estimates are then used by the be-
haviors to decide the robot’s actions.

4. MODELLING THE WORLD
The algorithms for modelling objects vary widely depend-

ing on the object category, yet several fundamental algo-
rithms are utilized by all object types.

Firstly, all objects are updated based on the robot’s odom-
etry. Odometry information is passed to the update function
U(m, o, s) as values ∆x, ∆y, and ∆θ in s. For all object
types, the function U first updates the estimated position
with an odometry function, i.e., (x′, y′) = odom(x, y, ∆x,
∆y,∆θ), where (x, y) and (x′, y′) are the original and trans-
formed coordinates of the object respectively.

Secondly, each observation of an object o in s from some
sensor includes the position and confidence of the observa-
tion. These observations are integrated into the position
estimate ~x of mo, via a filter, e.g., a Kalman filter. The fil-
ter reduces the model’s sensitivity to noise, and weights the
observations according to their confidence.

Finally, the objects will not always be sensed. The world
model must track the objects’ positions even when they are
not currently sensed. It measures the confidence c ∈ [0, 1]
of its estimates so that the robot doesn’t act on outdated
or incorrect information. When the object is sensed (either
through a physical sensor or teammate communication), c is



set to the confidence given in s. Otherwise, the confidence
decays according to a function N(c, s) which is specific to
the object being modelled.

The updated confidence c in an object’s position is thresh-
olded into three states:

Valid Suspicious

Invalid

Decreasing Confidence

Object Sensed

Object Sensed Decreasing Confidence

Figure 4: Transitions between object confidence
states.

• Valid : The robot currently senses the object or sensed
it recently. The robot’s behaviors should assume the
position is correct.

• Suspicious: It has been some time since the object
was sensed. The robot’s behaviors should look at the
object before it becomes invalid.

• Invalid : The object’s position is unknown.

The threshold levels lsuspicious and linvalid, specific to each
object type, are determined through experimentation. See
Fig. 4 for the transitions between confidence levels. The sus-
picious state is an active feedback mechanism, which serves
as a request from the world model to look at the object. The
behaviors set a boolean flag in s when the robot is currently
looking at the object’s estimated position. N will typically
accelerate the decay of the confidence when this flag is set.
This active feedback mechanism ensures that false positives
from sensors and objects which have moved are invalidated
more quickly so that the robot does not act on incorrect
information.

Using these general algorithms applicable to all object
types, we will discuss how each category of object is mod-
elled, particularly in the RoboCup domain.

4.1 Static Landmarks
The RoboCup Standard Platform League (SPL) started

with a fairly small field with eight unique visual landmarks
(two solid colored goals, and six unique bi-colored beacons
placed on the perimeter of the field). The advances in real-
time vision processing and self-localization algorithms, along
with the development of new robots with better cameras and
higher processing power over the years, have made it possi-
ble to move the league towards a more realistic field setup
resembling a real soccer field. Decreasing the number of
colored beacons gradually and switching to a more realistic
goal structure, the league has now reached a field setup in
which the only unique landmarks are two colored goals (see
Fig. 5). The landmarks on the field (both unique and non-
unique) are categorized as static objects (Os) because their
positions on the field do not change.

Figure 5: The field setup of RoboCup SPL 2009

4.1.1 Goal Posts
The introduction of the new goal structure has encour-

aged the treatment of each goal post as a separate landmark.
This treatment raises the problem of uniquely identifying the
goal posts. One straightforward approach is to use spatial
relations between the left and right posts and the top goal
bar. However, this is especially difficult, if not impossible,
in cases where the robot looks at a post where the top goal
bar is not seen (see Fig. 3b for an example). Uncertainty
associated with the vision component, such as changes in
the lighting or misclassifications during the color segmenta-
tion phase, might lead the goal post perception algorithm to
incorrectly identify a left or right goal post.

4.1.2 Field Lines
The SPL soccer field contains a set of markings for visually

emphasizing the special regions and boundaries of the field.
The list of visual marks on the field is as follows:

• Field boundary lines

• Penalty boxes

• Penalty marks

• Center line

• Center circle

• Center spot

• Line intersections (corners)

4.1.3 Updating the Confidence of Static Objects
In addition to partially visible goal posts, all of the field

markings except the center circle are non-unique landmarks.
A landmark should be identified uniquely before updating its
confidence. Different methods can be used to disambiguate
non-unique landmarks. Taking advantage of known global
landmark positions, constraints imposed by the relative po-
sitions of landmarks with respect to each other can be used
to associate perceived landmarks with existing objects in the
world model. Another way of associating non-unique land-
marks with known ones is using the proximity of its global
position to the real positions of known landmarks.

The major distinction separating static landmarks from
other objects is that they are subjected to a decay function
based on the motion of the robot instead of time. The vision
component computes a confidence value c ∈ [0, 1] for each
visible static landmark. That value is used by the model



as long as the object is currently sensed by the robot. The
confidence value remains unchanged if the object is no longer
sensed but the robot is stationary. If the robot is moving, U
sets ct+1 ← N(ct) where N is a decay function dependent
on the rate of the robot’s motion.

4.2 Passive Objects
In RoboCup, the ball is the most important object and

therefore the world model needs an accurate position esti-
mate for the ball at all times. The ball requires a more com-
plex model than static landmarks because it moves across
the field based on the actions of robots. It belongs to a more
general class of passive objects (Op), i.e., objects which do
not move of their own accord, but will move when acted on
by external forces. A passive object can be free, or controlled
by a robot— each state requires a different model. We will
specifically study the problem of modelling the ball, but the
techniques used are applicable to general passive objects.

Recall that mball ∈ M is the model of oball ∈ Op. This
model is updated based on the sensor readings s by an
update function U(mball, oball, s). The hypothesis function
H(mball, oball) returns an estimate of the ball state, xball.

4.2.1 Tracking the Ball
In every update of the ball’s model, the position and con-

fidence of the ball are updated according to the odometry
function odom and a filter f .

Since the ball is a passive object, unlike the goal posts,
we must model its motion. The ball has a velocity ~v (an
element of mball) which decays over time at a rate α, such
that ~xt+1 ← ~xt + ~vt∆t and ~vt+1 ← max(0, ~vt − α∆t). The
decay rate α depends on the properties of the surface and
the ball. Other motion models may be used in the more
general case of other types of passive objects.
~v = 0 unless a robot acts on it— the question is, then, how

can the actions of the other robots be modelled to predict
when the ball will be kicked. In [3], a probabilistic tracking
algorithm is introduced based on the actions of the robots.
The ball transitions between free and kicked states based
on the actions of the robot and its teammates, which are
communicated wirelessly (and listed in s). When the ball
transitions to a kicked state, the update function U sets

~v ← ~dvi, where ~d is a unit vector representing the direction
the robot is facing (communicated by the teammate) and vi

depends on the strength of the robot’s kick.
Modelling the actions of the opponents is more challeng-

ing. In this case, U resorts to estimating a velocity based
on the changes in the ball’s position over time. This veloc-
ity estimation also serves to detect the unintentional actions
on the ball which are common in the Standard Platform
League, such as falling down on the ball or bumping into it.

4.2.2 Updating the Ball Confidence
All objects are modelled with a confidence value c, which

is thresholded to a valid, suspicious, or invalid state. How
this confidence is updated varies with each type of object.
In the case of the ball, when it is visible, c is simply the
confidence given by the vision component. If vision does not
detect a ball, U updates the confidence according to a decay
function N . N is dependent on the time elapsed and the
movement of the robot. If c is thresholded as suspicious, and
the robot is looking at the estimated ball position, N causes
the confidence to decay more rapidly. This increased decay

rate is an active feedback mechanism which ensures that
false sightings and balls which have moved are invalidated
more quickly so that the robot can begin to search for the
ball.

4.2.3 Multiple Hypotheses
We have described an effective model of the ball for a

single robot, if the hypothesis function simply returns the
estimated ball position and its confidence level. However,
it does not incorporate information from the robot’s team-
mates. To do this, we include a list of hypotheses h in mball

containing the ball position estimates and confidence values
from the robot and its teammates.

The other robots estimate the ball position in their own
coordinate frame relative to their position on the field. To
make sense of this estimate, the robot must convert it to its
local coordinate frame. This conversion uses both the team-
mate’s and own global position estimates (computed by self-
localization component ) to first convert the ball’s received
position to global coordinates, and then to the robot’s own
coordinates. This process introduces a large source of error
since the localization estimate is much less accurate than
the vision’s position estimate of the ball. Hence, we factor
the localization error into the confidence level for teammate
ball estimates h in mball. This causes the robot to favor its
own estimates over those of its teammates.

The hypothesis function H returns the position estimate
with the highest confidence, and U decays the confidence of
the hypothesis with the highest confidence. See Fig. 6 for
an example of how the ball confidence returned by H varies
over time.

t1 t2 t3 t4 t5

Invalid

Suspicious

Valid

Figure 6: An example scenario showing the ball con-
fidence returned by H. Initially the ball is visible,
but at t1 it leaves the field of view. The ball is seen
again at t2, but lost once more at t3. At t4, the ball
becomes suspicious, and the behaviors look at where
the ball is supposed to be. It is not present, so the
confidence decays more rapidly. At t5, after the ball
becomes invalid, a position estimate is received from
a teammate.

4.2.4 Game State
One source of information remains for the world model

to use — the Game Controller. The Game Controller is
operated by the referee to communicate his rulings to the
robot, e.g., a goal is scored, the ball went out of bounds, or
play has begun. At kickoffs (the beginning of each half and
after each goal is scored) the positions of the robots and the



ball are known. The update function U , then, sets the ball
position to the known location at kickoff.

4.2.5 General Passive Objects
Passive objects are common in domains other than robot

soccer, particularly in tasks involving robotic manipulation.
For example, when assembling a product, the parts which
must be assembled are passive objects. When harvesting
fruit, the fruit which must be plucked from the tree are also
passive objects. These objects only move when acted on
by an external force. Although our previous discussion was
specific to the ball, much of it also applies to other types
of passive objects, especially modelling the objects’ motion
based on the robot’s action, modelling the uncertainty of the
object’s position, and integrating the hypotheses of team-
mates.

4.3 Controlled Objects
Along with static and passive objects, the third type of

object on the field is controlled objects. Controlled ob-
jects have the ability to move themselves and do not rely
on external forces. The world model includes two types of
controlled objects: Oa (actively-controlled) and Of (foreign-
controlled). We have full knowledge of the actions of actively-
controlled objects, while foreign-controlled objects are con-
trolled by others, i.e., their actions are unknown. In RoboCup,
each robot on our team is an actively-controlled object, and
the opposing team’s robots are foreign-controlled objects,
specifically adversarial.

The most essential actively-controlled object for the robot
to model is itself. In the egocentric coordinate frame, the
robot is always at the origin, so its position is not stored
explicitly in the world model. Instead, the relative positions
of the other objects are updated according to the robot’s
odometry by the update function U . The robot’s global
position on the field is determined by localization.

The other actively-controlled objects are the robot’s team-
mates. Each robot’s global position, computed using local-
ization, is shared wirelessly with teammates. This informa-
tion is used for team behaviors, such as passing to a robot
upfield or backing up an attacker. Although the localization
information is prone to error, communicating positions wire-
lessly has the advantage of uniquely identifying the robots.
Furthermore, the robot will know the positions of teammates
which are occluded or not in the line of sight.

The opposing robots are detected visually (using color seg-
mentation) and treated in the world model as if they are
static objects. So U and H behave similarly for foreign-
controlled and static objects. This approximation is rea-
sonable because the Nao’s motion in the SPL is currently
somewhat sluggish, although bipedal motion algorithms are
steadily improving. The behaviors use the positions of op-
posing robots to attempt to kick away from them, particu-
larly when shooting past the goalie and into the goal.

5. CONCLUSION
In the RoboCup Standard Platform League, a highly dy-

namic and adversarial domain, the bipedal Nao robots must
know the positions of the objects on the field in order to win
the game. The main contributions of this paper are: formal-
ization of the general world modelling problem, and a solu-
tion to the problem based on categorizing objects as static,
passive, actively-controlled, and foreign-controlled. We clas-

sify the confidence of modelled objects as valid, suspicious
and invalid. A suspicious object is an active feedback mech-
anism, which serves as a request by the world model to look
at the object. Similarly, when the robot looks at an ob-
ject but is unable to sense it, the object’s confidence decays
quickly (making it invalid) to prevent inaccurate informa-
tion from being used in the robot’s behaviors. Although the
presented solution is tailored to the RoboCup domain, it is
applicable to general world modelling problems.
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