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Abstract

We consider tasks where robots act on the target that is visually
tracked, such as kicking a ball or pushing an object. We introduce
a principled approach to incorporate models of the robot-object in-
teraction into the tracking algorithm to effectively improve the perfor-
mance of the tracker. We first present the integration of a single robot
behavioral model with multiple actions into our dynamic Bayesian
probabilistic tracking algorithm. We then extend to multiple motion
tracking models corresponding to known multi-robot coordination
plans or from multi-robot communication. We evaluate our result-
ing informed-tracking approach empirically in simulation and using
a setup Segway robot soccer task. The input of the multiple single and
multi-robot behavioral models allows a robot to visually track mobile
targets with dynamic trajectories more effectively.

KEY WORDS—multi-model, motion tracking, human-robot-
team, action models

1. Introduction

Object tracking is widely used in robot applications (e.g.
Schulz et al. 2003). As mobile robots become more common
in everyday life, interactions between a robot and a target be-
ing tracked increase, leading to trajectories of the objects that
are not captured by a simple single motion model. Robots act
on targets changing their location and velocity (Kwok and Fox
2004). In this article, we address this specific problem of vi-
sual tracking when single and multiple robots act on the object
being tracked. The motivating example for the general algo-
rithmic approach we contribute is a Segway RMP soccer robot
interacting with a ball and teammates, such as grabbing and
kicking (Browning et al. 2005b).
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Object tracking efficiency directly depends on the accuracy
of the motion model and of the sensory information. The mo-
tion model of the object becomes particularly complex under
action, as well as highly dependent on the specific robot’s ac-
tions. In addition to the actions of a single robot, we also con-
sider multiple team member robots performing actions on the
object being tracked, creating a further discontinuous and non-
linear object motion. Our approach builds upon two main facts:
(1) an individual robot knows its own actions; and (ii) robots in
a team collaborate according to predefined coordination plans
or dynamic communication (Gu 2005; Gu and Veloso 2006b).
We claim that knowledge of the single robot control strategy
and the multi-robot coordination is a valuable source of infor-
mation for tracking (Gu and Veloso 2006a,c,d).

In order to concretely motivate how robot action models, in
particular team actions, contribute to improved tracking per-
formance, we provide a brief illustrative example. Figures 1
and 2 show a sequence of views from a Segway robot’s pan-
tilt camera (Browning et al. 2004). Each picture corresponds to
one frame identified by the frame id shown at the lower right
corner. The frame rate is approximately 30 frames per second
and the camera has a limited field of view (FOV). When the
object is in the FOV of the camera, tracking is fine. When
the object leaves the FOV of the camera, the prediction of the
tracker is used to keep the camera pointed to the object: the
prediction from the tracker is translated into a command to
position the camera in order for the object to be consistently
located in the camera’s FOV.

Figure 1 shows the first example in which a robot is using
our developed tracking algorithm (frames 431-477). Figure 2
shows the second example in which a robot is tracking without
our algorithm (frames 486—710). Initially, the ball is static and
the robot finds the ball at frame 431 and at frame 486 in the
two examples, respectively. We describe the examples for their
sequence of relevant frames as follows.

e From frames 431-477: The robot integrates the team ac-
tion model into tracking. At frame 431, the ball is kicked
towards the robot. Although the ball moves fast, the ro-
bot quickly finds the ball at frame 445 based on the
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Fig. 1. Motivation example: from frame 431 to 477.

Fig. 2. Motivation example: from frame 486 to 710.

knowledge that the team member passes the ball to it.
The ball is temporarily not seen and it takes the robot
only about 15 frames (0.5 s) to find the ball and then the
robot keeps tracking the ball.

e From frames 486—710: A new trial starts without our in-
corporation of the team action model. The ball is kicked
towards the robot, but it now takes approximately 120
frames (4 s) for the robot to find the ball. After frame
608, the ball is in the FOV of the camera and the robot
tracks it correctly.

The superiority of our tracking algorithm, as depicted in
the example, is due to the inclusion of the team action models

into the tracker. The robot knows that its team member will
pass the ball towards it. When the ball is temporarily not seen,
the robot calculates the estimated ball position with the mo-
tion model under the team member action, trying to find the
ball at the estimated position which is right beneath its kicker.
Furthermore, when the team member announces the action as
soon as it kicks the ball (not shown in the example, but also
introduced in our work), the robot selects a correct motion
model and tracks the ball even more effectively. Instead, when
the control strategy integration is disabled, the robot has great
difficulty locating the ball in a short time because the robot’s
action (e.g., at frame 486) makes the motion of the ball highly
discontinuous and nonlinear. The robot has to track for the ball
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without an appropriate motion model, leading to its long plain
search.

The example supports our work in exploiting different
kinds of non-standard (prior and dynamic) information into
the tracker to produce better estimates of the object state. The
techniques that we describe are applicable to any domain that
includes one or a team of agents cooperating on a specific task
and acting on the target objects for their tracking. Agents act
using behaviors and cooperate using predefined team plans.
Information about action on the objects can also be sent as a
communication message to a specific team member to enable
the update of the motion model of the tracked object. We use
a probabilistic temporal Bayesian modeling framework to rep-
resent and recognize the multiple motion models.

The contributions of our work, as reported in this article,
include the following.

e We incorporate single robot and team action models into
a Dynamic Bayesian Network (DBN)-based temporal
representation for tracking.

e We introduce several multi-model tracking algorithms
based on: the robot’s own actions; predefined team
plays; and communicated team actions.

e We evaluate our new tracking algorithms in robot plat-
forms, a human-robot team and in simulation experi-
ments.

e We present an empirical comparison between several
tracking algorithms. We examine the performance of
each algorithm according to a variety of metrics.

The article is organized as follows. We introduce the Seg-
way RMP soccer robot and two of its main components related
to this article. We identify the challenges of this domain and
give a problem statement. We briefly describe the relations be-
tween the robot cognition and the object motion models. We
show how we use the team action models in a DBN-based rep-
resentation. We describe the multi-model tracking algorithm,
leading to our experimental results. Finally, we present related
work and a conclusion.

2. Segway RMP Soccer Robot

The Segway platform is unique due to its combination of wheel
actuators and dynamic balancing. The Segway RMP (Robot
Mobility Platform) provides an extensible control platform for
robotics research. It endows the robot with the novel charac-
teristics of a fast platform and can travel long ranges. It is able
to carry significant payloads, can navigate in relatively tight
spaces for its size and provides the opportunity to mount sen-
sors at a height comparable to human eye level.

Fig. 3. The Segway RMP soccer robot equipped with a kicker,
a catcher, infrared sensors and a camera mounted on a custom
pan-tilt unit (Searock et al. 2004).

In our previous work, we have developed a Segway RMP
robot base capable of playing Segway soccer (Searock et al.
2004) (Figure 3). We briefly describe the two major compo-
nents of the control architecture, namely the sensors and the
robot cognition, which are highly related to our motion track-
ing algorithm.

2.1. Vision Sensor and Infrared Sensors

The goal of vision is to provide as many valid estimates of ob-
jects as possible. Tracking then fuses this information to track
the most interesting objects of relevance to the robot. We use
one pan-tilt camera as the vision sensor (Browning et al. 2004).
We do not discuss the localization of the robot in the sense that
many soccer tasks can be performed by the Segway RMP robot
without localization knowledge.

We have equipped each robot with infrared sensors (IR) to
reliably detect an object located in the catchable area of the
robot. Its measurement is a binary value indicating whether or
not an object is in the area. In most cases, the catchable area
is the blind area of the pan-tilt camera. Therefore, the infrared
sensor is particularly useful when the robot is grabbing the ball
(Searock et al. 2004).

2.2. Robot Cognition
The Skills-Tactics-Plays (STP) control architecture (Browning

et al. 2005a) achieves the goals of responsive team control.
One of the key components of STP is the division between
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Fig. 4. Skill state machines (SSMs) for an example tactic:
CatchKickToTeammate.

single robot behavior (skills and tactics) and team behavior
(plays).

‘We construct the robot cognition using an STP-based archi-
tecture. Plays, tactics and skills form a hierarchy for team con-
trol. Plays control the team behavior through combination of
tactics, while tactics encapsulate individual robot behavior and
instantiate actions through sequences of skills. Skills imple-
ment the focused control policy for actually generating useful
actions. Figure 4 shows the Skill State Machines (SSMs) and
transitions for an example tactic: CatchKickToTeammate.
(Note that the granularity of the skills used is domain-
dependent. The goal is for skills to capture the low-level robot
hardware specific behaviors.) The tactic describes a sequence
of six individual skills to search the ball, aim and grab the ball,
search and aim at the teammate and finally kich the ball to the
teammate. Each node in the figure is a skill. The edges show
the transitions between skills based on perceptual information.

Robot soccer is a team sport, therefore the building of
our team strategy requires not only execution of single ro-
bot behaviors, but also coordination with the team member.
Table 1 shows an example play. The name of the play is
Naive Offense. The play is only applicable in an offen-
sive situation. The termination condition is either play aborted
or the situation changed and our team is not in offensive, e.g.
a turn-over of ball possession. There are two roles in this play,
one passes the ball to the other who positions downfield and
waits to receive a pass. Once the positioning is done (e.g. the
other is closer to the opponent goal), the passing is performed.

The role assignment is done at run time in a distributed way
based on each robot’s own observation. Each robot selects a
role based on its own data without communication. For exam-
ple, should the robot think the team member is closer to the
ball, the robot (ROLE 2) would choose to position and receive
the ball from its team member (ROLE 1). Furthermore, the
robot has deterministic knowledge of which play the team is
using. The robot makes an assumption that its team member

Table 1. An example play.

PLAY Naive Offense
APPLICABLE offense
DONE aborted !offense
ROLE 1
pass 2
none
ROLE 2
position for pass
receive pass

none

is performing the same game play as itself. The robot infers
what tactic the team member is executing from the team play.
For example, after receiving the ball from the team member
as a passer, the robot would assume the team member will go
forward to a tactically advantageous position to receive a pass.

3. Problem Statement and Basic Approach

In a Segway robot soccer game, there are multiple moving ob-
jects on the field e.g. the ball, the human teammate and the
two opponents. Each team is identified by their distinct color.
The ball is orange (Veloso et al. 2005). In our test, we are not
limited to using only human teammates. We also consider mul-
tiple robot team members. The challenges of tracking in such
a dynamic, adversarial and noisy environment include the fol-
lowing.

e Inaccurate sensing: Each robot uses a color pan-tilt
camera as its primary sensor to perceive the world. Each
robot is equipped with infrared sensors (IR) to detect the
objects located in the catchable area of the robot.

e Limited visual scope: The camera has only a limited
FOV. 1t is difficult to consistently keep an object in the
FOV of the camera.

e Complex motion of the sensor: The sensors (camera
and IR) are not located on a static position. Instead,
the sensors are mounted on a mobile robot (the Segway
RMP with its balancing motion is particularly challeng-
ing). The moving trajectory of the robot does not follow
any particular route. Robot dash and stop, changing their
velocity.

o Interaction between robots and objects: Robots ma-
nipulate the ball with their kickers and catchers. The ac-
tuation on the tracked object makes the motion of the
object highly non-continuous.

Downloaded from http://ijr.sagepub.com at CARNEGIE MELLON UNIV LIBRARY on February 15, 2009


http://ijr.sagepub.com

Gu and Veloso / Effective Multi-Model Motion Tracking using Action Models 7

The problem of tracking can be abstracted as follows:
e n moving robots (including 1 human);

e all the robots act on the object;

e robots act using behaviors;

e robots cooperate using team plans;

e robots communicate;

e one moving object (the ball);

e M motion models which are functions of available in-
formation; and

e deciding which motion model to take depends on the
availability of the different sources of information in-
cluding the robot’s own actions, team plays and com-
municated information.

The general parameterized state-space system for describ-
ing the object state at time 7 is given by:

X, = M-, wl, v (D
7, = h"(x, W;n) (2)

where f™ and h™ are the parameterized state transition and
measurement functions for the mth motion model of the object;
X, U, z are the state, input and measurement vectors; v, w are
the process and measurement noise vectors of known statistics;
m is the model index that can take any one of M values and M
is the number of motion models of the object being tracked.
If the model index m is governed by a discrete-state Markov
chain with transitional probabilities

hij = P{m; =ilm;_y = j}, (i, j € ),

where S = {1, 2, ..., M} and the transitional probability ma-
trix H = [h; ;] is an M x M matrix. We can represent such
a system using a jump Markov model (Ristic et al. 2004). In
this article, the decision on which model to use and how to
transition from one model to another (h; ;) are based on the
team action models i.e. it is an extension of the ordinary jump
Markov model.

4. Object Tracking using Tactic-Based Models

In this section, we take the ball-tracking problem as a detailed
example to show how to use a single robot’s own actions (tac-
tics).

4.1. From Tactics to Motion Models

Tactics are the topmost level of our single robot control. Each
tactic encapsulates a single robot behavior. Each tactic is pa-
rameterized allowing for more general tactics to be created to
be applicable to a wider range of world states. As described
above, each tactic instantiates actions through the skill layer
(Browning et al. 2005a).

In our Segway RMP soccer robot environment, we define
three models to model the ball motion according to all the pos-
sible robot tactics and corresponding actions on the ball.

e Free or Free-Ball: The ball is not moving at all or is
moving straight with a constant speed decay d that de-
pends on the environment surface. There are no external
actions on the ball. The state-space model of the Free-
Ball motion can be represented as:

X, = Ftlxt_l +V,1_1 3
7, = Hx, +w, 4)

where X, = (x;, yr, %, )7\ 20 = (24,5 29,)7; X2, Y1 are
the ball’s x, y position at time ¢; and x;, y, are the ball’s
velocity in the x and y direction. zy,, z,, are the ball’s
measurement in the x and y direction at time z. The
superscript 1 indicates the model index. F! and H} are
known matrices, defined as follows:

(1 0 At 0 ]
1 01 0 Ar 1 1 000
F, = , H; = ,
00 d 0 010 0
(00 0 d |

where At is the time interval between vision frames.

e Grabbed or Robot-Grab-Ball: The ball is grabbed by the
robot’s catcher. In this case, no vision is needed to track
the ball, because we assume the ball moves with the ro-
bot. Therefore the ball has the same velocity as the robot
(plus noise) and its global position at time ¢ is the robot’s
global position plus fixed relative position plus noise.
These two noise components form the noise vector v

We use the same measurement model as Equation (4).

e Kicked or Robot-Kick-Ball: The ball is kicked. Its veloc-
ity is equal to a predefined initial speed plus the noise,
and its position is equal to its previous position plus the
noise. These two noise components form the noise vec-
tor v2. We use the same measurement model as Equa-
tion (4).

The model index m determines the present motion model
being used. For our ball tracking example, m = 1, 2, 3, which
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infrared sensor = true infrared sensor = false

Free Kicked Grabbed Free Kicked Grabbed

Free 0.2 | 0.0 0.8 Free 0.8 | 0.0 0.2

Kicked | 10 | 0.0 | 0.0 | Kicked | 10| 00 | 0.0

Grabbed | 03] 0.02] 0.95| Grabbed | 003 09 | 0.07

Fig. 5. Ball motion model for tactic CatchKickto-
Teammate. Each node is a single motion model. The tables
list the transition probability between any two motion models.

represents the motion model Free, Grabbed and Kicked, re-
spectively. In our approach, it is assumed that the model in-
dex m,, conditioned on the previous tactic executed 7;_; and
other useful information Z; (such as ball state Xx;_;, infrared
measurement s, or the combination of two or more variables),
transits from j to i with probability

hl‘,j = P(ml = ilmt—l = j) 7;—131-1) (5)

wherei, j =1,..., M.

With this tactic-based modeling method, we can obtain the
corresponding motion models for the tactics shown in Figure 5.
We use the infrared binary measurement as the branching pa-
rameter. The two tables list the transition probabilities between
any two models conditioned on ‘the infrared sensor can/cannot
sense the ball’, respectively. For example,

e P(Free|Free, IR = False) = 0.8. The infrared sen-
sor reading is false and the previous ball model is Free.
The ball remains in its Free model with a relatively high
probability.

o P(Grabbed|Free, IR = True) = 0.8. The infrared
sensor reading is true and the previous ball model is
Free. Tt is very likely that the ball is just grabbed by the
robot given the infrared sensor reading.

o P(Free|Grabbed, IR = True) = 0.03. The infrared
sensor reading is true and the previous ball model is
Grabbed. The sensor reading indicates that the ball is
grabbed. However, it is possible that the robot loses the
control of the ball due to fault operation with a very
small probability.

<

ision
Measurement

Model

Fig. 6. TBMM: A dynamic Bayesian network for ball-tracking
with a Segway RMP robot using its own tactic. Filled circles
represent deterministic variables which are observable or are
known as the tactic that the robot is executing.

In this way, we can build motion models for any existing
tactics we have designed.

4.2. Tactic-Based Object Tracking

We use a dynamic Bayesian network (DBN) to represent the
Tactic-Based Motion Model (TBMM) in a natural and compact
way as shown in Figure 6.

In this graph, the system state is represented by variables:

tactic 7;

infrared sensor measurement s;

e ball state x;

ball motion model index m; and

e Vision sensor measurement z.

Each variable takes on values in some space. The variables
change over time in discrete intervals, so that X, is the ball state
at time . Furthermore, the edges indicate dependencies be-
tween the variables. For instance, the ball motion model index
m, depends on m;_;, 7;_;, s; and X,_1, hence there are edges
coming from the latter four variables to m;.

We use the sequential Monte Carlo method to track the mo-
tion model m and the ball state x. Particle filtering is a gen-
eral purpose Monte Carlo scheme for tracking in a dynamic
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Table 2. TBPF algorithm.

[, m®, w1 =
Sts —1]

fori < 1to N;
@)

TBPF({x”, m",, w? %, 2,

—1> M 21> 11,

Np(mllmz(l)laxgllash r— 1)

' s

(l))

do draw m;

draw x('

w( «— p(z,]x

1

2

3

4

5 Calculate total weight: w <« Z[{wt’)}
6 fori < 1toN;

7

8

(@)

do Normalize: w,’ « w,(i) Jw

Resample

system. It maintains the belief state at time t as a set of par-
ticles p,(l), pt(z), ey p,(NA where each p ) is a full instantia-
tion of the'tracked variables {p\, 0w}, w" is the weight of
partlcle p, ) and Ny is the number of particles. In our case,
P = &0, m").

The equations below follow from the DBN:

mt(i) ~ p(m,|m§i_)1, ,(l 1,St, —1) (6)
X,(i) ~ p(x, |m(’) f'_)l . @)

Note that in Equation (7), the ball state is conditioned on the
ball motion model m"" sampled from Equation (6). Table 2
shows our Tactic-Based Particle Filtering (TBPF) algorithm
used by the tracker to update the state estimates.

The inputs to the TBPF algorlthm are samples drawn
from the previous posterior (X, )1, ,(')1, w? 1), the present
vision and infrared sensory measurement z,, s, and the tac-
tic 7;—;. The outputs are the updated weighted samples
x¥ mgl), w"). In the sampling algorithm, a new ball motion
model index m,( is first sampled according to Equation (6)
at Line 2. Then given the model index, and the previous ball
state, a new ball state is sampled according to Equation 7 at
Line 3. The importance weight of each sample is calculated by
the likelihood of the vision measurement given the predicted
new ball state at Line 4. Finally, each weight is normalized
and the samples are resampled We then estimate the ball state

based on the mean of all the x; @

—1

5. Incorporating Team Action Models into
Object Motion Models

In this section, we show how to incorporate team action models
with two different types of available information: team plays
and communicated information.

5.1. From Plays to Motion Models

Plays form the highest level in the control hierarchy providing
strategic level control of the entire team. A tactic, as deter-
mined by the executing play, is created with the parameters
defined for the play. That tactic then continues to execute until
the play transitions to the next tactic in the sequence (Brown-
ing et al. 2005a).

In our Segway RMP soccer robot environment, we define
two more models to model the ball motion.

e Human-Grab-Ball: The ball is held by the teammate.
The robot can infer the ball position if the robot knows
the teammate position well.

e Human-Kick-Ball: The ball is kicked by the teammate
and it is supposed to be either a pass to the robot or a
shoot at the goal.

We define four models to model the human teammate’s mo-
tion.

e Random Walk: The teammate is wandering in the field.
The state at the new time is the state at the current
time with some additive zero-mean (assumed Gaussian)
noise.

e Holding Ball: The teammate is holding the ball with-
out moving and waiting for the robot to receive the ball.
Should the robot know the ball position well, it can infer
the teammate position using the ball position in a similar
way as Grabbed.

e Accelerating/Stopping: The teammember dashes and
obtains a velocity or stops in a short time.

e Positioning: The teammate is going to a predefined tac-
tical position with a constant speed. This case happens
mostly after the teammate passing the ball to the robot
and moving down the field toward the opponent’s goal.

Given the knowledge of the team coordination plan (the
play P;—; at time ¢ — 1), the robot can infer what tactic the
teammate is executing (Z,”,), which provides valuable infor-
mation about the motion model of the teammate (m}). Both
the robot and the teammate act on the ball in a Segway soccer
game. The motion model of the ball (m,) is therefore affected
by what tactic the robot (7;_;) and the teammate (7,_,) are ex-
ecuting. The transition probability of the teammate model is as
follows:

hi ; =P(m; =ilm;_, = j, T}, T), (8)

where i, j = 1,..., M’ and M’ is the number of teammate
motion models. Since 7,_; can be determined by P,_;, we get

hi =P, =ilm|_, = j, Pro1, ). ©)
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Position-

Fig. 7. Object motion modeling based on the play: Naive Offense. Each node is a model. Models transit to one another
according to the predefined probabilities (not shown in the figure): (a) ball motion model; (b) human teammate motion model.

E: Tactic

't Model

- 11 Robot 1! BallMotion i Infrared ; ;

' Sensor 1 .

State 1 ' Vision :
i 1 Measurement .

..........................

Fig. 8. PBMM: A dynamic Bayesian network for ball tracking with a Segway RMP robot using team play.

Similarly, the transition probability of the ball model is :
hi,j :P(mt :ilmt—l :j: 7;—19 7:/_19It): (10)

wherei, j =1,..., M. Since 7,_;, 7, | can be determined by
Pi—1, we get
hij =P(m; =ilm,—y = j, Pi_1, L,). (1)

If the current team play is the Naive Offense in Sec-
tion 2.2, we can obtain the corresponding motion model tran-

sitions for both the ball and the teammate using the play-based
method (Figure 7).

Figure 8 shows the updated DBN which includes the team
play knowledge, representing a Play-Based Motion Model
(PBMM). We introduce the Play-Based Particle Filtering al-
gorithm (PBPF) which is similar to TBPF in Table 2, with the
modification of the model index sampling step as follows:

mz(i) ~ p(mt|m§l_)1, X,(l_)p s, Ti-1, 77 - (12)
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Fig. 9. CBMM: A dynamic Bayesian network for ball tracking with a Segway RMP robot using communication.

Note that 7;_; (the tactic of the robot) and 7, , (the tactic of
the human teammate) are inferred deterministically from P;_;
based on predefined play instead of sampling.

5.2. Teammate Actuation Information

We use the same models as in Section 5.1. We have a different
strategy on how to infer which model to use and how to tran-
sit from one model to another. Briefly speaking, when a team
play is used, we assume the robot infers the teammate’s tactic
from the present team play, and assign transitional probabil-
ities based on the assumed teammate’s tactic. In this section,
we obtain teammate’s action from explicitly communicated in-
formation.

Current communication between robots is through peer-to-
peer User Datagram Protocol (UDP) sockets. Each announce-
ment is repeated for several time-steps to avoid possible data
loss in transmission. We define three types of communication
messages in terms of different action models. Each type of
message has a unique message ID.

e HOLD: After grabbing the ball, the robot announces
HOLD indicating the ball is under its kicker.

e SHOOT: The robot announces SHOOT when it kicks the
ball to the opponent’s goal.

e PASS: The robot announces PASS when it decides to pass
the ball to its teammate.

With the communicated information, robots do not need to
infer teammate’s tactic from the team play any more (Gu and
Veloso 2006¢). Instead, every action on the ball is announced
to keep the ball motion updated among team members.

Given the communication information (C;_; = {NONE,
HoLD,SHOOT,PASS}), the robot can infer which motion
model the ball should take. The motion model of the ball (m,)
is therefore affected by what tactic the robot (7;_) is execut-
ing and what action the teammate is performing. The transition
probability of the ball model is :

13)

Note that C,_; = NONE indicates no message is received at
time ¢ — 1, and C;,_; 7 NONE indicates a messaged referring
to a teammate action is receive. The updated DBN to include
communicated information, representing a Communication-
Based Motion Model (CBMM), is shown in Figure 9.

We introduce the Communication-Based Particle Filtering
algorithm (CBPF) which is similar to TBPF in Table 2, with
the modification of the model index sampling step as follows:

m® ~ pmm® x| s, T,_1,Ci_y). (14)

hi,j =pm, =ilmi_y = j,T-1,C1,1L).

Note that the motion model is not dependent on the team-
mate’s plays or tactics, since the communication message con-
tains all the information presented by the teammate’s tactics.
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6. Experimental Results

This section investigates the performance of the tracking filters
described in the above sections. We first describe how we ac-
quire the parameters for the ball motion models and noise
models. We test the proposed tracking filters by simulation and
using a setup Segway robot soccer task.

6.1. Ball Motion and Measurement Noise Profiling

We assume we know the initial speed and accuracy of the
ball velocity after a kick motion. Here, our goal is to esti-
mate the ball speed decay d. We put the ball on the top of a
ramp and let it roll off the ramp with initial speed vy = +/2gh
without taking the friction on the surface of the ramp into
account, where g is gravitational acceleration and % is the
height of the ramp. We record the distance the ball travelled
L from the position the ball rolls off the ramp to the position
it stops. Obviously, the ball speed decay can be approximated
asd = 1 —ovgAr/L where At ~ 0.033s. Following the test
results, we use d = 0.99 for the cement surface. From the test,
we note that the faster the ball’s speed is, the smaller the sys-
tem noise, hence the ball’s trajectory tends to a straight line.
We therefore model the system noise to be inversely propor-
tional to the ball speed when the motion model is Free-Ball.
In order to profile the measurement noise, we put the ball on
a series of known positions, read the measurement from vision
sensor and then determine the error in that measurement. From
the results, we know that the nearer the ball is, the smaller the
observation noise. We therefore choose to approximate the er-
ror distribution as zero-mean and varying-variance Gaussians
dependent on the distance from the robot to the ball.

6.2. Single Robot Results
6.2.1. Simulation Experiments

Because it is difficult to acquire ground-truthing data to verify
the ball’s position and velocity in the real robot test, we per-
form simulation experiments to evaluate the precision of our
proposed tracking.

Experiments are done following the ChaseBall tactic
(Figure 10). Noise is simulated according to the model we
experimentally acquired. When the ball is near the robot and
its speed is slower than 0.2ms™!, it is kicked again with ini-
tial velocity (0.4, 0) ms~!. We then compare the performance
of the tracker with a single model Free-Ball and the tracker
with TBMM in Figure 5(a). After 50 runs, the results show
that in terms of the average RMS error of position estima-
tion, the single model tracker is 0.0055 m while the TBPF is
0.0027 m. In terms of the average RMS error of velocity esti-
mation, the single model tracker is 0.05 m s~! while the TBPF

Kicke
Free d
ball near = true ball near = false
Gralfoed Free Kicked Grabbed Free Kicked Grabbed

Free | 0.1] 0.9 0.0 Free | 0.9 0.1 | 0.0

Kicked| 1.0| 0.0| 0.0| Kicked| 1,0| 0.0 | 0.0

Grabbed| 0.0| 0.0| 0.0 |Grabbed| 0.0 0.0 | 0.0

Fig. 10. Ball motion model for tactic Chase-ball.

is 0.0052ms~!. The TBPF performs much better than the sin-
gle model tracking especially in terms of velocity estimation.
Most particles in the TBPF (when the ball is near the robot
and has a slow speed) evolving via the transition model, deter-
mined by the tactic ChaseBall, change their motion models
m” from Free-Ball to Kicked-Ball and a velocity is added to
the ball accordingly.

In Figure 11, we compare the speed estimation of each
tracker. The dark cross represents the true value of the ball
speed and the gray circle is the estimated value. We note that
the speed estimation in Figure 11(b) tracks the true speed very
well. Each time the speed jumps (the ball is kicked), the esti-
mation follows it perfectly. However, in Figure 11(a) following
the single motion model Free-Ball, the speed estimation keeps
decaying and cannot track the dynamic character of the ball
speed.

6.2.2. Test on the Real Robot

In the real-world test, we do experiments on the Segway RMP
soccer robot executing the tactic Grab-and-Kick. In all
runs, the robot starts with the skill Search. When it finds
the ball, the ball is kicked directly to the robot. The robot
then grabs the ball after the ball is in the catchable area and
is detected by the infrared sensor. Each run ends with the skill
Kick. If the robot can still see the ball 2 s later after the kick,
we count this run as successful. If the robot begins execut-
ing the skill Search a second time, we count that run as
fail. That is to say, we only permit one search at the begin-
ning of each run; after that, the robot should consistently keep
track of the ball. Note that in the Grab-and-Kick tactic,
the robot is commanded to search the ball if the ball is not vis-
ible in + = 0.5s. In the experiments over 15 runs, the tracker
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Fig. 11. Chase-Ball speed estimation: (a) single model tracking and (b) TBPF. In both graphs, the dark crosses represent the
true value of the ball speed and the circles are the speed estimation.

15
< O infrared sensable
< +  vision sensable
<l speed estimation
<

sensable (0/1), speed (m/s)

(a) time (sec)

141
O infrared sensable
+  vision sensable
127 <l speed estimation

sensable (0/1), speed (m/s)

(b) time (sec)

Fig. 12. Grab-and-Kick speed estimation using (a) a single model and (b) TBMM.

with a single model tracks only 6.7% of the total while the
Grab-and-Kick based TBPF successfully tracks 80% of
the total.

Figure 12 shows how the TBMM tracker beats the sin-
gle model tracker. In Figure 12(a) and (b), graphs in the first
row show the speed estimation results; graphs in the second
row show the corresponding IR sensor readings (ON/OFF, or
1/0), indicating whether the ball is detectable by the IR sensor;
graphs in the last row show the binary information of whether
the ball is in the FOV of the camera (Y/N) from the single
model tracker and the TBPF tracker respectively.

Since the ball is moving towards the robot in each run and
is then kicked away by the robot, the IR sensor always out-
puts O before the robot grabs the ball and after the robot kicks
the ball. It outputs 1 when the robot is grabbing the ball and
aiming at the object. The most interesting thing happens at the
time after the robot kicks the ball and the IR sensor outputs
0 again. In Figure 12(a), the ball is visible in a few frames
and is finally lost due to the underestimation of the ball speed.
In Figure 12(b), the ball is visible consistently due to the cor-
rect estimation of the ball speed as soon as the IR sensor out-
puts 0. This change of IR sensor measurement triggers the mo-
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v_ (m/s)

X : X true
—©6— multi model estimate |
—+— single model est
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time (sec)

Fig. 13. Ball velocity estimation.

tion model of most particles transiting from Grabbed-Ball to
Kicked-Ball then to Free-Ball, which models exactly what is
going on in the real world.

6.3. Team Results
6.3.1. Simulation Experiments

Experiments are carried out following the Naive Offense
play, in which the robot acts as the receiver and the human
teammate acts as the passer. Noise is simulated according to
the model we experimentally acquired. At the beginning, the
teammate holds the ball. After a fixed amount of time, the ball
is kicked towards the robot and the teammate moves forward
to a predefined location.

We implement both a single model tracker and a PBMM
tracker for the ball and the teammate. We simulate the experi-
ment for 50 runs, and then compare the performance of the two
trackers with different implementations. The average RMS er-
ror of position estimation and velocity estimation are shown
in Table 3. The results show that the PBMM scheme performs
much better than the single model, especially in terms of veloc-
ity estimation. This is because when the ball is being kicked in
the PBMM, most particles evolving using the transition model
determined by the play change their motion model ml(’) from
Free-Ball to Human-Kick-Ball. A velocity will be added to the
ball accordingly.

Figures 13 and 14 show the ball velocity estimation and
the teammate velocity estimation during a short term for a
given simulation test. In both figures, the left graph shows
the x component of the velocity (v,) estimation through sin-
gle model tracking and play-based multi-model tracking. The

X frue

—©&— multi model estimate
% x —+— single model est

057

v_(m/s)

time (sec)

Table 3. The average RMS error of position estimation and
velocity estimation from human trackers and ball trackers.

Motion Model Single Model PBMM
Human Position Est RMS (m) 0.0030 0.0014
Human Velocity Est RMS (ms™!) 0.42 0.025

Ball Position Est RMS (m) 0.0028 0.0017
Ball Velocity Est RMS (ms™') 0.4218 0.0597

right-hand graph shows the y component of the velocity (v,)
estimation. The dotted line with crosses represents the true
value, the solid line with circles represents the velocity esti-
mation through play-based multi-model tracking and the solid
line with crosses represents the velocity estimation through
single model tracking. We note that the velocity estimation
with PBMM keeps track of the true velocity in terms of v, and
vy, much more consistently than with single model trackers.

6.3.2. Team Cooperation Test

In the real-world test, we conduct experiments on the Segway
RMP soccer robot executing the offensive play and coordinat-
ing with the human teammate on a Segway. The test setup is
demonstrated in Figure 15, in which the digits along the lines
show the sequence of the whole strategy, the filled circle at po-
sition B represents the robot, the unfilled circle at position E
represents an opponent player and the shaded circles represent
the human teammate.

When each run begins, the human teammate is at position
A. With this team cooperation plan (play), the robot chooses
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Fig. 14. Human teammate velocity estimation.

Fig. 15. A demonstration of a naive team cooperation plan
in offensive scenario. The digits along the lines show the se-
quence of the whole plan. The filled circle at position B rep-
resents the robot. The unfilled circle at position E represent
an opponent player. The shaded circle represents the human
teammate.

the tactic CatchKickToTeammate to execute, in which the
robot starts with the skill Search. When the robot finds the
ball, the teammate passes the ball directly to the robot and
chooses a positioning point either at C or D to go to. The robot
grabs the ball after the ball is in the catchable area and is de-
tected by the infrared sensor (skill Grab-Ball). Next the ro-

0.15

0.1}

0.05}

v_(m/s)

X true

‘ —©6— multi model estimate
¢ | —+— single model est

0 1 2 3 4
time (sec)

bot searches for the teammate holding the ball with its catcher
(skill Search-Teammate). After the robot finds the team-
mate, the robot kicks the ball to its teammate and the teammate
shoots at the goal (skill KickToTeammate), completing the
whole offensive play. Each run ends in one of the following
conditions:

e Success if the human receives the ball from the robot
or the human does not receive the ball but the pass is
directed to an area close (less than 0.5 m) to the human.

e Failed if the robot is searching for the ball or the team-
mate for more than 30 seconds. The size of game field in
Segway soccer is much larger than that of any RoboCup
league. It takes a Segway robot approximately 15s to
scan the whole field using its pan-tilt camera. We pick
the threshold value to be 30 s to allow the robot scanning
no more than twice.

o Failed if the ball is outside the field boundary before the
robot catches it.

In the experiment over 15 runs, the robot with the single
model trackers fails 33% of the total, while the robot with
PBMM trackers fails 13% of the total. We also keep track
of the mean time taken in each successful run, listed in Ta-
ble 4. Using PBPF saves 32.3% time in terms of completing
the whole play over single model tracking.

During the experiment, we note that when using the single
model tracking, most time was spent on searching for the team-
mate. Incorporating the team cooperation knowledge known as
play into the teammate motion modeling greatly improves the
accuracy of the teammate motion model and therefore avoids
spending time in searching for a lost object.
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Fig. 16. Ball speed estimation results from the multi-model tracker with and without the communicated information.

Table 4. The average time taken over all the successful
runs.

PBMM
22.6

Motion model Single model

334

Mean time (s)

6.4. Communication Results

We perform experiments on the Segway RMP soccer ro-
bot executing the Catch tactic to receive the ball from
the robot teammate. The teammate robot is executing the
GrabKickToTeammate tactic. When the kick motion is
finished, the teammate announces the PASS message through
peer-to-peer communication. We compare the performance of
multi-model tracker with and without the communicated infor-
mation.

Figure 16 plots the ball speed estimation results from each
tracker. As is shown in the figure, the estimation without com-
munication is about 0.5s longer than the true value, while
the estimation with communication (CBPF) is well predicted
because the announcement is received right after the action
is made. To illustrate the superior tracking of CBPF, Fig-
ures 17 and 18 plot the corresponding model weighting from
each tracker. We can clearly see that the model transition
in Figure 18 exactly describes the real world testing sce-
nario in which the motion model transits from Free-Ball to

Teammate-Kick-Ball, to Free-Ball and finally to Robot-Grab-
Ball.

7. Related Work

There are several areas of previous work related to this re-
search. We discuss them along the three main aspects of our
approach: (i) probabilistic state estimation; (ii) cooperatively
tracking by multiple robots; and (iii) improvement of track-
ing performance through integration of prior knowledge or dy-
namic information.

Tracking moving objects using a Kalman filter is the op-
tional solution if the system follows a linear model and the
noise is assumed Gaussian (Kalman 1960). Multiple model
Kalman filters such as Interacting Multiple Model (IMM) are
known to be superior to the single Kalman filter when the
tracked object is maneuvering (Bar-Shalom et al. 2001). For
nonlinear systems or systems with non-Gaussian noise, fur-
ther approximations such as an extended Kalman filter are in-
troduced, but the posterior densities are therefore only locally
accurate and do not reflect the actual system densities. Since
the particle filter is not restricted to Gaussian densities, a multi-
model particle filter is introduced. However, this approach as-
sumes that the model index m is governed by a Markov process
such that the conditioning parameter can branch at the next
time-step with probability ; ; = P(m, = i|m,_; = j) where
iLhj=1,....,M.
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Fig. 17. Model weightings when communication is disabled.

However, the uncertainties in our object tracking problem
do not have such a property due to the interactions between the
robot and the tracked object. To solve this problem, we have
proposed a tactic-based motion modeling method (Gu 2005).
Based on that approach, we further introduce the play-based
motion modeling method when team coordination knowledge
is available.

There have been many investigations into the problem of
mapping with robot teams (e.g. Dissanayake et al. 2000; Splet-
zer et al. 2001). Robots observe each other and the environ-
ment. They use the shared observation to increase the total
information available to each robot for localization or track-
ing mobile objects. Approaches that use behaviors to delib-
erately reduce the uncertainty in sensor readings enable mul-
tiple robots to cooperatively track multiple objects (Stroupe
and Balch 2003). However, because of the positional uncer-
tainty, global positions of objects reported by teammates can
very easily be erroneous. Therefore, sharing global informa-
tion about the position of tracked objects is very difficult. One
approach is to explicitly maintain separate estimates of self and
teammate information, which has been proven to be an effec-
tive solution to deal with this uncertainty (Roth et al. 2003).
Our approach does not communicate information in terms
of global position. Instead, the action that can substantially
change the motion characteristics of the tracked object is com-

municated, which can greatly avoid the problem of erroneous
information.

There are several approaches incorporating some kind of
prior knowledge related to the general problem of tracking un-
der no action. For example, hard constraints on object position,
speed or acceleration have been considered in tracking prob-
lems to improve tracking performance (e.g. Wang et al. 2002).
This kind of information is simple and easily represented as a
truncated density. The only thing we need to do is to sample
from a truncated density using rejection sampling techniques.

Another example is the situation where a number of ob-
jects are moving in formation and there is a strong dependency
between the individual sensor measurements, which provides
valuable information on object behavior. This problem can ac-
tually be modeled as independent individual object motions
superimposed on a common group effect. A model of this type
was introduced (Salmond and Gordan 1999) in which the mo-
tion of the group and disposition of the measurement sources
relative to the group are modeled as two separate components.

In a terrain-aided tracking problem using the ground mov-
ing target indicator (GMTI), one may have some prior infor-
mation of the terrain, road maps and visibility conditions (Aru-
lampalam et al. 2002). The algorithm is referred to as the vari-
able structure multiple-model particle filter, since it adaptively
selects a subsets of modes that are active at a particular time.
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Fig. 18. Model weightings when communication is enabled.

This approach outperformed the normal tracking method with-
out integrating the prior information due to the better dynamics
models, which capture the motion dynamics with terrain infor-
mation in an intricate but accurate manner.

All of the above approaches deal with the problem of track-
ing under no action. A tracking approach concerned with our
problem of action on tracked objects has been presented Kwok
and Fox (2004). A joint state estimation have been used suc-
cessfully for tracking a dynamic object with a mobile robot,
where the actions of the robot change the process character-
istics of the tracked object. Our approach extends the above
approach by using a dynamic transition table dependent on the
play that the robot is executing and the additional information
that matters. This play-based motion modeling can be flexibly
integrated into our existing skills-tactics-plays architecture.

8. Concluding Remarks and Future Work

Motivated by the interactions between a team and the tracked
object, we contribute a method to achieve efficient tracking
through the robot’s own actions, team plays or communicated
information to decide a motion model and combine vision and
infrared sensory information. The team-driven motion model-
ing method gives the robot a more exact task-specific motion

model when executing different tactics over the tracked object
(e.g. the ball) or collaborating with the tracked object (e.g. the
teammate). We incorporate the skills-tactics-plays architecture
into a DBN-based temporal representation for tracking and use
a particle filter to keep track of the motion model and object
state through sampling. The empirical results from simulated
and real experiments in multiple robot platforms, including
teams of one robot and one human, show the efficiency of the
team-driven multi-model tracking over single model tracking.

Future work includes modeling the multi-target motion
when each object has multiple hypothesis, which is caused by
incorrect measurements originating from the clutter. We would
like to see how the information from the tactics and the plays
can help to eliminate false alarms and achieve efficient resam-
pling under the framework of the particle filter.

If the teammate is a human, not a robot, the certainty that
the teammate is executing the expected play or tactic could be
reduced. That is, the human teammate could fail to execute
the desired play or tactic. Future work will take such uncer-
tainty into account. A better human team member modeling
(including intercepting the moving ball, marking a player and
covering the goal) will also help. It would also be interesting
to know how the performance of the presented method is af-
fected by the presence of tactics of the team member that are
not exactly determined in the team coordination plan.
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Another interesting direction might be learning the parame-
ters of the DBN with known structure and partial observabil-
ity. In the current DBN, all the conditional probability distri-
butions (CPDs) are manually set by experience. The goal of
learning in this case is to find the values of the parameters of
each CPD that maximize the likelihood of the training data.
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