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Abstract—We consider a set of static towers with commu-
nication capabilities, but not within range of each other, i.e.,
sparsely positioned in an environment with obstacles that degrade
the communication signal, e.g., emergency teams in areas where
connectivity has been lost. We address the problem of deploying
mobile robots, initially not necessarily within range of each other
or of the static towers, to be communication gateways among
the towers. The robots do not know the environment, the towers
positions, nor their own initial position in global coordinates. We
first discuss the challenges of the domain. We then contribute
our distributed algorithm, where robots share connectivity in-
formation without merging maps, acquire information throu gh
their navigation, and heuristically plan their exploration. The
robots analyze their own accumulated knowledge, and determine
if a positioning plan exists to achieve the joint connectivity
goal. We introduce different navigation heuristics. We illustrate
our algorithm in simulation and compare the efficiency of the
proposed heuristics. We apply the most promising heuristicin a
variety of realistic indoor scenarios, demonstrating its efficacy.

Index Terms—distributed robot systems, networked robots,
autonomous agents, no map-merging, mobile robots

I. I NTRODUCTION

We are interested in planning for multiple distributed robots
to achieve a common positioning goal, without the need for
map-merging. Concretely, we address the problem of using
a set of mobile robots to ensure connectivity between a
number of static communication towers sparsely deployed in
an unknown environment and not within range of each other.
The robots are themselves communication nodes and can com-
municate with the static towers and with one another, when
within range. We assume that the robots have no knowledge
of the environment, both in terms of the obstacles and the
positioning of the static towers. The obstacles, such as walls,
interfere with the signal propagation, and pose challenges
in terms of modeling the signal propagation. In open space,
models of wireless signal decay allow the signal strength to
provide a good distance estimate [1], while in the presence of
poorly modeled obstacles, signal strength provides multiple
distance hypotheses, preventing the use of the network signal
strength for localization.
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There are several real scenarios that are instances of the gen-
eral problem we address. For example, emergency teams that
need to assist in areas not fully covered with communication
towers or where the connectivity is lost because of a disaster,
can carry and drop small mobile robots to autonomously
navigate and position themselves so that the connectivity is
extended in the crisis area. More generally, this problem is
not specific to the connectivity goal, and could be extended to
other multi-robot positioning needs with other objectives.

Previous work addressed the problem of network-based
localization and navigation in either open space [2], [3] or
given a prior representation of the environment [1], [4], [5].
In the presence of unknown obstacles, robots can start initially
connected and reason about connectivity maintenance [6].
A sensor network can also be deployed after mapping an
unknown environment [7]. We instead address the challenges
of environments with obstacles, when a set of mobile robots
needs to navigate to establish connectivity of existing static
nodes from initially unknown and unconnected positions.
Furthermore, we assume that our robots are limited robotic
platforms, such as the Create robots by iRobot, and have no
global access to a remote central planner.

We consider the deployment of autonomous mobile robots
in the environment with the goal of acting as communication
gateways. The robot navigation is ”driven” by the communica-
tion signals. The robots can identify each other and the towers
from communicated identifiers.

Furthermore, our approach is targetted to be run on many
small, low-cost robots indoors, where global positioning via
GPS or wireless triangulation is unavailable. We do not use
any assumptions about the nature of signal degradation in the
environment. Also, our approach does not require that the
robots are homogeneous, or even know about the capabilities
of the other robots - we find solutions to the problem readily
without planning the full joint-actions of all the robots. Arobot
will never ”instruct” another robot to head to a location that
the latter has never visited, and so this ensures that the latter
robot has the capabilities to reach its target.

The challenges of the multi-robot navigational planning
include the fact that the state is initially completely unknown.
In our algorithm, the robots plan their navigation as they
incrementally gather connectivity information through plan ex-
ecution. Our algorithm is fully distributed. It includes a hyper-
graph data structure for the connectivity state representation,
which is incrementally recorded as the robots navigate. The
robots share information when within range, throughout the
environment. Our algorithm requires no prior knowledge of
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the environment and no common map merging. The algorithm
includes a navigation planner driven by different exploration
heuristics, which we present and analyze. Given the informa-
tion gathered, at each step each robot, individually and in a
fully-distributed manner, checks for the existence of a solution
configuration that achieves the desired connectivity goal.If
such a configuration exists, the robots execute the correspond-
ing navigation plan to position themselves in the previously
visited locations that constitute the solution. Otherwise, they
continue planning the state exploration, driven by heuristics to
improve the efficiency of the solution finding.

The organization of our paper is as follows: in Sec. II, we
describe the problem, our assumptions, and a general overview
of our approach and contributions. In Sec. III, we explain
our algorithm and associated data structures in detail, as well
as theoretical guarantees. We then discuss and analyze the
planning heuristics used by the robots in Sec. IV. Sec. V
illustrates the results of running our algorithm in different
scenarios, and we summarize our contributions and discuss
future work in Sec. VI.

II. CHALLENGES, ASSUMPTIONS, AND APPROACH

In this section, we formally describe the problem and
identify its technical challenges. We present our assumptions
and an overview of the solution we contribute.

A. Problem Statement and Challenges

N autonomous robots are deployed in an unexplored en-
vironment containingM static (non-moving) communication
towers. The goal is to find a configuration of robots such that
all the towers are connected. In Fig. 1a, towers T1 and T2 are
not within direct communication range, and mobile robots R1
and R2 have positioned themselves such that T1 and T2 are
connected in the communication network, by using R1 and R2
to relay network packets.

The environment contains physical obstacles, such as walls,
that impede the robots’ movement as well as degrade signal
propagation. As such, it is difficult for the robots to have anac-
curate model of signal propagation (due to signal degradation,
reflection and interference) that will allow them to obtain an
accurate estimate of the distance to the towers or other robots,
as an accurate planning state. In Fig. 1b, R1 is connected to
towers T1, T2, and T3, with equal signal strengths, due to the
degradation of signal propagation in air and through the walls.

a) b)

R1

T2T1

R2

T1

T2

T3

R1

Fig. 1. a) Connectivity example with 2 towers (T1 and T2) that are not within
communication range, and 2 mobile robots (R1 and R2). b) R1 is connected
to 3 towers, with equal signal strengths. Bold lines indicate obstacles (walls)
that degrade signal propagation, and dashed lines indicateconnectivity.

The robots do not have a map of the world, nor do they
possess any form of global positioning. Thus, there is no global
coordinate system, and coordinates used by each robot are
relative to its starting position and orientation. Hence, robots
cannot share coordinates with other robots as they do not have
a common meaning.

Robots can only communicate when in range. In addition,
other than communicating via network packets, they are inca-
pable of sharing information (e.g., by leaving physical markers
in the world).

B. Assumptions

We list the assumptions of our approach, discuss the impli-
cations, and possible ways to overcome the assumptions:

Assumption 1. The number and identification of the towers
(M ) are known.

The identification of the towers can generally be retrieved
via the network protocol. IfM is unknown, we can use
an iterative deepening approach combined with time-limited
exploration at each iteration, to prevent the algorithm from
running infinitely.

Assumption 2. The environment is bounded.

Assumption 3. There exists at least one configuration for
k ≤ N robots that connects allM towers.

Assumptions 2 and 3 limit, in a very straightforward way,
the amount of exploration that the robots need to entail in order
to find a solution. More concretely, Assumption 2 ensures that
the space that the robots need to explore in order to find the
solution is somehow bounded. In practice, Assumption 2 is not
limiting, as the space is limited by the finite number of towers.
Assumption 3 is also quite reasonable in that it ensures that
there is a solution. This, in turn, implies that the exploration
algorithm does not go on forever and eventually terminates,if
it is complete. Notice also that we do not requireall robots to
be part of the solution, which means that we do not need to
know beforehand how many robots are necessary to attain a
solution, as long as we have some upper bound on this number.

Assumption 4. The exploration algorithm for the robots are
such that, at any timet,

P [τC(t) <∞] = 1,

whereC denotes a general configuration of the robots in the
environment andτC(T ) is the first return time toC after a
given timeT .

This assumption states that each robot can revisit any
configuration, in a finite amount of time, that may be relevant
to find a solution. This assumption is used to guarantee that
the relevant network information is passed between the robots
and eventually propagates to all robots in the team. In practice,
given the relatively large range within which the robots and
towers can communicate, the solution configuration can be
visited effectively. In general, the exploration algorithm can be
designed so that each robot incrementally extends its area of
exploration, cyclically returning to the areas already explored.
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Assumption 5. Communication is instantaneous, costless and
error-free.

In practice, communication is not instantaneous and is
subject to error. Also, robots may come into and out of range
of one another as messages are sent, causing messages to be
lost. This assumption, however, only affects the efficiencyof
our algorithm. Our algorithm is completely asynchronous, and
can use any communication protocol to make communication
more reliable. Thus, we focus on achieving the goal, and
abstract our problem from errors in communication.

C. Overview of Approach and Contributions

The robots explore the environment, and collect information
on connectivity as they do so. When robots meet (get within
communication range), they share their information, which
allows them to readily find a solution configuration. Once a
solution is found, the robots head to their solution positions
and provide connectivity to all the towers in the environment.

We now describe some important features of our approach,
outlining its contributions:

• Instead of sharing coordinates (which is impossible, since
there is no global coordinate system and map-merging is
not performed), the robots create position labels which
they share with each other. A robot can reference another
robot’s position, without knowing where that position is
in the actual environment (Sec. III-A).

• Instead of sharing and merging maps, the robots build a
more effective representation of connectivity - a hyper-
graph (Sec. III-B), and share this information whenever
they meet (Sec. III-C). Merging a hyper-graph involves
just the union of vertices and edges. Furthermore, the
hyper-graph representation allows sharing of information
that can be propagated across the team of robots effi-
ciently.

• In this hyper-graph representation, determining whether
the goal can be achieved with present knowledge equates
to searching the graph for a connected solution, subject
to certain constraints on the edges in the hyper-graph.
Searching for such a solution is an NP-complete problem,
but we contribute a method that reduces the search space
and runs efficiently in practice (Sec. III-D).

• Once a solution is found, each robot simply has to
travel to its solution position. Thus, the difficulty of the
overall planning problem consists of effectively exploring
the space for configurations that can be useful for the
connectivity goal.

• We propose multiple planning heuristics to perform the
exploration (Sec. IV), and present extensive simulation
results in representative scenarios (Sec. V).

III. D ISTRIBUTED NETWORK CONNECTIVITY

Let R = {R1, . . . , RN} be the robots deployed in the
environment, andT = {T1, . . . , TM} be the static towers.

Each robot Ri moves autonomously in the environment and
the purpose of the robot team is to find a configurationC

such that all the towers inT are connected, as illustrated in

Fig. 1.1 Notice that, in any given environment, multiple such
configurations may exist, and we make no requirements as to
which one the robots should adopt. The goal is to findany
such configuration.

A. Position Labels

Robots do not perform map-merging, and do not have a
shared or global coordinate system. Thus, in order to refer to
different positions, they are unable to use a coordinate system
and instead use position labels.

Definition III.1. Let Ri ∈ R be a robot. Aposition label Piα
is a name that refers to a position (indexed byα) of Ri.

(x1, y1)i

(x2, y2)i

Tb
Ta

Ri

Ri

Fig. 2. Spatial representation of robot Ri in two distinct positions,(x1, y1)i

and (x2, y2)i. The coordinate system is with respect to Ri’s initial position
and orientation. The bold lines indicate obstacles (walls)in the environment,
and dotted lines indicate connectivity between Ri and the towers (Ta or Tb).

Ta

Tb

Piβ

Piα

Fig. 3. Graphical representation of the same connections ofrobot Ri in Fig. 2
using position labels Piα and Piβ . Note that the spatial position of the vertices
in the graph have no meaning, while the edges between vertices indicate
connectivity.

We illustrate the use of position labels through an example
(see Figs. 2 and 3). Suppose that a given robot, Ri, at some
time t1, is at coordinates(x1, y1)i, where the subscripti
denotes the fact that the coordinates(x1, y1) are expressed
in terms of Ri’s reference frame. Let Ri be connected to
towers Ta and Tb in this position. At some other timet2,
Ri is at coordinates(x2, y2)i, and is connected only to Ta.
The spatial positions and connections of Ri at t1 and t2 are
shown in Fig. 2.

The lack of a global coordinate system prevents robots other
than Ri to assign any meaning to the coordinates(x1, y1)i and
(x2, y2)i and as such, Ri assigns a label to each of the two
positions, and stores a mapping of the position labels to the
coordinates, e.g.,

Piα = (x1, y1)i; Piβ = (x2, y2)i

1A configurationis a vector of positions in the environment, one for each
robot.
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Each robot can convert position labels of its own positions
into coordinates in its own reference frame, and these position
labels can be shared readily among all the robots. For example,
when Ri meets another robot Rj, it can share that it (Ri) is
connected to Ta and Tb when at position Piα, and is connected
to Ta when at position Piβ . Rj can update its information,
without knowing the exact coordinates of Ri. All Rj needs to
know is that Ri is capable of connecting to Ta and/or Tb at
those positions, and that Ri can travel to the positions (since
Ri has the mapping of its position labels to coordinates) if
need be. In particular, this connectivity information can be
stored in the form of a graph, as shown in Fig. 3. Ri merely
has to share the graph shown in Fig. 3 to allow Rj to store
the new connectivity information.

B. Hyper-Graph Representation for Connectivity Information

Position labels allow each robot to refer to other robots’
positions in the environment, without knowing the exact coor-
dinates that they refer to. We developed a data representation,
that we call a network graph, which allows robots to store,
share and merge connectivity information readily.

Definition III.2. A network graph G is an undirected graph
G = (V, E), where each vertex (or node)v ∈ V is a position
label (e.g., Piα) or a tower (e.g., Ta), and each edgee ∈ E is a
pair {v1, v2}, wherev1, v2 ∈ V . Edges represent connections
between vertices (robots/towers), and the weights of the edges
represent the signal strengths of the connections.

To illustrate the usage and benefits of a network graph,
consider Figs. 4 and 5.

At time t1 (see Fig. 4a), the robots R1, R2 and R3 are
at positions P11, P21, and P31 respectively. R1 is connected
to R2 and T1, while R3 is connected to T2. The network
graphs of the robots are shown in Fig. 5a. Note that the robots
synchronize and merge their graphs when connected, which is
why R1 and R2 have identical graphs.

At time t2 (see Fig. 4b), R1 and R3 move to positions P12

and P32 respectively; R2 stays in position P21. R2 and R3
are now connected, and R3 is connected to T2. At this time,
R2 can share information regarding R1 with R3, even though
R1 and R3 have never met. This allows both R2 and R3 to
discover a solution where R1, R2 and R3 are at positions P11,
P21, and P32 respectively. The network graphs of the robots
are shown in Fig. 5b, and the solution found is outlined in
bold.

The network graph representation offers multiple benefits.
First of all, robots can readily share information. When two
robots Ri and Rj meet, they can update their individual
network graphs and unify their knowledge in all parts of the
graph, independently of their current position. Furthermore,
the updating of graphs is asynchronous in the sense that not
all robots need to have the same network representation at all
times.

In addition, a configuration that ensures connectivity of all
towers can be obtained directly from the graph. Formally, a
solution s that connects all towers in a graphG = (V, E)
exists iff a sub-graphG′ = (V ′, E′) ⊆ G exists such that all

P11

P21

P31

a) time t1

b) time t2

T1 T2R1

R2 R3

P12

P21

P32

T1 T2

R1 R2

R3

Fig. 4. Spatial representation of 3 mobile robots and 2 towers in an en-
vironment. Bold lines indicate obstacles (walls) and dashed lines indicate
connectivity. a) At timet1, R1, R2 and R3 are in positions P11, P21, and
P31 respectively. b) At timet2, R1 and R3 move to positions P12 and P32

respectively while R2 stays at P21.

T1P11

a) time t1 b) time t2

R1

R2

R3

P21
T1

P11P21

P12

T1P11P21

T1P11P21P32

T2

P31

T1P11P21P32

T2

P31

P31 T2

Fig. 5. Networks graphs for the 3 robots shown in Fig. 4. The shaded vertices
indicate positions that the robots can convert into coordinates. Edges between
vertices indicate connectivity between robots (at a certain position) and towers.
a) At time t1 , R1 and R2 are connected and synchronize their graphs. b) At
time t2, R2 and R3 synchronize their graphs and discover a solution (outlined
in bold).

towers Ta ∈ T are connected, and each robot Ri is in at most
one position, i.e.,∀i (Piα, Piβ ∈ V ′ ⇔ α = β).

However, given that the size of the network graph increases
as the robots explore the environment, searching this graphcan
become computationally expensive. In order to cope with this
growth, we consider ahyper-graph representation, in which all
nodes corresponding to each robot are collapsed into a single
hyper-node. A network graph and its corresponding hyper-
graph are depicted in Fig. 6.

Definition III.3. A hyper-node v is an equivalence class
defined over the set of vertices of the original network graph
G = (V, E), that corresponds to a single robot or tower,
e.g., the hyper-node Ri = {Piα : Piα ∈ V, ∀α}.

Definition III.4. A hyper-edge e = {v1,v2} is an equivalence
class defined over the set of edges in the original network
graph G = (V, E), that corresponds to all connections
between the 2 hyper-nodes (i.e.,v1 and v2), e.g., the hyper-
edge{Ri, Rj} = {{Piα, Pjβ} : {Piα, Pjβ} ∈ E, ∀α, β}.
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T1

T2

P11

P12

P32

P31P21 P22

T1 T2R1

R2

R3

a)

b)

Fig. 6. a) A network graph of 3 robots and 2 towers. b) The corresponding
network hyper-graph of the same 3 robots and 2 towers. The position labels
are not shown in the hyper-graph, even though the information is embedded
in the hyper-nodes.

Definition III.5. A network hyper-graph is an undirected
graph H = (V , E) where V is the set of all hyper-nodes,
and E is the set of all hyper-edges.

A network graph can be represented as a network hyper-
graph, and vice versa. In a hyper-graph,2 |V| ≤M + N , where
M and N are the number of towers and robots respectively,
and |E| ≤

(

M+N
2

)

. Any particular hyper-edge{v1,v2} ∈ E
means that, in the original network graph, the robots/towers
corresponding to nodesv1 andv2 share at least one connec-
tion. Each hyper-edge can also be seen as a set ofconstraints
on the robots’ positions. These constraints limit the possible
robot positions in order to have the connection described by
the hyper-edge. Referring back to our example, the constraints
for the edge{R1, R2} in the hyper-graph of Fig. 6 would be
E{R1,R2} = {({P12, P21} , σ), ({P12, P22} , σ′)}, whereσ, σ′

denote the signal strengths of the corresponding connections.
So, if R1 is in position P12, then R2 is constrained to positions
P21 and P22 if the connection{R1, R2} is desired.

Each hyper-edgee ∈ E is associated with the correspond-
ing equivalence class or constraint set that must store all
edges in the original network graph and corresponding signal
strength information. This means, in particular, that the hyper-
graph representation is equivalent to the original network
graph representation in terms of space-efficiency. However,
the hyper-graph representation provides significant advantages
when searching for a solution, which we will soon show.

We conclude by observing that a solution is a connected
subgraph ofH that includes all hyper-nodes corresponding to
towers inT , and each robot Ri can be in a position Piα such
that all constraints are met in the solution subgraph. Further
details are provided in Sec. III-D.

2We henceforth drop the usage of the wordnetwork for brevity.

C. Communication Phase

As the robots explore the world, they individually maintaina
hyper-graph which they use to store connectivity information.
Upon coming within communication range, robots share their
corresponding hyper-graphs and update them to include the
information coming from the other robots. This process can
be decomposed into several steps which we now describe. We
focus on the situation where two robots meet. The extension
to more than two robots follows directly.

Suppose that at some timet1, Ri comes within range of Rj.
Ri communicates its current position label and receives Rj’s
position label. If necessary, Ri adds Rj’s position label to the
network graph, using the signal strength as the edge weight.
Rj performs the same operation with Ri’s position label.

Next, both robots share their hyper-graphs. To do so, they
share all new constraints in the hyper-graph discovered since
they last met (sayt0). Note that Ri does not need to include
any constraints involving Rj, since the Rj’s hyper-graph
should already contain those constraints. Thus, only a subset
of vertices and edges of the Ri’s hyper-graph (associated with
the constraints discovered sincet0 that do not involve Rj) has
to be sent to Rj.

Upon receiving the new set of constraints from Rj, Ri

can update its hyper-graph and its resulting hyper-graph will
match that of Rj (after Rj receives Ri’s message and merges
the information). This communication protocol ensures the
synchronization of the hyper-graphs of the two robots when
they connect. When there are more than 2 robots, this protocol
similarly ensures that all connected robots will synchronize
their hyper-graphs, through serveral rounds of communication.

Theorem III.6. Suppose R1, . . . , Rn are connected, with
hyper-graphsH1, . . . , Hn respectively before the communica-
tion phase. After the communication phase, R1, . . . , Rn will
have the same hyper-graphH , such thatH ⊇

⋃

i∈{1,...,n} Hi).

Proof: Let the current positions of the R1, . . . , Rn be
P1α1

, . . . , Pnαn
.

Let the robots directly connected to robot Ri beRi ⊂ R.
Each robot Ri first adds constraints to its hyper-graphHi

(if the constraints do not already exist) regarding its direct
connections to all robots inRi, i.e.,

{

Piαi
, Pjαj

}

, ∀Rj ∈ Ri.
After this step, Ri’s new hyper-graph isH ′

i ⊇ Hi.
Next, Ri shares its updated hyper-graphH ′

i with all the
other robots (both directly and indirectly connected) in the
following way: Ri sendsH ′

i to its direct neighbors, who merge
H ′

i with their hyper-graphs. The neighbors then share their
updated hyper-graphs with their neighbors, and so on. This
synchronization can take multiple rounds of communication
until no new information is available to all the connected
robots. Thus, Ri receives hyper-graph information from the
other robots, and Ri incorporates the shared information. After
this operation, Ri’s new hyper-graph is:

H ′′
i = H ′

i ∪ (H ′
1 ∪ . . .H ′

i−1 ∪H ′
i+1 ∪ . . . ∪H ′

n)

=
⋃

j∈{1,...,n}

H ′
j
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Therefore, after the communication phase, every connected
robot has the same hyper-graphH , where:

H =
⋃

i∈{1,...,n}

H ′
i

H ⊇
⋃

i∈{1,...,n}

Hi (sinceH ′
i ⊇ Hi, ∀i ∈ {1, . . . , n} )

D. Finding a Solution

The robots’ goal is to find a configuration that connects
all the towers inT , using the robots to pass messages as
necessary. Such a configuration is known as a solution.

Definition III.7. A hyper-edgee = {Ri,v} is applicable to a
position label Piα if:

v = Rj and {Piα, Pjβ} is in the equivalence class ofe

for someβ

or

v = Ta and {Piα, Ta} is in the equivalence class ofe

Definition III.8. A solution s of a network hyper-graphH is
a sub-graphHs = (Vs, Es) ⊆ H such that all the towers in
T are connected, and each robot can be at a single position,
i.e., ∀ Ri ∈ Vs, ∃ Piα such that∀e ∈ Es, Ri ∈ e ⇒ Piα is
applicable toe.

So, in a solution, each robot has a single position to go to
such that when all the robots are in their solution positions, the
towers are connected wirelessly, using the robots as network
relays as necessary.

To reduce the search space fors, or equivalentlyHs, the
restriction thatHs is acyclic is added - ifHs contains cycles,
then hyper-edges fromHs can be removed (eliminating the
cycles) while still ensuring that all the towers are connected.

In order to find such a solutionHs, the search
begins at one of the towers (e.g., Ta), by insert-
ing all hyper-edges connected to Ta into a queue
(i.e., Q = {e ∈ E ′ : e = {Ri, Ta} , Ri ∈ V}), and running
the function find solution recursively (see Alg. 1 for the
pseudocode).

Thefind solutionalgorithm proceeds as follows:P contains
the possible positions that the robots can be in - initially,all
robots can be in all positions. Given a queueQ of hyper-
edges and the first hyper-edgee in the queue, the algorithm
attempts to usee and recurse, as well as not usee and
recurse. This ensures that all combinations of using and not
using hyper-edges are tested. In addition, as the algorithm
recurses,Q, the queue of hyper-edges to consider,Vc, the set
of vertices (robots/towers) already connected,Eused, the set of
hyper-edges used, andEskip, the set of hyper-edges that were
skipped, are updated.

Although it may seem that this search performs a complete
search of the hyper-graph, the search tree is pruned quickly,
due to the constraints in each of the hyper-edges. Thus,P

becomes more and more constrained, limiting the number of

hyper-edges still available for use, and reducing the search
space considerably.

1) Updating Constraints:Given a set of possible positions
P = {P1, . . . , PN}, wherePi refers to possible positions of
Ri, and a hyper-edgee = {v1, v2}, we updateP such that
the constraints of the hyper-edgee are satisfied. In order to
do so, we take the intersection of the constraints ofe and the
relevant elements ofP . Next, we iterate through alle′ ∈ Vs

and further constrainP (since the reduced positions of Ri

may further constrain positions of Rj through a previously-
used hyper-edgee′ = {Ri, Rj}). After all the propagations
have completed, if∃i s.t. |Pi| = 0, thenP becomes invalid.
We have the following result:

Theorem III.9. For a problem withM towers andN robots
verifying Assumptions 1 through 5, all robots will find at least
one solution w.p.1.

Proof: From Assumption 2, there is at least one configu-
ration in which all towers are connected (a solution). The fact
that the environment is bounded in the sense of Assumption 3
and that the exploration algorithm is thorough in the sense
of Assumption 4 guarantees that at least one robot eventually
determines a solution (the probability of this not happening
goes to 0 ast→∞).

From Thm. III.6, robots synchronize their hyper-graphs
when they meet. Using Assumptions 4 and 5, this implies
that the network structure eventually propagates to all robots.
Thus, if a solution to the connectivity problem is found by
some robot Ri, then all the robots will find this solution w.p.1
in the limit, ast→∞.

As a result, the solution propagates to all robots in the limit,
thus establishing the desired result.

Algorithm 1 find solution(Q, P,Vc, Eused, Eskip)

1: if Q is emptythen
2: return false
3: end if
4: e = popQueue(Q)
5: P ′ = updateConstraints(e, P )
6: if P ′ is valid then
7: Q′ = updateQueue(e, Q)
8: V ′

c = addVertex(e, Vc)
9: E ′used ← Eused ∪ {e}

10: if T ⊆ V ′
c then

11: solution← (V ′
c, E

′
used)

12: return true
13: end if
14: if find solution(Q′, P ′,V ′

c, E
′
used, Eskip) = true then

15: return true
16: end if
17: end if
18: E ′skip ← Eskip ∪ {e}
19: if find solution(Q, P,Vc, Eused, E ′skip) = true then
20: return true
21: end if
22: return false
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E. Converging to a Solution

In Sec. III-D, we have established that, with enough explo-
ration, all robots eventually determine a solution. However, in
environments where multiple solutions exist, it is possible that
at any time step not all robots determine the same solution.
Therefore, it is necessary to ensure that, in the presence of
multiple solutions, all robots adopt and move to the same
solution.

The process of ensuring consensus in a common solution
arises from a common and deterministic solution selection
mechanism. As seen before, the algorithm to find a solution
(Alg. 1) is deterministic. Furthermore, since robots synchro-
nize their hyper-graphs when they meet, connected robots will
find the same solution.

Once a robot Ri has found a solution, it attempts to find its
neighbors in the solution and synchronize its hyper-graph with
them. After all its neighbors have synchronized their hyper-
graphs, Ri heads to its solution position. Finally, after arriving
at the solution position, Ri will stop moving. If at any time,
a better solution is found (e.g., by receiving new information
from other robots), Ri will restart its convergence process and
attempt to find its neighbors again.

If a robot Ri finishes sharing its solution with its neighbors
and moves to its final position while other robots are still
negotiating, either the other robots settle in their positions
corresponding to the solution adopted by robot Ri or some
robot (that adopted a different solution) will not stop until
it connects to robot Ri. At this point, they synchronize their
hyper-graphs and adopt the same solution. If the solution found
is different, Ri restarts its sharing process. This means that,
since the number of robots is finite, they all eventually settle
in one solution and move to the corresponding position. This
conclusion is stated in the following result:

Theorem III.10. For a problem withM towers andN robots
verifying Assumptions 1 through 5, all robots converge to the
same solution w.p.1.

F. Algorithm for Distributed Network Connectivity

The robots do not perform map-merging, and run a fully-
distributed algorithm which allows them to find and converge
to a solution. A flow-chart of the algorithm is shown in
Fig. 7. The fully-distributed algorithm shown in Alg. 2, which
includes a state heuristic function. The robot can be in one of
four states, namelyExplore, ShareSolution, GotoSolution,
and Stop. Each robot Ri starts in theExplore state, with an
empty hyper-graph. Fig. 8 shows the state transition diagram
for the robots.

Update Hyper-Graph Communication Phase Check for solution

Plan next actionExecute action

Fig. 7. Flowchart of the fully-distributed algorithm

At each time step, the robot Ri generates a list of towers
Ti ⊆ T , and a list of robotsRi ⊆ R that are in range.

Algorithm 2 Distributed Network Connectivity Algorithm

1: H ← {} // H is the Hyper-Graph
2: state← Explore
3: loop
4: (Ti,Ri) = getConnections()
5: // Create position label
6: Piα = getPositionLabel(current coordinates)
7: // Update Hyper-GraphH with connections to towers
8: for all Ta ∈ Ti do
9: addConstraint({Ta, Piα}, H)

10: end for
11: // Update Hyper-GraphH with connections to robots
12: // Synchronize Hyper-Graphs
13: performCommunicationPhase(Ri, H)
14: // Check for solution and update state
15: if graph was updatedthen
16: s = checkForSolution(H)
17: if s is valid ands 6= current solution then
18: current solution← s

19: sol posn = getSolutionPosition(s)
20: neighbors = getNeighborsToInform(s)
21: state← ShareSolution
22: end if
23: end if
24: if state = ShareSolution & informed(neighbors)

then
25: state← Goto Solution
26: else ifstate = Goto Solution & Piα = sol posn then
27: state← Stop
28: end if
29: // Plan the next action
30: action = getNextAction(state)
31: // Execute the action
32: executeAction(action)
33: end loop

For each tower Ta ∈ Ti, robot Ri adds a constraint into
its hyper-graph as Ri’s current position label (i.e., Piα), the
tower’s ID (i.e., Ta), and the signal strength of the connection.

Ri then enters a communication phase, where it adds
constraints into its hyper-graph as Ri’s current position label,
the position labels of the robots Ri is directly connected to
(Ri), and the signal strengths of the connections. Ri then
shares and synchronizes its hyper-graph with all the robots
it is directly connected to (Ri). After this phase, all robots
that are connected will have the same hyper-graph.

Following the communication phase, Ri now searches the
hyper-graph for a solution if the hyper-graph was updated.

Lastly, Ri switches its internal states if necessary, based on
whether a solution has been found.

IV. PLANNING AN ACTION

As mentioned above, the robot can be in one of 4 states:
Explore, ShareSolution, GotoSolution, andStop(see Fig. 8).

In the Explore state, the goal of the planner is to tra-
verse the world such that the robots will eventually find a
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Explore
Share

Solution

Goto

Solution

Stop

found solution

shared

solution

with

neighbors

different

solution

found

arrived at solution position

different

solution

found

Fig. 8. State transition diagram for each robot. The robots start in theExplore
state. When all robots are in theStoppedstate, the solution configuration has
been achieved and all towers are connected.

solution configurations that connects all the towers. In the
Share Solutionstate, a solutions has been found, and the goal
is to communicate this solutions to neighbor robots ins. In
the Goto Solutionstate, the planner has to find the shortest
path from the current location to the robot’s position in the
solution s. Lastly, in theStopstate, the planner has no work
to do and merely stops the robot in place.

A. Exploring the Environment

In order to find a solutions, each robot Ri has to traverse
the world in such a way that the solution algorithm can find
a solution as quickly as possible. We explored a number of
different heuristics for this purpose:

1) Random Movement:The simplest heuristic was random
movement, where a robot would choose an action randomly
from the list of possible actions. There was no weighting of
the actions, so ifn actions were available, they would each
have a1

n
probability of being selected. This heuristic provides

a baseline for comparison, since it is arguably the most naive
form of exploration.

2) Coverage of the Space:The next heuristic we considered
was a coverage algorithm. We adapted the node-counting
algorithm described in [8]. Each robot kept a counterCc of
how many times it visited a cellc. Then, when choosing
an action, it picks the adjacent cellc′ such thatCc′ is the
minimum among all adjacent cells. In the case where more
than one cell has the minimum value, it picks randomly among
the minimum cells. All cells are initialized to have a counter
of 0, so unexplored cells always have priority over explored
cells.

3) Weighted Exploration:This heuristic was similar to
the above coverage algorithm, except that the robot uses a
weighted dice to decide among its adjacent cells, instead
of choosing the least-visited cell (i.e., with the minimum
value). We defined a ratioγ, that represents the exploration vs
exploitation probabilities. Givenk1 unexplored adjacent cells,
and k2 explored adjacent cells, it chooses to explore with

k1γ
k1γ+k2(1−γ) probability, and exploit otherwise. If it chooses
to explore, it picks one of the unexplored cells randomly.
Otherwise, if it chooses to exploit, it picks an explored cell,
weighted on how many times it has previously visited that cell.

For each explored cellck and corresponding counterCck
, we

definepk = 1−
Cck

−minj Ccj

maxj Ccj
−minj Ccj

+α, whereα is a weighting
term such that the cell with the maximum counter will not have
a 0 probability of being chosen. Given thepk of the adjacent
cells, the robot picks a cellck with a probability of pk

∑

j
pj

.

For example, suppose the adjacent cells are
(c1, 0), (c2, 0), (c3, 3), (c4, 5), (c5, 2), where each tuple
represents an adjacent cell and its corresponding counter
(where 0 means unexplored). The robot will choose to explore
with a 2γ

2γ+3(1−γ) probability. If it decides to explore, it will
pick either c1 or c2 with equal probability. If it decides to
exploit, it will pick c3 with a probability of

1

2
+α

( 1

2
+α)+(α)+(1+α)

,
c4 with a probability of α

( 1

2
+α)+(α)+(1+α)

and c5 with
1+α

( 1

2
+α)+(α)+(1+α)

.
4) Stay at Towers:In this heuristic, the robots had one of 2

roles: stay at an assigned tower, or avoid towers. A robot Ri is
assigned the role of staying at tower Ta if in its hyper-graph,
it has the most connections to Ta. Otherwise, the robot Ri
assumes the avoid towers role.

In thestay at towerrole, if the robot Ri is not currently con-
nected to its assigned tower Ta, then it plans the shortest path
(using breadth-first search) to the nearest cell that connects it
to Ta (based on the map it built while exploring the world). If
the robot is already connected to Ta, then it decides to explore
or exploit using a weighted dice, similar to the weighted
exploration heuristic above. However, in this case, it ignores
all adjacent explored cells that do not have a connection to
Ta. Thus, the weightage only occurs for unexplored cells, and
explored cells that are known to have a connection to Ta. In
this way, Ri stays close to Ta and may lose connection only
if it goes to an unexplored cell that is out of Ta’s range.

In the avoid towersrole, instead of choosing between ex-
plore and exploit, the robot chooses between explore, exploit,
and visiting a tower, with probabilitiesα, β, and1 − α − β

respectively. The robot chooses between these 3 options based
on the number of adjacent cells that match the requirement:
i.e. if there arek1 unexplored cells,k2 explored cells that
do not have a connection to a tower, andk3 explored cells
that have a connection to a tower, then the robot chooses
to explore with k1α

k1α+k2β+k3(1−α−β) probability, exploit with
k2β

k1α+k2β+k3(1−α−β) , and visits a tower cell otherwise. If it
chooses to exploit or visit a tower, then the relevant cells are
selected probabilistically based on their counter values,similar
to the weighted exploration heuristic.

By using the heuristic, the robots that do not have an
assigned tower tend to visit areas that have no connections to
any tower, and explore new regions. This allows new towers
to be discovered quickly, as well as connections to be found
between towers. We experiment on this heuristic in detail in
Sec. V.

V. EXPERIMENTAL RESULTS

A. Setup

We created a simulator in Java that models a discrete 2D
world, which allows horizontal and vertical walls (in between
the discrete cells) to be placed anywhere in the world. The
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Fig. 9. Representative worlds that were experimented on: a)Office World
b) Corridor World, c) Lobby World. Black lines indicate walls/obstacles, filled
circles represent towers, and hollow circles (only in OfficeWorld) show the
fixed initial configuration of robots. Corridor and Lobby Worlds had random
initial configurations of robots.

simulator calculates signal strength between any two cellsin
the world, based on an exponential decay rate, as well as
degradation from the walls. We did not simulate inteference
between robots, or reflection of signals from the walls; the
underlying algorithm would not be significantly affected even
if the signal strength calculations were different. In this2D
world, each robot had 4 possible actions, namely to move
north, south, east, or west. In the event that an action would
cause the robot to hit a wall, the action would fail and the
robot would stay where it originally was; otherwise the robot
would move in the direction specified.

We implemented our algorithm as described in Sec. III,
as well as the different heuristics described in Sec. IV-A. In
addition, we created 3 different scenarios: an Office World,a
Corridor World, and a Lobby World (see Fig. 9).

1) Office World: The Office World was20 × 24 cells in
size, and contained 2 small offices on the top, and a larger
office at the bottom left (see Fig. 9a). An L-shaped corridor
ran in between the top offices and the bottom. A tower was
placed inside each office, at a distance such that they could
not communicate directly.

Due to the small size of the Office World, we fixed the
number of robots to 5 and selected initial starting positions of
the robots. This world was designed as a proof-of-concept of
the algorithm, as well as to compare the performance of the
different heuristics given a fixed initial state.

2) Corridor World: The Corridor World was40× 24 cells
in size, and contained 8 offices. 4 offices were arranged
horizontally on the top of the world, and the other 4 were
arranged horizontally at the bottom (see Fig. 9b). A long
corridor ran in between the top row of offices and the bottom,
and 4 towers were placed in a zigzag fashion in the offices.

Fig. 10. Percentage of trials that found a solution int seconds or less in the
Office World with 5 robots.

The Corridor World provided a realistic depiction of many
corridors in university hallways which are flanked by offices
on both sides.

3) Lobby World: The Lobby World was50 × 50 cells in
size, and contained a large lobby in the middle (30 × 30).
Around the lobby were 12 small offices - 3 on each side, as
well as 4 slightly larger offices located at each corner of the
lobby (see Fig. 9c). We placed 4 towers in this world, 1 in
each of the corner offices.

The Lobby World provided a depiction of a large lobby
area, that is connected to many small rooms. This world was
designed not only to simulate real-world situations, but also
to provide a worst-case scenario for our algorithm. By having
a large open area, the robots would be able to move around
freely and create a dense hyper-graph, where each robot vertex
would have every other robot vertex as a neighbor. This could
cause the search for solution to take extremely long, and so
we wanted to test the effectiveness of our algorithm in such a
scenario.

B. Comparing the Heuristics

We ran the different heuristics in the Office World scenario
(which had 5 robots in a fixed initial configuration), with 100
trials per heuristic. In each trial, we measured how much time
the algorithm took in order to find a solution configuration. We
then compared the percentage of trials that found a solution
in t seconds on less; Fig. 10 shows the comparison of the
different heuristics in the Office World. All the heuristics
performed well in this scenario, with thestay at towers
heuristic performing slightly better than the others. It found
100% of the solutions within 12s of execution, compared to
23s of theweighted explorationheuristic. Thecoverageand
randomheuristics found 99% of the solutions within 36s and
69s respectively.

We believed that all the heuristics performed relatively
well in the Office World scenario due to the fact that many
solution configurations existed, and that the robots began in
a configuration that was close to many solutions. Therefore,
we performed similar experiments on the Corridor and Lobby
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Fig. 11. Percentage of trials that found a solution int seconds or less in the
Corridor World with 5 robots.

Fig. 12. Percentage of trials that found a solution int seconds or less in the
Lobby World with 5 robots.

Worlds, with 5 robots in each case, and a random initial
configuration for the robots in each trial.

As shown in Figs. 11 and 12, thestay at towersheuristic
outperformed all other heuristics by a large margin. It is
interesting to note that thecoverageandweighted exploration
heuristics performed more poorly than therandomheuristic.
This is because in a large world, a large emphasis on explo-
ration reduces the chance that robots will meet in a ”useful”
configuration (where useful refers to a partial configuration
that can later be used as part of a solution), since they rarely
return to previously visited cells. As such, it is difficult for
the robot team to find a solution configuration, even after they
have individually explored the entire environment.

After these experiments, we concluded that thestay at tower
heuristic was the most promising, as it performed well in all
the scenarios. We then tested this heuristic extensively inthe
Corridor and Lobby Worlds, as described below.

C. Further Experiments for Corridor and Lobby

We used thestay at towersheuristic exclusively for all the
experiments described below, as it was the most promising
heuristic (see Sec. V-B). In each experiment, we fixed the
number of robots and ran 1000 trials. The initial configuration

Fig. 13. Percentage of trials that found a solution int seconds or less in
Corridor World with varying number of robots runningstay at towersheuristic.

Fig. 14. Percentage of trials that found a solution int seconds or less in Lobby
World with varying number of robots runningstay at towersheuristic.

of the robots was randomly selected in each trial, and we
measured how long the algorithm took to find a solution. We
then compared the percentage of trials that found a solution
in a limited amount of timet or less.

In Fig. 13, we show the results in the Corridor World,
with the number of robots varying from 5 to 50. Similarly,
in Fig. 14, we show the results in the Lobby World, also
with the number of robots varying from 5 to 50. In Fig. 15,
we show some random initial configurations of 5 robots and
the corresponding solutions found in the Corridor World; in
Fig. 16, we do the same for the Lobby World.

In both the Corridor World (Fig. 13) and Lobby World
(Fig. 14), increasing the number of robots from 5 to 15 robots
actually decreases the percentage of trials that find solutions.
This decrease in performance is because the graph grows
polynomially with the increase in the number of robots, but
searching for a solution in the graph can take exponentially
longer.

However, it can be seen in both figures that increasing the
number of robots beyond 15 tends to increase the percentage
of solutions found, because the number of goal states increases
with the number of robots. Thus, when there are many robots
in the world, the initial configuration of the robots has a large
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Fig. 15. The top row shows random initial configurations of 5 robots (hollow
circles) and 4 towers (filled circles) in Corridor World; thebottom row shows
the corresponding solutions found. The black lines represent walls/obstacles,
and the blue lines indicate connections between robots and towers.

Fig. 16. The top row shows random initial configurations of 5 robots (hollow
circles) and 4 towers (filled circles) in Lobby World; the bottom row shows
the corresponding solutions found. The black lines represent walls/obstacles,
and the blue lines indicate connections between robots and towers. Notice
that the solution shown in the bottom-right image only uses 4robots.

probability of being a goal state (or close to one), so it takes
very little time to find a solution configuration.

VI. CONCLUSION

We addressed the challenging problem of coordinating mul-
tiple robots to position themselves in an unknown environment
to enable connectivity of a static set of communication nodes.
One of the main technical contributions of the algorithm is
its fully distributed nature. Robots explore the environment
simultaneously and separately, each maintaining a record of
the connectivity information associated with its own visited
positions in its own frame of reference. When within range,

robots share the connectivity information corresponding to
their positions with no need for map merging. The robots can
separately determine that there is a solution at some visited
configuration. Another technical contribution is the hyper-
graph data structure that is used by the algorithm to share
information and represent solutions. The hyper-graph abstracts
the physical details of the world, while keeping enough infor-
mation such that a solution can be found efficiently without
map-merging.

The fact that our algorithm is fully distributed and requires
no map-merging is, in our view, very interesting. It allows
the robots to use different granularity and even different
representations of the environment, i.e., one robot may use
a grid-based representation, while another may use some
topological map. Any additional information shared among the
robots, if common references are available, can easily be acco-
modated by the algorithm and could be used in the distributed
exploration. It is worth mentioning that the process by which
the network structure is tracked and maintained allows the
robots to completely separate the problem of navigation from
the problem of tracking the network. Therefore the existence
of unknown obstacles in the environment has no impact on
the performance guarantees of the algorithm.

The empirical results with our algorithm also point out
several interesting directions for future work. We are currently
exploring other heuristics, as well as methods to determinethe
number of robots to deploy in a scenario.
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