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Abstract—We consider a set of static towers with commu-  There are several real scenarios that are instances oftthe ge
nication capabilities, but not within range of each other, ie., eral problem we address. For example, emergency teams that
sparsely positioned in an environment with obstacles thategrade o4 to assist in areas not fully covered with communication

the communication signal, e.g., emergency teams in areas aie t h th tivity is lost b f a digast
connectivity has been lost. We address the problem of deplimng owers or where the connectivity IS lost because or a disaste

mobile robots, initially not necessarily within range of eah other €an carry and drop small mobile robots to autonomously
or of the static towers, to be communication gateways among navigate and position themselves so that the connectigity i
the towers. The robots do not know the environment, the towes  extended in the crisis area. More generally, this problem is
positions, nor their own initial position in global coordinates. We not specific to the connectivity goal, and could be extended t
first discuss the challenges of the domain. We then contribet . e T L

our distributed algorithm, where robots share connectivity in- other multl-robot positioning needs with other objectives
formation without merging maps, acquire information throu gh Previous work addressed the problem of network-based
their navigation, and heuristically plan their exploration. The localization and navigation in either open space [2], [3] or
robots analyze their own accumulated knowledge, and determe  given a prior representation of the environment [1], [4]. [5

if a positioning plan exists to achieve the joint connectity |, the presence of unknown obstacles, robots can stallyiti

goal. We introduce different navigation heuristics. We ilustrate ted d bout tivit int 6
our algorithm in simulation and compare the efficiency of the connected and reason about connectivity maintenance [6].

proposed heuristics. We apply the most promising heuristitn a A Sensor network can also be deployed after mapping an
variety of realistic indoor scenarios, demonstrating its ficacy.  unknown environment [7]. We instead address the challenges

Index Terms—distributed robot systems, networked robots, of environments with obstacles, when a set of mobile robots
autonomous agents, no map-merging, mobile robots needs to navigate to establish Connectivity of existingicsta
nodes from initially unknown and unconnected positions.
| INTRODUCTION Furthermore, we assume that our robots are limited robotic

) ) ) ) o platforms, such as the Create robots by iRobot, and have no

We are interested in plaqqlng for muItlplg distributed moglobal access to a remote central planner.
to achieve a common positioning goal, without the need fOr\ye consider the deployment of autonomous mobile robots
map-merging. Concretely, we address the problem of uSipgihe environment with the goal of acting as communication
a set of mobile robots to ensure connectivity between dateways. The robot navigation is "driven” by the communica

number of static communication towers sparsely deployed g, signals. The robots can identify each other and the tewe
an unknown environment and not within range of each othefor, communicated identifiers.

The robots are themselves communication nodes and can CONErthermore. our approach is targetted to be run on many

municate with the static towers and with one another, Wh%?nall, low-cost robots indoors, where global positionirig v
within range. We assume that the robots have no knowledggg or wireless triangulation is unavailable. We do not use
of the environment, both in terms of the obstacles and th@, 5ssumptions about the nature of signal degradatiorein th
positioning of the static towers. The obstacles, such aswalironment. Also, our approach does not require that the
interfere with the signal propagation, and pose challenggs,ois are homogeneous, or even know about the capabilities
in terms of modeling the signal propagation. In open spac the other robots - we find solutions to the problem readily
models of wireless signal decay allow the signal strength §Qihout planning the full joint-actions of all the robots.rébot
provide a good distance estimate [1], while in the presefice\gi never "instruct” another robot to head to a location ttha

poorly modeled obstacles, signal strength provides meltinpe |atter has never visited, and so this ensures that tres lat
distance hypotheses, preventing the use of the networlalsigiyp ot has the capabilities to reach its target.

strength for localization. The challenges of the multi-robot navigational planning
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the environment and no common map merging. The algorithmThe robots do not have a map of the world, nor do they
includes a navigation planner driven by different explimmat possess any form of global positioning. Thus, there is nbajlo
heuristics, which we present and analyze. Given the infermapordinate system, and coordinates used by each robot are
tion gathered, at each step each robot, individually and inrelative to its starting position and orientation. Henaats
fully-distributed manner, checks for the existence of aisoh cannot share coordinates with other robots as they do net hav
configuration that achieves the desired connectivity gtfal. a common meaning.
such a configuration exists, the robots execute the comelspo Robots can only communicate when in range. In addition,
ing navigation plan to position themselves in the previpusbther than communicating via network packets, they are-inca
visited locations that constitute the solution. Otherwibey pable of sharing information (e.g., by leaving physical keas
continue planning the state exploration, driven by heigésb in the world).
improve the efficiency of the solution finding.

The organization of our paper is as follows: in Sec. Il, wg Assumptions

describe the problem, our assumptions, and a general evervi , . . N
. . We list the assumptions of our approach, discuss the impli-
of our approach and contributions. In Sec. Ill, we explain

. X . . cations, and possible ways to overcome the assumptions:
our algorithm and associated data structures in detail,edls w P y P

as theoretical guarantees. We then discuss and analyze Aksumption 1. The number and identification of the towers
planning heuristics used by the robots in Sec. IV. Sec. (/) are known.
illustrates the results of running our algorithm in diffete

. . o . The identification of the towers can generally be retrieved
scenarios, and we summarize our contributions and dlsckﬁg the network protocol. IfM is unknown, we can use
future work in Sec. VI. | '

an iterative deepening approach combined with time-lichite
exploration at each iteration, to prevent the algorithmmrfro
1. CHALLENGES, ASSUMPTIONS AND APPROACH running infinitely.
In this section, we formally describe the problem an

identify its technical challenges. We present our assumpti gssumptlon 2. The environment is bounded.

and an overview of the solution we contribute. Assumption 3. There exists at least one configuration for
k < N robots that connects alM/ towers.
A. Problem Statement and Challenges Assumptions 2 and 3 limit, in a very straightforward way,

N autonomous robots are deployed in an unexplored ethe amount of exploration that the robots need to entail deor
vironment containingl/ static (non-moving) communicationto find a solution. More concretely, Assumption 2 ensures tha
towers. The goal is to find a configuration of robots such thtite space that the robots need to explore in order to find the
all the towers are connected. In Fig. 1a, towetsahd T2 are solution is somehow bounded. In practice, Assumption 2 is no
not within direct communication range, and mobile robots Rimiting, as the space is limited by the finite number of tosver
and R have positioned themselves such thatdand T2 are Assumption 3 is also quite reasonable in that it ensures that
connected in the communication network, by usirigsdRd R there is a solution. This, in turn, implies that the explmnat
to relay network packets. algorithm does not go on forever and eventually terminates,

The environment contains physical obstacles, such as,wailds complete. Notice also that we do not requalerobots to
that impede the robots’ movement as well as degrade sighel part of the solution, which means that we do not need to
propagation. As such, it is difficult for the robots to haveaan know beforehand how many robots are necessary to attain a
curate model of signal propagation (due to signal degradati solution, as long as we have some upper bound on this number.
reflection and interference) that will allow them to obtam a
accurate estimate of the distance to the towers or othetspb
as an accurate planning state. In Fig. 1h, iR connected to
towers T1, T2, and T3, with equal signal strengths, due to the Plro(t) < o] =1,
degradation of signal propagation in air and through thdswal

Assumption 4. The exploration algorithm for the robots are
Quch that, at any time,

whereC denotes a general configuration of the robots in the
environment and«(T) is the first return time taC' after a
@ given timeT'.

77777 E— This assumption states that each robot can revisit any
: ’ configuration, in a finite amount of time, that may be relevant

@/ I @ @ ””””””””” \/ to find a solution. This aSSumption is used to guarantee that

. the relevant network information is passed between thetsobo
N and eventually propagates to all robots in the team. In jpect
@ given the relatively large range within which the robots and
. c . o with . " towers can communicate, the solution configuration can be
o e 2 el )L e feL i, visited effectively. In general, the exploration algoniluan be
to 3 towers, with equal signal strengths. Bold lines indicabstacles (walls) designed so that each robot incrementally extends its drea o
that degrade signal propagation, and dashed lines indécateectivity. exploration, cyclically returning to the areas alreadylergd.



Assumption 5. Communication is instantaneous, costless arféig. 11 Notice that, in any given environment, multiple such

error-free.

In practice, communication is not instantaneous and
subject to error. Also, robots may come into and out of range

configurations may exist, and we make no requirements as to

\{\éhich one the robots should adopt. The goal is to famy
such configuration.

of one another as messages are sent, causing messages }_L\) %sition Labels
lost. This assumption, however, only affects the efficieaty -

our algorithm. Our algorithm is completely asynchronouns] a

Robots do not perform map-merging, and do not have a

can use any communication protocol to make communicati§fjared or global coordinate system. Thus, in order to refer t
more reliable. Thus, we focus on achieving the goal, arftifferent positions, they are unable to use a coordinatesys

abstract our problem from errors in communication.

C. Overview of Approach and Contributions

The robots explore the environment, and collect informmatio
on connectivity as they do so. When robots meet (get within
communication range), they share their information, which
allows them to readily find a solution configuration. Once a
solution is found, the robots head to their solution posiio \
and provide connectivity to all the towers in the environmen

We now describe some important features of our approach,
outlining its contributions:

and instead use position labels.

Definition lll.1. Let R € R be a robot. Aposition label Pi,,
is a name that refers to a position (indexed dyof Ri.

(w1, 91)i

/ (w2, Y2)i
Instead of sharing coordinates (which is impossible, since

there is no global coordinate system and map'merg'”,gﬂ%. 2. Spatial representation of robot R two distinct positions(z1, y1):
not performed), the robots create position labels Whicd (x5, y.);. The coordinate system is with respect tésRnitial position
they share with each other. A robot can reference anotlaed orientation. The bold lines indicate obstacles (watishe environment,
robot's position, without knowing where that position is’;md dotted lines indicate connectivity betweehaRd the towers (@ or Tb).
in the actual environment (Sec. IlI-A).
Instead of sharing and merging maps, the robots build a
more effective representation of connectivity - a hyper- e @
graph (Sec. llI-B), and share this information whenever
they meet (Sec. 1lI-C). Merging a hyper-graph involves
just the union of vertices and edges. Furthermore, the
hyper-graph representation allows sharing of information
that can be propagated across the team of robots effi-
ciently.
In this hyper-graph representation, determining whether , _ _ o

3. Graphical representation of the same connectiomshuft R in Fig. 2

the goal C_an be achieved with present knOW|que equ'_agé)rﬁg position labels® and Fg. Note that the spatial position of the vertices
to searching the graph for a connected solution, subj&gtihe graph have no meaning, while the edges between \eriiwticate

to certain constraints on the edges in the hyper-grapnnectivity.

Searching for such a solution is an NP-complete problem,

but we contribute a method that reduces the search spact/e illustrate the use of position labels through an example
and runs efficiently in practice (Sec. I1I-D). (see Figs. 2 and 3). Suppose that a given robot,aRsome

Once a solution is found, each robot simply has fime t1, is at coordinates(z:, y);, where the subscript
travel to its solution position. Thus, the difficulty of thedenotes the fact that the coordinates,y:) are expressed
overall planning problem consists of effectively explgrin N t€rms of R's reference frame. Let Rbe connected to
the space for configurations that can be useful for tfjgWers Ta and T in this position. At some other time,
connectivity goal. Ri is at coordinategzs,y2);, and is connected only toal

We propose multiple planning heuristics to perform th&h€ spatial positions and connections of & ¢, andt, are

exploration (Sec. IV), and present extensive simulatiof!oWn in Fig. 2. _
results in representative scenarios (Sec. V). The lack of a global coordinate system prevents robots other

than R to assign any meaning to the coordinates, y; ); and
(z2,y2); and as such, Rassigns a label to each of the two
positions, and stores a mapping of the position labels to the

IIl. DISTRIBUTED NETWORK CONNECTIVITY

Let R = {RIL,...,RN} be the robots deployed in thecoordinates, e.g.,

environment, and” = {T1,...,TM} be the static towers.
Each robot R moves autonomously in the environment and

the

Piq = (xl,yl)i; Pig = (x21y2)i

purpose of the robot team is to find a configuration 15 configurationis a vector of positions in the environment, one for each

such that all the towers ifif are connected, as illustrated inrobot.



Each robot can convert position labels of its own positions a) time ¢}
into coordinates in its own reference frame, and theseipaosit @ Pl @

labels can be shared readily among all the robots. For exampl \ .
when R meets another robot R it can share that it (B is O
connected to @ and T when at position B,, and is connected

to Ta when at position B;. Rj can update its information, b) time t9

without knowing the exact coordinates of.RAll Rj needs to -

know is that R is capable of connecting toaTand/or T at @ & 77777 @
those positions, and that;Ran travel to the positions (since P2, -

Ri has the mapping of its position labels to coordinates) if ’Pb
need be. In particular, this connectivity information cam b

stored in the form of a graph, as SI’!OWH in Fig. 3.rRerely Fig. 4. Spatial representation of 3 mobile robots and 2 tewaran en-
has to share the graph shown in Fig. 3 to alloy B store vironment. Bold lines indicate obstacles (walls) and ddsliees indicate

the new connectivity information. connectivity._ a) At timet_l, R1, R2 and R are in positi_o_ns P, P21, and
ty P3; respectively. b) At timet2, R1 and R3 move to positions P, and B2
respectively while R stays at ;.

B. Hyper-Graph Representation for Connectivity Inforroati

Position labels allow each robot to refer to other robots’ a) time tl b> time t2

positions in the environment, without knowing the exactreoo
dinates that they refer to. We developed a data represemtati Ry
that we call a network graph, which allows robots to store,
share and merge connectivity information readily.

Definition 111.2. A network graph G is an undirected graph
G = (V, E), where each vertex (or node)e V is a position Ro @ @ @ © C)—E-€)()
label (e.g., R,) or a tower (e.g., &), and each edge € E'is a @
pair {v1,v2}, wherevy,vo € V. Edges represent connections
between vertices (robots/towers), and the weights of thges®d
represent the signal strengths of the connections. R3 @ o () (2) D
To illustrate the usage and benefits of a network graph, @
consider Figs. 4 and 5.
At time ¢; (see Fig. 4a), the robotsIRR2 and BB are o _
at positions By, P2y, and B respectively. R is connected {1 % NCCet S e 2 e O oo Edges beween
to R2 and T, while R3 is connected to 7. The network yeriices indicate connectivity between robots (at a aepasition) and towers.
graphs of the robots are shown in Fig. 5a. Note that the robejs\t timez,, R1 and R are connected and synchronize their graphs. b) At
synchronize and merge their graphs when connected, Whicﬁ"Pg %) R2 and R3 synchronize their graphs and discover a solution (outlined
why R1 and R have identical graphs. ot
At time ¢, (see Fig. 4b), R and R move to positions B,
and B, respectively; R stays in position B,. R2 and R
are now connected, and3Rs connected to 7. At this time,
R2 can share information regarding Rvith R3, even though

R1 and BB have never met. This allows bot2Rand R to
discover a solution wherelRR2 and R3 are at positions B,

towers Ta € 7 are connected, and each robatiRin at most
one position, i.e.yi (Piq,Pig € V' < a = ).

However, given that the size of the network graph increases
as the robots explore the environment, searching this graph

P2,, and B, respectively. The network graphs of the robotgecome comput_ationally expensive. In order. tq cope with thi
are shown in Fig. 5b, and the solution found is outlined igrovvth,we consider byper-graph representatiom which all
bold ' nodes corresponding to each robot are collapsed into aesing|

[Igyper-node. A network graph and its corresponding hyper-

The network graph representation offers multiple beneﬁgraph are depicted in Fig. 6.

First of all, robots can readily share information. When twi
robots R and R meet, they can update their individuaDefinition 111.3. A hyper-node v is an equivalence class
network graphs and unify their knowledge in all parts of thgefined over the set of vertices of the original network graph
graph, independently of their current position. Furthem®no ¢ — (v, E), that corresponds to a single robot or tower,

the updating of graphs is asynchronous in the sense that 8g{., the hyper-nodeiR= {Pi, : Pi, € V,Va}.
all robots need to have the same network representatioh at al

times. Definition Ill.4. A hyper-edgee = {v1,v2} is an equivalence
In addition, a configuration that ensures connectivity of aflass defined over the set of edges in the original network
towers can be obtained directly from the graph. Formally, §aph G = (V. E), that corresponds to all connections

solution s that connects all towers in a graggh = (V, £) Detween the 2 hyper-nodes (i.e; andv), e.g., the hyper-
exists iff a sub-graplt’ = (V’, E') C G exists such that all €dge{Ri,Rj} = {{Pia,Pjs} : {Pia,Pjs} € E, Vo, 5}.



C. Communication Phase

As the robots explore the world, they individually maintain
hyper-graph which they use to store connectivity infororti
Upon coming within communication range, robots share their
P3, corresponding hyper-graphs and update them to include the
information coming from the other robots. This process can
be decomposed into several steps which we now describe. We
focus on the situation where two robots meet. The extension
to more than two robots follows directly.
@ @ Suppose that at some timg Ri comes within range of R
Ri communicates its current position label and receivg's R
position label. If necessary,;Rdds R’s position label to the
b) network graph, using the signal strength as the edge weight.
Rj performs the same operation with’'Rposition label.
@ @ @ @ Next, both robots share their hyper-graphs. To do so, they
‘ share all new constraints in the hyper-graph discoverezksin
they last met (say,). Note that R does not need to include
any constraints involving R since the R's hyper-graph
should already contain those constraints. Thus, only aesubs
Figt\-N G-ka%]A networl;] grfatrr)]h of 3 rogotsbatnd 2 éogvtt%rs. b) T;&w;gif}g of vertices and edges of the’'Rhyper-graph (associated with
netvorc Iyperaraph of e same 3 robats and 2 owers, Theamiaber, the constraints discovered singethat do not involve ) has
in the hyper-nodes. to be sentto R
Upon receiving the new set of constraints from, RRi
can update its hyper-graph and its resulting hyper-graph wi
Definition 111.5. A network hyper-graph is an undirected match that of R (after Rj receives Rs message and merges
graph H = (V,€) whereV is the set of all hyper-nodes,the information). This communication protocol ensures the
and € is the set of all hyper-edges. synchronization of the hyper-graphs of the two robots when

A network graph can be represented as a network hypg}?y connect. When there are more than 2 robots, this prbtoco

. Similarly ensures that all connected robots will synchzeni
graph, and vice versa. In a hyper-grafi| < M + N, where their hyper-graphs, through serveral rounds of commuioicat

M and N are the number of towers and robots respectively,
and €] < (M), Any particular hyper-edgév,,v2} € € Theorem IIl.6. Suppose R..., Rn are connected, with
means that, in the original network graph, the robots/tsweyper-graphsH,, ..., H, respectively before the communica-
corresponding to nodes; andv, share at least one connection phase. After the communication phasé, R., Rn will
tion. Each hyper-edge can also be seen as a satrudtraints - have the same hyper-gragh, such thattl O U;c ¢y .y Hi)-

on the robots’ positions. These constraints limit the pdussi
robot positions in order to have the connection described B}{

the hyper-edge. Referring back to our example, the conssrai .

for the edge{R1, R2} in the hyper-graph of Fig. 6 would be Let the robots _dlrectly connecte_d to ropoi BeR; C R.
E(Ry Roy = {({P12,P21},0), ({Ply, P25} , o)}, whereo, o’ Each robot I_Rflrst adds constramts_ to its hyp_er-g_ram_
dé[ntnlfe the signal strengths of the corresponding conrlrfsat:tio(If the c_onstralnts do noF alr(_eady e?qst) regardmg Its dire
So, if Rl is in position R4, then R is constrained to positions Z?tr;rrletﬁ'?sor;;seto glsrﬁz\(l)\}shﬂgrl_'er;{EZ%{}/P%Q}}’ VRj € Ri-
P2, and P, if the connection{R1, R2} is desired. P, yper-grap P= o

: . ) . _ Next, R shares its updated hyper-graglf with all the
Each hyper-edge € £ is associated with the correspondoﬁrer robots (both directly and indirectly connected) i th
I

ing quivalencg _class or constraint set that must store f owing way: Ri sendsH! to its direct neighbors, who merge

edges |n.the or|g.|nal neMork graph and.correspondlng S'g%f with their hyper—grap;hs. The neighbors thén share their

strength information. This means, in particular, that thpér- qudated hyper-graphs with their neighbors, and so on. This
I ' '

graph representation is equivalent to the original netwo R ; N
. . . s¥nchr0n|zat|on can take multiple rounds of communication
graph representation in terms of space-efficiency. Howeve

. . A until no new information is available to all the connected
the hyper-graph representation provides significant adg®s : : .
) ) . g robots. Thus, Rreceives hyper-graph information from the
when searching for a solution, which we will soon show.

. L other robots, and Rincorporates the shared information. After
We conclude by observing that a solution is a connect P

subgraph offf that includes all hyper-nodes corresponding to s operation, Rs new hyper-graph is:

towers in7, and each robot Rcan be in a position® such

that all constraints are met in the solution subgraph. feuarth H!=H/U(H{U...H_UH_,U...UH))
details are provided in Sec. IlI-D. U

Proof: Let the current positions of thelR..., Rn be
onye -y Pl

2We henceforth drop the usage of the waretworkfor brevity. je{l,...,n}



Therefore, after the communication phase, every connectegper-edges still available for use, and reducing the &earc

robot has the same hyper-graph where:

H= |J H
ie{l,...,n}

H> |J Hi(sinceH]2 H;Vie{l,...,n})
i€{1,...,n}

D. Finding a Solution

space considerably.

1) Updating Constraints:Given a set of possible positions
P ={P,..., Py}, whereP; refers to possible positions of
Ri, and a hyper-edge = {v1,v2}, we updateP such that
the constraints of the hyper-edgeare satisfied. In order to
do so, we take the intersection of the constrainte ahd the
relevant elements of. Next, we iterate through alt’ € V),
and further constrainP (since the reduced positions ofi R
may further constrain positions of jRhrough a previously-
used hyper-edge’ = {Ri,Rj}). After all the propagations
have completed, ifli s.t. |P;| = 0, then P becomes invalid.

The robots’ goal is to find a configuration that connectd/e have the following result:

all the towers in7, using the robots to pass messages a

necessary. Such a configuration is known as a solution.

Definition I1l.7. A hyper-edges = {Ri, v} is applicableto a
position label R,, if:
v = Rj and {Pi,, Pjs} is in the equivalence class ef
for someg
or
v = Ta and {Pi,, Ta} is in the equivalence class ef

Definition 111.8. A solution s of a network hyper-grapl#/ is
a sub-graphH, = (Vs,&s) € H such that all the towers in

T%eorem l11.9. For a problem with)M towers andN robots
verifying Assumptions 1 through 5, all robots will find at$ea
one solution w.p.1.

Proof: From Assumption 2, there is at least one configu-
ration in which all towers are connected (a solution). Thet fa
that the environment is bounded in the sense of Assumption 3
and that the exploration algorithm is thorough in the sense
of Assumption 4 guarantees that at least one robot eveptuall
determines a solution (the probability of this not happgnin
goes to 0 ag — o).

From Thm. 111.6, robots synchronize their hyper-graphs

T are connected, and each robot can be at a single positioffen they meet. Using Assumptions 4 and 5, this implies

ie.,V Ri € V,,3 Pi, such thatve € £;,, Rl € e = Pi, is
applicable toe.

So, in a solution, each robot has a single position to go
such that when all the robots are in their solution posititims

towers are connected wirelessly, using the robots as nktwey g establishing the desired result.

relays as necessary.

To reduce the search space fgror equivalentlyH,, the
restriction thatH, is acyclic is added - iff; contains cycles,
then hyper-edges froni/, can be removed (eliminating the
cycles) while still ensuring that all the towers are conadct

In order to find such a solutionH,, the search
begins at one of the towers (e.g.,a)] by insert-
ing all hyper-edges connected toaTinto a queue
(i.e., Q {e€ & :e={Ri,Ta},Ri € V}), and running
the function find_solution recursively (see Alg. 1 for the
pseudocode).

Thefind_solutionalgorithm proceeds as follow# contains
the possible positions that the robots can be in - initialy,
robots can be in all positions. Given a queleof hyper-
edges and the first hyper-edgean the queue, the algorithm
attempts to use= and recurse, as well as not useand

recurse. This ensures that all combinations of using and nJo4t
using hyper-edges are tested. In addition, as the algoritrﬁ%

recurses(, the queue of hyper-edges to consider, the set
of vertices (robots/towers) already conneciggd,.,, the set of

that the network structure eventually propagates to albtmb
Thus, if a solution to the connectivity problem is found by
some robot R then all the robots will find this solution w.p.1
Q@ the limit, ast — oo.

As a result, the solution propagates to all robots in thet)imi
[ |

Algorithm 1 find_solution@, P,
1 if @Q is emptythen
return false

end if

e = popQueuel)

P’ = updateConstraints( P)

if P’ is valid then
Q' = updateQueue( Q)
V! = addVertex¢, V.)
g’tll,sed - gused U {e}
if 7 C V! then

solution «— (

: return true

13:  end if

if find_solution@’, P/,
return true

end if

17: end if

ip — Eatip U {e)

Vca 5used ) 55/61'1))

=
QXN WN

/5/

¢ Yused

)

/E/’/

c) “used?

Eskip) = truethen

hyper-edges used, aidy;,, the set of hyper-edges that Werelsf
skipped, are updated. 1 :

Although it may seem that this search performs a comple?&
search of the hyper-graph, the search tree is pruned quickly’

9: if find_solution@, P, V., Eused, ;,ﬂ.p) = truethen

return true
end if

22: return false

due to the constraints in each of the hyper-edges. Thus,

becomes more and more constrained, limiting the number of



E. Converging to a Solution

Algorithm 2 Distributed Network Connectivity Algorithm

In Sec. llI-D, we have established that, with enough explo
ration, all robots eventually determine a solution. Howeire
environments where multiple solutions exist, it is possithlat
at any time step not all robots determine the same solutiorf’
Therefore, it is necessary to ensure that, in the presence of
multiple solutions, all robots adopt and move to the samé&’
solution. 5

The process of ensuring consensus in a common solutio%_
arises from a common and deterministic solution selectior
mechanism. As seen before, the algorithm to find a solutio
(Alg. 1) is deterministic. Furthermore, since robots syweh 1L
nize their hyper-graphs when they meet, connected robdits wi*
find the same solution. 13

Once a robot Rhas found a solution, it attempts to find itsl4:
neighbors in the solution and synchronize its hyper-grajth w "
them. After all its neighbors have synchronized their hyperlsj
graphs, R heads to its solution position. Finally, after arriving,
at the solution position, Rwill stop moving. If at any time,

a better solution is found (e.g., by receiving new inforroati
from other robots), Rwill restart its convergence process an
attempt to find its neighbors again. 2;

If a robot R finishes sharing its solution with its neighbors__
and moves to its final position while other robots are stilf3:
negotiating, either the other robots settle in their possi
corresponding to the solution adopted by robatd® some

. . . .25:
robot (that adopted a different solution) will not stop unti N
it connects to robot R At this point, they synchronize their __
hyper-graphs and adopt the same solution. If the solutiondo __°
is different, R restarts its sharing process. This means thaztsj
since the number of robots is finite, they all eventuallylsett 3o:
in one solution and move to the corresponding position. Th|3slj

conclusion is stated in the following result: .

Theorem 111.10. For a problem withM towers andN robots

1. H — {} Il H is the Hyper-Graph
2: state «— Explore
3: loop

(7;, R;) = getConnections()
/I Create position label
Pi, = getPositionLabetfurrent coordinates
/I Update Hyper-Graplil with connections to towers
for all Ta € 7; do
addConstraint{Ta, Pi, }, H)
end for
/I Update Hyper-Grapli/ with connections to robots
/I Synchronize Hyper-Graphs
performCommunicationPhase(, H)
/I Check for solution and update state
if graph was updatecthen
s = checkForSolutionfl)
if s is valid ands # current_solution then
current_solution «— s
sol_posn = getSolutionPosition)
neighbors = getNeighborsTolnforn)
state «— ShareSolution
end if
end if
if state =
then
state «— Goto_Solution
else ifstate = Goto_Solution & Pi, = sol_posn then
state «— Stop
end if
// Plan the next action
action = getNextActiongtate)
/I Execute the action
executeActiongction)

ShareSolution & informedfeighbors)

33: end loop

verifying Assumptions 1 through 5, all robots converge ® th
same solution w.p.1.

For each tower @ € 7;, robot R adds a constraint into
its hyper-graph as & current position label (i.e.,R), the
) tower’s ID (i.e., Ta), and the signal strength of the connection.
_The robots do not perform map-merging, and run a fully- g; then enters a communication phase, where it adds
distributed algorithm which allows them to find and converggsnstraints into its hyper-graph as'®Rcurrent position label,
to a solution. A flow-chart of the algorithm is shown inne position labels of the robotsiRs directly connected to
Fig. 7. The fully-distributed algorithm shown in Alg. 2, vdhi (R,), and the signal strengths of the connections. tien
includes a state heuristic function. The robot can be in dne ghares and synchronizes its hyper-graph with all the robots
four states, namelfxplore, Sh_argSqutlon, GOtQSO“_Jt'On it is directly connected toR,;). After this phase, all robots
and Stop Each robot R starts in theExplore state, with an hat are connected will have the same hyper-graph.
empty hyper-graph. Fig. 8 shows the state transition diegra go|lowing the communication phase; Row searches the

for the robots. hyper-graph for a solution if the hyper-graph was updated.

Lastly, R switches its internal states if necessary, based on
‘ Update Hyper-Graph H Communication Phase ’—V‘ Check for solution y y
L%

F. Algorithm for Distributed Network Connectivity

whether a solution has been found.

Plan next action

IV. PLANNING AN ACTION

Fig. 7. Flowchart of the fully-distributed algorithm As mentioned above, the robot can be in one of 4 states:

Explore, ShareSolution, GotoSolution andStop(see Fig. 8).
In the Explore state, the goal of the planner is to tra-
verse the world such that the robots will eventually find a

At each time step, the robotiRyenerates a list of towers
7, C 7, and a list of robotsk; C R that are in range.



For each explored cetly, and corresponding countéf,, , we
, e, —min; Ce . o
definep, = 1— s Y 4, wherea is a weighting

max; C.. —min; ch

term such that the cell with the' maximum counter will not have

Share
Solution

found solution

Explore

Y

different shared a 0 probability of being chosen. Given thg of the adjacent
g . . . .y p
solution different | | Sohtion cells, the robot picks a cetl; with a probability of Z;Pa"
found solution with For example, suppose the adjacent cells are

neighbors (1, 0), (¢2,0), (3, 3), (c4,5), (c5,2), where each tuple
represents an adjacent cell and its corresponding counter
(where 0 means unexplored). The robot will choose to explore
with a 22777 probability. If it decides to explore, it will

: 27+3(1—7) ) - . ;

pick eitherc; or c; with equal probability. If it decides to

1
exploit, it will pick c3 with a probabilit ofi—“‘,
Fig. 8. State transition diagram for each robot. The robwg # theExplore P . P C.S. P o y (3to)+(a)+(1+a)
state. When all robots are in titoppedstate, the solution configuration has¢4 With @ probability of T (@ 1ra) and c; with
been achieved and all towers are connected. 1t+a

GFa)t(a)+(1+a)” , .

4) Stay at Towersin this heuristic, the robots had one of 2
solution configurations that connects all the towers. In the™©les: stay at an assigned tower, or avoid towers. A robasR
Share Solutionstate, a solution has been found, and the goaPSSigned the role of staying at towes T in its hyper-graph,
is to communicate this solution to neighbor robots irs. In it has the most connections taz.TOtherwise, the robot R
the Goto_Solutionstate, the planner has to find the shorte§SSumes the avoid towers role. _
path from the current location to the robot's position in the In thestay at towerrole, if the robot R is not currently con-

solution s. Lastly, in theStopstate, the planner has no work€cted to its assigned towerTthen it plans the shortest path
to do and merely stops the robot in place. (using breadth-first search) to the nearest cell that cdariec

to Ta (based on the map it built while exploring the world). If
the robot is already connected ta,Tthen it decides to explore
or exploit using a weighted dice, similar to the weighted
In order to find a solutiors, each robot Rhas to traverse exploration heuristic above. However, in this case, it igso
the world in such a way that the solution algorithm can fingj| adjacent explored cells that do not have a connection to
a solution as quickly as possible. We explored a number ®f, Thus, the weightage only occurs for unexplored cells, and
different heuristics for this purpose: explored cells that are known to have a connection 4o I
1) Random MovemeniThe simplest heuristic was randompjs way, R stays close to @ and may lose connection only
movement, where a robot would choose an action randonpyt goes to an unexplored cell that is out of range.
from the list of possible actions. There was no weighting of |n the avoid towersrole, instead of choosing between ex-
the actions, so if» actions were available, they would eachyjore and exploit, the robot chooses between explore, #xplo
have al probability of being selected. This heuristic providegng visiting a tower, with probabilities, 3, and1 — o — 3
a baseline for comparison, since it is arguably the mostenaiespectively. The robot chooses between these 3 optioesibas

form of exploration. o . on the number of adjacent cells that match the requirement:
2) Coverage of the Spac&he next heuristic we considered; g_ if there arek; unexplored cellsk, explored cells that

was a coverage algorithm. We adapted the node-count\g not have a connection to a tower, ahg explored cells
algorithm described in [8]. Each robot kept a counterof that have a connection to a tower, then the robot chooses

how many times it visited a celt. Then, when choosing tg explore With 7 B-lf-lka(l—a—ﬁ) probability, exploit with
an action, it picks the adjacent cefl such thatC. is the k3 ! aznd f’/isits 2 tower cell otherwise. If it
minimum among all adjacent cells. In the case where mog thaftks(l—a=p)" =0 '
th Il has the mini lue. it bick doml ﬁ%oses to exploit or visit a tower, then the relevant ceks a
an one cefl has e minimum vaiue, 1t picks randomly among, ¢ e q probabilistically based on their counter valsiasilar
the minimum cells. All cells are initialized to have a counte,

of 0, so unexplored cells always have priority over ex Ioret8 the weighted exploration heuristic.
ceIIs’ P y P y P By using the heuristic, the robots that do not have an

3) Weighted Exploration:This heuristic was similar to assigned tower tend to visit areas that have no connections t
'9 xp lon. 1Nl uristic- w imi an% tower, and explore new regions. This allows new towers

the above coverage algorithm, except that the robot US€30%e discovered quickly, as well as connections to be found

we|ghted_ dice to dec'd? -among its adjat_:ent cells,_ !nSteggtween towers. We experiment on this heuristic in detail in
of choosing the least-visited cell (i.e., with the minimu ec. V

value). We defined a ratig, that represents the exploration vs
exploitation probabilities. Givek; unexplored adjacent cells,

and ko, explored adjacent cells, it chooses to explore with
57— Probability, and exploit otherwise. If it choosed?: Setup
to expﬁore, it picks one of the unexplored cells randomly. We created a simulator in Java that models a discrete 2D
Otherwise, if it chooses to exploit, it picks an exploredl,celworld, which allows horizontal and vertical walls (in betve

weighted on how many times it has previously visited thalt cethe discrete cells) to be placed anywhere in the world. The

found

Goto
Solution

~ arrived at solution position

A. Exploring the Environment

V. EXPERIMENTAL RESULTS



a) Office b) Corridor Comparison of Heuristics in Office World (5 robots)
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Fig. 10. Percentage of trials that found a solutiort iseconds or less in the
Office World with 5 robots.
. ’7 —‘ . The Corridor World provided a realistic depiction of many
corridors in university hallways which are flanked by offices

Fig. 9. R tati lds that imented orOffige World on both sides.
ig. 9. Representative worlds that were experimented o e Worl . .
b) Corridor World, c) Lobby World. Black lines indicate walbbstacles, filled 3) LObby World: The LObby World was50 x 50 cells in
circles represent towers, and hollow circles (only in Offierld) show the Size, and contained a large lobby in the middi® & 30).
fixed initial configuration of robots. Corridor and Lobby Vs had random  Around the Iobby were 12 small offices - 3 on each side, as
initial configurations of robots. . .

well as 4 slightly larger offices located at each corner of the

lobby (see Fig. 9c). We placed 4 towers in this world, 1 in

simulator calculates signal strength between any two éells€ach of the corner offices.
the world, based on an exponential decay rate, as well asthe Lobby World provided a depiction of a large lobby
degradation from the walls. We did not simulate inteferenéé€a, that is connected to many small rooms. This world was
between robots, or reflection of signals from the walls; tHéesigned not only to simulate real-world situations, bisbal
underlying algorithm would not be significantly affecteceav t0 provide a worst-case scenario for our algorithm. By hgvin
if the signal strength calculations were different. In tBi® @ large open area, the robots would be able to move around
world, each robot had 4 possible actions, namely to mofigely and create a dense hyper-graph, where each robekvert
north, south, east, or west. In the event that an action wolk@uld have every other robot vertex as a neighbor. This could
cause the robot to hit a wall, the action would fail and thgause the search for solution to take extremely long, and so
robot would stay where it originally was; otherwise the robdVe wanted to test the effectiveness of our algorithm in such a
would move in the direction specified. scenario.
We implemented our algorithm as described in Sec. lll,
as well as the different heuristics described in Sec. IV4A. |
addition, we created 3 different scenarios: an Office Waald,
Corridor World, and a Lobby World (see Fig. 9). We ran the different heuristics in the Office World scenario
1) Office World: The Office World was20 x 24 cells in (which had 5 robots in a fixed initial configuration), with 100
size, and contained 2 small offices on the top, and a larggals per heuristic. In each trial, we measured how mucletim
office at the bottom left (see Fig. 9a). An L-shaped corriddhe algorithm took in order to find a solution configuratiore W
ran in between the top offices and the bottom. A tower walsen compared the percentage of trials that found a solution
placed inside each office, at a distance such that they coindt seconds on less; Fig. 10 shows the comparison of the
not communicate directly. different heuristics in the Office World. All the heuristics
Due to the small size of the Office World, we fixed thg@erformed well in this scenario, with thetay at towers
number of robots to 5 and selected initial starting posgtioh heuristic performing slightly better than the others. ltrfid
the robots. This world was designed as a proof-of-concept 0% of the solutions within 12s of execution, compared to
the algorithm, as well as to compare the performance of tB8s of theweighted exploratiorheuristic. Thecoverageand
different heuristics given a fixed initial state. randomheuristics found 99% of the solutions within 36s and
2) Corridor World: The Corridor World wast0 x 24 cells 69s respectively.
in size, and contained 8 offices. 4 offices were arrangedWe believed that all the heuristics performed relatively
horizontally on the top of the world, and the other 4 wereell in the Office World scenario due to the fact that many
arranged horizontally at the bottom (see Fig. 9b). A longplution configurations existed, and that the robots began i
corridor ran in between the top row of offices and the bottor, configuration that was close to many solutions. Therefore,
and 4 towers were placed in a zigzag fashion in the officeswve performed similar experiments on the Corridor and Lobby

B. Comparing the Heuristics
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Comparison of Heuristicsin Corridor World (5 robots) Performance of Stay-at-towers in Corridor World
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3
!
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40 60
Time per trial t (seconds)

Fig. 11. Percentage of trials that found a solutiont iseconds or less in the Fig. 13. Percentage of trials that found a solutiontiseconds or less in
Corridor World with 5 robots. Corridor World with varying number of robots runnistay at towerdeuristic.

Comparison of Heuristics in Lobby World (5 robots) Performance of Stay-at-towers in Lobby World
100 -

[
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= = Weighted Exploration
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Trials that found a solution (%)
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!
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Fig. 12. Percentage of trials that found a solutiort iseconds or less in the Fig 14. Percentage of trials that found a solution geconds or less in Lobby
Lobby World with 5 robots. World with varying number of robots runningtay at towersheuristic.

Worlds, with 5 robots in each case, and a random initigk yhe robots was randomly selected in each trial, and we
configuration for the robots in each trial. measured how long the algorithm took to find a solution. We

As shown in Figs. 11 and 12 thetay at towersheupstlc then compared the percentage of trials that found a solution
outperformed all other heuristics by a large margin. It i, 5 imited amount of time or less

interesting to note that theoverageandweighted exploration In Fig. 13, we show the results in the Corridor World
heuristics performed more poorly than trendomheuristic. with the number of robots varying from 5 to 50. Similarly,

This is because in a large world, a large emphasis on eXp?R'Fig. 14, we show the results in the Lobby World, also
ration reduces the chance that robots will meet in a "usefyfi, the number of robots varying from 5 to 50. In Fig. 15
configuration (where useful refers to a partial configuratiq,e show some random initial configurations of 5 robots and

that can later be used as part of a solution), since theyyrargle ¢ responding solutions found in the Corridor World: in
return to previously visited cells. As such, it is difficulbrf Fig. 16, we do the same for the Lobby World

the robot team to find a solution configuration, even aftey the In both the Corridor World (Fig. 13) and Lobby World

hax? |ndr|IV|duaIIy ex_plored the entmla Sn\élrﬁnment. (Fig. 14), increasing the number of robots from 5 to 15 robots
ter these experiments, we concluded thatstay at tower ctually decreases the percentage of trials that find solsiti

heuristic was the most promising, as it _pe.rformed yvell ‘T‘ his decrease in performance is because the graph grows
the scenarios. We then tested this hgunsuc extensivetiien polynomially with the increase in the number of robots, but
Corridor and Lobby Worlds, as described below. searching for a solution in the graph can take exponentially
longer.
C. Further Experiments for Corridor and Lobby However, it can be seen in both figures that increasing the
We used thestay at towersheuristic exclusively for all the number of robots beyond 15 tends to increase the percentage
experiments described below, as it was the most promisiafisolutions found, because the number of goal states isesea
heuristic (see Sec. V-B). In each experiment, we fixed tlvdth the number of robots. Thus, when there are many robots
number of robots and ran 1000 trials. The initial configunati in the world, the initial configuration of the robots has aytar
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Fig. 15. The top row shows random initial configurations obbats (hollow
circles) and 4 towers (filled circles) in Corridor World; thettom row shows
the corresponding solutions found. The black lines reprtesalls/obstacles,
and the blue lines indicate connections between robots @amelrs.
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Fig. 16. The top row shows random initial configurations obbats (hollow
circles) and 4 towers (filled circles) in Lobby World; the tooh row shows
the corresponding solutions found. The black lines reprtesaills/obstacles,
and the blue lines indicate connections between robots @mdr$. Notice
that the solution shown in the bottom-right image only useshbts.

probability of being a goal state (or close to one), so it $ake

very little time to find a solution configuration.

VI. CONCLUSION
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robots share the connectivity information correspondiog t
their positions with no need for map merging. The robots can
separately determine that there is a solution at some disite
configuration. Another technical contribution is the hyper
graph data structure that is used by the algorithm to share
information and represent solutions. The hyper-graptrattst

the physical details of the world, while keeping enough iinfo
mation such that a solution can be found efficiently without
map-merging.

The fact that our algorithm is fully distributed and reqsire
no map-merging is, in our view, very interesting. It allows
the robots to use different granularity and even different
representations of the environment, i.e., one robot may use
a grid-based representation, while another may use some
topological map. Any additional information shared amdmg t
robots, if common references are available, can easily beac
modated by the algorithm and could be used in the distributed
exploration. It is worth mentioning that the process by wahic
the network structure is tracked and maintained allows the
robots to completely separate the problem of navigatiomfro
the problem of tracking the network. Therefore the existenc
of unknown obstacles in the environment has no impact on
the performance guarantees of the algorithm.

The empirical results with our algorithm also point out
several interesting directions for future work. We are enty
exploring other heuristics, as well as methods to deterithiee
number of robots to deploy in a scenario.
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