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Abstract— In this paper, we present the first application of robots being taught by the teacher at the same time affects
demonstration learning to more than two robots and perform  the number of demonstrations required to learn the task, the
an analysis of the scalability of the Confidence-Based Autamy time and attention demands on the teacher, and the delay

(CBA) multi-robot demonstration learning algorithm. Thro ugh h robot . in obtaini demonstration. Based
experimental evaluation using up to seven Sony AIBO robots, €ach robot experiences in obtaining a de :

we examine how the number of robots being taught by a human ON our evaluation using up to seven Sony AIBO robots, we
teacher at the same time affects the number of demonstratien  conclude that most of the demands on the teacher and robots

required to learn the task, the time and attention demands on  grow at a roughly linear rate with respect to the number
the teacher, and the delay each robot experiences in obtaily  f |aarners. Most importantly, our analysis indicates that

a demonstration. Additionally, we contribute an analysis é a . .

special case of CBA learning in which all robots learn a commo strict upper bou_nq e)_('StS on the number of robots (_jue to
task policy. the algorithm’s limitations. Instead, the number of robists
likely to be limited by real-world factors particular to éac
learning domain, such as the amount of time the teacher is

Learning from demonstration, also known as teaching bable to invest in training.
demonstration, is a learning technique based on human-To allow for a direct comparison between different num-
robot interaction that provides an intuitive interface fomers of robots, each robot in our experiments was taught to
robot programming. In this approach, a teacher, typically perform the same task. As a final contribution of this paper,
human, performs demonstrations of the desired behavior /e present an analysis of a special case of CBA learning
the robot. The robot records the demonstrations as segsienire which all robots consolidate their knowledge and share
of state-action pairs, which it then uses to learn a poliey th demonstration examples. We show that for this subset of
reproduces the observed behavior. multi-robot learning problems, the training time and numbe

Demonstration-based learning has been gainingf demonstrations can be significantly reduced by learning a
widespread attention for providing a fast and intuitivesingle common policy for all robots.
method for transferring knowledge from humans to robots. In the following section, we present the single-robot
Recent work has led to the development of a wide varietgonfidence-Based Autonomy algorithm that is used to learn
of single-robot demonstration learning/gorithms, in which  an individual policy for each robot. We then present the com-
a single person teaches a single robot and a policy sete multi-robot learning framework in Section Il1, folled
learned based on underlying reinforcement learning [1hy a description of the evaluation domain in Section IV.
classification [8], [9] or regression [2], [7] learning metts.  Results of the scalability analysis are presented in Sedfio

However, solutions to complex tasks often require thge conclude by examining a special case of CBA learning
coordination and cooperation of multiple robots. In ouin Section VI.
previous work, we introduced th@onfidence-Based Auton-
omy (CBA)demonstration learning algorithm that enables a !l CONFIDENCEBASED AUTONOMY ALGORITHM
single person to teach small groups of autonomous robotsin this section, we present a summary of the single-robot
to perform collaborative tasks [4], [6]. We believe this ® b Confidence-Based Autonomy algorithm that lies at the heart
the first algorithm that enables multiple distributed rabimt  of our multi-robot demonstration learning framework. For
be taught at the same time using demonstration. The abilifyll details and evaluation of CBA, please see [4], [5].
to teach multiple robots at the same time is particularly Confidence-Based Autonorisya single-robot demonstra-
important for addressing collaborative domains as it eembltion learning algorithm that enables a robot to learn a
each robot to learn to respond appropriately to the actiomlicy through interaction with a human teacher. In this
of others. In previous work, we demonstrated the feasybilitiearning approach, the robot begins with no initial knowged
of the CBA learning approach using two humanoid robotand learns a policy incrementally through demonstrations
performing a joint ball sorting task [6]. acquired as it practices the task.

In this paper, we extend our previous work and present an Each demonstration is represented by a state-action pair,
analysis of the scalability of the CBA algorithm. Through(s, a), symbolizing the correct action to perform in a par-
experimental evaluation, we examine how the number afcular state. The robot’s stateis represented using amn

, dimensional feature vector that can be composed of con-
S. Chernova and M. Veloso are with the School of Com-. . , .
puter Science, Carnegie Mellon University, Pittsburgh, , PA.S.A.  tiNUOUS OF discrete values. The robot’s actions are bound
{soni ac, vel oso}@s. crmu. edu to a finite seta € A of action primitives, which are the
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Fig. 1. (a) Diagram of Confidence-Based Autonomy, showirgyititerplay between the Confident Execution and Correctigm@nstration components.
(b) Visualization of multi-robot demonstration learning.

basic actions that can be combined together to perform tla® action using a graphical interface. Upon obtaining the
overall task. The goal is for the robot to learn to imitate thelemonstration, the algorithm updates the robot’s poliéggis
demonstrated behavior by learning a policy mapping statéise acquired action label and performs the demonstrated
s; to actions inA. The policy is learned using supervisedbehavior. If a demonstration is not required, the robot
learning and is represented by classifier: s — (a,c¢), autonomously executes the action specified by its policy
trained using state vectors; as inputs, and actions; without consulting the teacher. Demonstrations are satlect
as labels. For each classification query, the model returbssed on the action selection confidence of classifier
the highest confidence action € A4 and action-selection
confidencec. CBA can be combined with any supervised
learning algorithm that provides a measure of confidence in The above Confident Execution algorithm enables the
its classification. In this work, the policy is representgdeb robot to identify unfamiliar and ambiguous states and pre-
one-against-one multiclass Support Vector Machine (SVMyents autonomous execution in these situations. However,
with a radial basis function kernel [3]. states in which an incorrect action is selected with high-con
The most important element of the CBA algorithm isfidence can still occur, typically due to over-generalizati
the method for obtaining demonstration examp|es, WhICﬁf the classifier. When aIIOWing the robot to select demon-
consists of two component§onfident Execution (CEjan  Stration and regulate its own autonomy, it is important to
algorithm that enables the robot to learn a policy base@rovide a mechanism for correcting unwanted behavior. The
on demonstration examples selected by regulating its aporrective Demonstration algorithenables the teacher to
tonomy, andCorrective Demonstration (CD)an algorithm correct the robot's mistakes by performing additional demo
that enables the teacher to improve the learned policy tjrations If an incorrect action is selected for autonomous
correcting mistakes made by the robot through addition&xecution by the Confident Execution algorithm above, Cor-
demonstrations. Combined, these techniques provide a-meé@ctive Demonstration allows the teacher to retroactively
anism for obtaining teacher demonstrations, regulatirgg tiflemonstrate what action should have been selected in its
robot’s autonomy during the learning process, and |earnir@aCe. In addition to indicating that the wrong action was
an individual policy for each robot. Figure 1(a) presents afélected, this method also provides the algorithm with an

overview of the combined learning process. additional training point, leading the robot to learn quyck
from its mistakes.

B. Corrective Demonstration

A. Confident Execution

The Confident Execution algorithmnables the robot to I1l. M ULTI-ROBOT LEARNING
select demonstrations real time as it interacts with the  Multi-robot learning is achieved by replicating instanoés
environment, targeting states that are unfamiliar or inclvhi the single-robot CBA architecture, as shown in Figure 1(b).
the current policy action is uncertain. At each timestepThis approach takes advantage of the adjustable autonomy
the algorithm obtains the current robot state and detesninprovided by the Confident Execution component of CBA to
whether a demonstration of the correct action in this statnable a single teacher to work with multiple robots at the
will provide useful information and improve the robot'ssame time. Controlled by its independent instance of CBA,
policy. If demonstration is required, the robot stops anéach robot will act autonomously only when highly confident
actively requests help from the teacher (through sound its actions, and pause to wait for a demonstration in low
speech or other means) and waits for the person to sel@dnfidence states.



Using this approach, each robot acquires its own set éfigorithm 1 Multi-robot demonstration procedure.
demonstrations and learns its individual task policy. $pec Let D be set of current demonstration requests

ically, given a group of robot®, our goal is for each robot loop
r; € R to learn policyIl; : S; — A; mapping from the if D # 0 then
robot’s states to its actions. Note that each robot may have - Select robot demonstration requesiccording to
a unique state and action set, allowing distinct policiebeo some functionf (D)
learned by possibly heterogeneous robots. In Section VI we - Perform demonstration for robet
explore a special case of CBA learning in which the desired else
policy II; is the same for all robots. We show that for this - Observe autonomous execution of the robots
case, the number of demonstrations and overall training tim if correction is required for robot then
can be reduced by learning a singlemmonpolicy. - Perform correction for robot
Algorithm 1 outlines the general procedure followed by end if
the teacher in performing multi-robot demonstrations ngsi end if

this approach, the teacher alternates between respormling t end loop

demonstration requests when they are present, and cogecti

any mistakes in the autonomous behavior of the robots. Note

that the t_eacher interacts with only a single robot at any one gq; this task, we represent the robot's stateby the

time, wh|I-e other robpts are monitored in the backgrounqollowing set of features:

The functionf (D), which regulates the selection demonstra-

tion requests, can be used to implement a variety of sefectio

policies, such as a first-in-first-out or round-robin ordgri ~ * £+ = {myBeaconID}

In the experiments presented in this paper, a demonstration® Fe = {Blur, B2ur, B3nr}

request is selected arbitrarily from the set by the teacher. The set of observed features,, contains information about
Communication is an important part of many multi-robothe robot's relative distanceb{) and angle &,) to each

tasks. To differentiate between data sources, we repres@@aconb € B. For any beacon not currently in view, the

each robot’s state as the union of subsets, { F,UF,UF.}, distance and angle are set to the default values 4000 mm

such that: and 1.8 rad, respectively, to indicate that this beaconris fa
« F, = set of private, locally observed state features away. The set of shared state featurs, contains a single

, = set of locally observed state features that ar¥alue,myBeaconl D, which is set to a beacon’s ID number

automatically communicated to teammates each timié the robot is within a set distance of a beacon, and
their value changes —1 if the robot is not located near a beacon. Each robot

. F. = set of state features containing data either directifommunicates the value of this feature to its teammates.
contained in, or calculated based on, information com turn, all robots use this shared information to determine
municated from teammates the values of the calculated featurEs which maintain the

mfgpunt of the current number of robots occupying each of the

e F, = {Blq, Bly, B2, B2, B34, B34}

This representation seamlessly combines local and com

nicated data, allowing each robot to make decisions bas8§2€ONS: _ _
on all available information. In summary, using the above representation, each robot

The CBA demonstration learning algorithm and the prekNOWs its position relative to beacons that it observes, and
sented multi-robot framework have been applied to a widk'® number of other robots already located at each of the
variety of domains, ranging from a simulated driving task [4°€&cons. Using this information, we would like the teacber t
to a ball-sorting task involving two Sony humanoid QR|Oteach each robot to navigate from a random initial location i
robots [6]. In the following section we introduce a new multi the center of the open region to one of the colored beacons.

robot domain that is used in the scalability analysis. Specifically, the selection of a beacon is governed by the
following rules: Given a maximum limiinfor the number of
IV. MULTI-ROBOT BEACON HOMING DOMAIN robots that can occupy a marker, search for a beacon until

Evaluation of the scalability of the Confidence-Basedne is found for which the number of robaks,, is less than
Autonomy algorithm was performed in a beacon homingn Navigate to that beacon and occupy it by stopping within
domain using Sony AIBO robots. Figure 2 shows thre@ set distance . If at any point the number of robots at the
examples of these distributed autonomous robots operatigglected beacon exceeassearch for another beacon.
in the domain, which consists of an open area with three These explicit rules of the task are known only to the
uniquely-colored beaconsB( = {B1, B2,B3}) located teacher. During the learning process, each robot in therexpe
around the perimeter. Each robot is able to identify thementlearns an independent policy representing this hiehav
relative position of a beacon using its onboard camera,@ndfrom demonstrations. All robots were taught the same task to
communicate information via the wireless network. The sednsure a fair comparison between robots for the scalability
of action available to each robot is limited to basic movemerevaluation. The maximum number of robots allowed per
commands,A = {Forward, Left, Right, Search, Stop}, beacon for each experiment was setrte= ceil(w),

# Beacons

used by each robot to navigate in the environment. such that at least one beacon must contain the maximum



Fig. 2. Beacon homing domain: (a) Example starting configpma 3 robots. (b) Example intermediate stage, 5 robo)sEf@mple final configuration,
7 robots.

Level of Robot Autonemy Over Training Time

number of robots. Each experiment began with all robots
located in the center of the open region (Figure 2(a)) and
ended once all robots had reached a beacon (Figure 2(c)).
Training was performed until all robots executed the desire
behavior correctly without requesting demonstrations.

V. EVALUATION aor
The scalability of the CBA algorithm was evaluated in 20f
the beacon homing domain using 1, 3, 5, and 7 robots. In
this section, we discuss how the number of robots taught S R N IO S L

by the teacher at the same time affects the number of
demonstrations required to learn the task, the demands fdg- 3. Average level of autonomy of a single robot over tharse of
time and attention placed on the teacher, and the delay tHZ{""9 (5-robot learning example).

each robot experiences in obtaining a demonstration.

All evaluation results presented in this paper were per-
formed with a single teacher. As with all human user trials, 3oaf
we must account for the fact that the human teacher also
learns and adapts over the course of the evaluation. To
counter this effect, the teacher performed a practice run
of each experiment, which was then discarded from the
evaluation. An alternate evaluation method would be to
eliminate the human factor by using a standard controller to
respond to all demonstration requests in a consistent manne sof
This approach, however, would prevent us from evaluating
the effect multiple robots have on teacher performance.

Average Number of Demonstrations Per Robot
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A. Robot Autonomy Z;gc.hﬁom,;\t\./erage number of demonstrations performed by thehier for
Figure 3 shows how the level of autonomy, measured as

the percentage of autonomous actions versus demonsgation

changes for an individual robot over the course of trainingn refining the policy and addressing previously unencoun-

Data in the figure presents the average autonomy over tinered states. The duration of this learning time is depeinden

of robots in the 5-robot beacon homing experiment. Thapon the frequency with which novel and unusual states are

shape of the curve seen in this figure is typical of CBAencountered. Learning is complete once the correct action i

learning, in which robots begin with no initial knowledgeselected for all states with high confidence.

about the task and request many demonstrations early in the )

training process. The domain knowledge acquired from the§& Number of Demonstrations

initial demonstrations provides the robot with the expecie In this section, we examine how the number of demon-

for handling most commonly encountered domain statestrations performed by the teacher on average for each,robot

As a result, following the initial burst of demonstrationand in total for each experiment, changes with respect to the

requests, the robot quickly achieves 80-95% autonomounsimber of robots. Figures 4 shows that as the number of

execution. The remainder of the training process then fgusrobots grows, we observe a slight increase in the number of
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] ) ) ] . . Fig. 8. Graphs showing the distribution of the number of diemeous
demonstrations required per robot. This possibly summgisi requests for each experiment.

increase is due to the fact that, although the number of state

features in the representation of our domain does not change

the range of poss!ble feature values does. Specifically, _”%uggests that this approach will continue to scale to even

an N-robot experiment, the value of features representm'grger tasks.

the number of robots located at a beacép,, have the

range [ON]. As a result, extra demonstrations are require®. Attention Demand on the Teacher

in the presence of a greater number of robots to provide In addition to the overall training time and number of

guidance in the additional states. While similar effects ardemonstrations, it is important to understand the demands

present in many domain representations, state features At multiple robots place on the teacher. The teacher expe-

often be designed or modified in such a way that their ranggences the greatest number of demonstration requestsgduri

is independent of factors such as the number of robotge earliest stages of learning, possibly from multipleotsb

For example, in the beacon homing domain this could bgt the same time. To evaluate the demand on the teacher’s

achieved by converting,, to a boolean feature that indicatesattention during this most laborious training segment, we

whether the beacon’s capacity has been reached or not. calculate the longest continuous period of time during Whic
Figure 5 shows how the total number of demonstrationgie teacher has at least one demonstration request pending.

required for each experiment changes with respect to thenis value provides insight into the degree of mental effort

number of robots. The rate of growth is nearly linear, withhat is required from the teacher.

seven robots requiring nearly 300 total demonstrations to Figure 7 plots the duration of the longest continuous period

learn the task. The overall number of demonstrations thaf demonstration requests for each experiment. The data

must be performed has a significant effect on the overathows that the length of this time period grows quickly,

training time, as discussed in the next section. possibly exponentially, with the number of robots. In ex-
. _ periments with only a single robot, demonstration requests
C. Training Time last only a few seconds at a time; as soon as the teacher

Figure 6 presents the change in the overall experimendsponds to the request, the robot switches to performing
training time with respect to the number of robots. The datthe demonstrated action. As the number of robots increases,
shows a strongly linear trend, with seven robots requiringowever, so does the number of simultaneous requests from
just over 1.5 hours to train. This result is significant as imultiple robots. In the 7-robot experiment, this resultsain
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Fig. 9. Average amount of time a robot spends waiting for aafestration  Fig. 10.  Average percentage of time a robot spends waiting afo
response from the teacher. demonstration over the course of training.

3.5 minute uninterrupted segment of demonstration regueséacher, as measured by the number of pending demonstra-
for the teacher. tion requests. In our evaluation, we show that this in turn
Additionally, we examine the total time per experimenimpacts demonstration delay and robots must spend more
that multiple demonstration requests are pending. Figuretfine waiting for the teacher’s response. While this has no
presents a set of graphs showing the distribution of theegative impact on learning in the presented domain, delay
number of simultaneous requests for each experiment. Thigay impact performance in other tasks.
data indicates that for all experiments, the greatest ptage  Further studies are required before making broad con-
of time is spent with only a single demonstration requestlusions about the scalability of the presented approach.
However, the teacher spends over 3 minutes in the 5-robgt particular, more research is needed to determine what
experiment, and over 13 minutes in the 7-robot experimerimpact state representation, action duration, and degree o
faced with multiple queries. This growing number of simul-collaboration between robots have on learning performance
taneous queries has a significant impact on demonstratigAd scalability.
delay, the amount of time that passes between the robot'sHowever, based on the presented case study we find that no
initial request and the teacher’s response. absolute upper bound exists on the number of robots that can
be taught at the same time. The maximum number of robots
used in the experiments, seven, represents our own liovitati
As discussed in the previous section, simultaneous demain-terms of time and the number of available robots, not a
stration requests from multiple robots become common dignitation of the algorithm. Furthermore, insights gainied
the number of robots increases. As a result, robots are ofténis evaluation can be used as a guide for the development
required to wait while the teacher responds to other robotsf future applications for CBA learning. For example, our
Figure 9 shows that the average time a robot spends waitikgowledge of the trend in overall training time requirensent
for a demonstration grows with respect to the number afan be used to limit the number of robots in other applica-
learners from only 2 seconds for a single robot to 12 secontiens for which the availability of an expert teacher is lied
for seven robots. Figure 10 plots the percentage of timeta some fixed time. Similarly, the number of robots in other
robot spends waiting on average for a demonstration ovdomains may be affected by the amount of time a robot may
the course of training. Not surprisingly, we observe that thremain idle while waiting for a demonstration.
demonstration delay is greatest early in the training mece
when the teacher is most busy with initial demonstration VI. COMMON POLICY LEARNING
requests. A promising direction for future work is to exaenin  |n the standard formulation of the CBA learning algorithm,
the possibility of staggering the times at which novice tsbo analyzed above, the teacher provides each robot with an
are introduced to the task in order to reduce the demand igfdividual set of demonstrations from which a unique policy
the initial training phase on the teacher. is derived. This generalized approach is highly suitable
for domains in which robots perform different roles and
functions. However, in some domains, as in our experiments,
In summary, our findings show promising trends forthe same behavior may be desirable for each robot. In such
the scalability of the presented multi-robot demonstratiocases, teaching the same policy to multiple robots results
learning approach. Particularly significant is that thealtot in a large number of redundant demonstrations. To address
training time grows linearly with the number of robots,this case, we propose that all robots learning the same
allowing learning to scale easily to larger tasks. Somewh#ask learn a singlecommon policy by consolidating all
unsurprisingly, we also found that increasing the numbetemonstration data. The sharing of information can occur
of robots also significantly increases the workload of théy collecting all data within a single dataset, or by freely

E. Demonstration Delay

F. Evaluation Summary
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Fig. 11. Comparison of the single common policy and multipiividual policy CBA learning approaches. (a) Total tingtime. (b) Attention demand
on the teacher.

exchanging each demonstration among all robots so as @waluated the scalability of this approach with regard to
maintain a distributed set of identical policies. In thistsen, the number of demonstrations required to learn the task,
we evaluate the performance of the common policy approathe demands for time and attention placed on the teacher,
using the 7-robot beacon homing domain. and the delay that each robot experiences in obtaining a
Our study found that using the common policy techniquedemonstration. The results of our case study indicate that
the teacher was required to perform a total of only 440 strict upper bound exists on the number of robots due
demonstrations, compared to nearly 300 total demonstisatioto limitations of the algorithm. Instead, knowledge gained
previously required for this task. Figure 11(a) shows th&om this evaluation can be used to guide the design of real-
overall training time of the experiment, which was simyarl world applications for CBA learning in which real-world
reduced to only 23 minutes, compared to the 95 minutes fepnstraints on teacher time and robot performance must be
the standard approach. In fact, while seven robots learnitgken into account. Additionally, we contributed analysis
a common policy require more of the teacher’s time thaof a special case of CBA learning in which a common
a single learner, they require less time than three robop®licy is learned by all robots by sharing demonstrations.
learning individual policies. The presented work serves as a stepping stone for further
Figure 11(b) shows that a common policy similarly retesearch, opening the door to many promising directions for
duces the attention demand that seven robots require of timilti-robot demonstration learning reseach.
teacher. This effect can be attributed to the fact that fre-
guently a demonstration performed for one robot addresses
the queries of other currently waiting robots. An additional!] P Abbeel and A. Y. Ng. Apprenticeship learning via irs@reinforce-
. ) . . ment learning. Innternational Conference on Machine learnjnigew
effect of this occurrence is that the average waiting time of vork, NY, USA, 2004. ACM Press.
the common policy approach is reduced from 12 seconds & D. C. Bentivegna.Learning from Observation Using Primitive$hD

1.2 seconds. This evaluation clearly shows the benefitseof th tgesis, ICozllgge of Computing, Georgia Institute of Techgg) Atlanta,
) ' A, July 4.

common policy approach over distributed policy learning ing) c.-c. Chang and C.-J. Lin.LIBSVM: a library for support vector
cases where a common policy is desired. machines 2007. Software available at http://www.csie.ntu.edistw

Note that performing common policy learning in multi- _ Sllin/libsvm.

. L - . 4] S. Chernova and M. Veloso. Interactive policy learningrough
robot domains with independent robots, results in the SarJ‘é confidence-based autonomjournal of Artificial Intelligence Research

policy as when training a single robot alone. Using multiple  (to appear)

robots in this case may speed up learning, however, sinE® S: Chermova and M. Veloso. Multi-thresholded approashdémon-
stration selection for interactive robot learning. Rroceedings of

uncommon states are more Iikely to be encquntered With  3rg ACM/IEEE International Conference on Human-Robot fattion
many learners. In the case of multi-robot domains with non- (HRI'08), March 2008.

independent robots. as in the case of the beacon homi% S. Chernova and M. Veloso. Teaching multi-robot cooation using
! demonstration of communication and state sharing (shqrepa In

domain, common policy learning differs from training and  proceedings of the International Conference on Autonomagents
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