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Abstract— In this paper, we present the first application of
demonstration learning to more than two robots and perform
an analysis of the scalability of the Confidence-Based Autonomy
(CBA) multi-robot demonstration learning algorithm. Thro ugh
experimental evaluation using up to seven Sony AIBO robots,
we examine how the number of robots being taught by a human
teacher at the same time affects the number of demonstrations
required to learn the task, the time and attention demands on
the teacher, and the delay each robot experiences in obtaining
a demonstration. Additionally, we contribute an analysis of a
special case of CBA learning in which all robots learn a common
task policy.

I. I NTRODUCTION

Learning from demonstration, also known as teaching by
demonstration, is a learning technique based on human-
robot interaction that provides an intuitive interface for
robot programming. In this approach, a teacher, typically a
human, performs demonstrations of the desired behavior to
the robot. The robot records the demonstrations as sequences
of state-action pairs, which it then uses to learn a policy that
reproduces the observed behavior.

Demonstration-based learning has been gaining
widespread attention for providing a fast and intuitive
method for transferring knowledge from humans to robots.
Recent work has led to the development of a wide variety
of single-robot demonstration learningalgorithms, in which
a single person teaches a single robot and a policy is
learned based on underlying reinforcement learning [1],
classification [8], [9] or regression [2], [7] learning methods.

However, solutions to complex tasks often require the
coordination and cooperation of multiple robots. In our
previous work, we introduced theConfidence-Based Auton-
omy (CBA)demonstration learning algorithm that enables a
single person to teach small groups of autonomous robots
to perform collaborative tasks [4], [6]. We believe this to be
the first algorithm that enables multiple distributed robots to
be taught at the same time using demonstration. The ability
to teach multiple robots at the same time is particularly
important for addressing collaborative domains as it enables
each robot to learn to respond appropriately to the actions
of others. In previous work, we demonstrated the feasibility
of the CBA learning approach using two humanoid robots
performing a joint ball sorting task [6].

In this paper, we extend our previous work and present an
analysis of the scalability of the CBA algorithm. Through
experimental evaluation, we examine how the number of
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robots being taught by the teacher at the same time affects
the number of demonstrations required to learn the task, the
time and attention demands on the teacher, and the delay
each robot experiences in obtaining a demonstration. Based
on our evaluation using up to seven Sony AIBO robots, we
conclude that most of the demands on the teacher and robots
grow at a roughly linear rate with respect to the number
of learners. Most importantly, our analysis indicates thatno
strict upper bound exists on the number of robots due to
the algorithm’s limitations. Instead, the number of robotsis
likely to be limited by real-world factors particular to each
learning domain, such as the amount of time the teacher is
able to invest in training.

To allow for a direct comparison between different num-
bers of robots, each robot in our experiments was taught to
perform the same task. As a final contribution of this paper,
we present an analysis of a special case of CBA learning
in which all robots consolidate their knowledge and share
demonstration examples. We show that for this subset of
multi-robot learning problems, the training time and number
of demonstrations can be significantly reduced by learning a
single common policy for all robots.

In the following section, we present the single-robot
Confidence-Based Autonomy algorithm that is used to learn
an individual policy for each robot. We then present the com-
plete multi-robot learning framework in Section III, followed
by a description of the evaluation domain in Section IV.
Results of the scalability analysis are presented in Section V.
We conclude by examining a special case of CBA learning
in Section VI.

II. CONFIDENCE-BASED AUTONOMY ALGORITHM

In this section, we present a summary of the single-robot
Confidence-Based Autonomy algorithm that lies at the heart
of our multi-robot demonstration learning framework. For
full details and evaluation of CBA, please see [4], [5].

Confidence-Based Autonomyis a single-robot demonstra-
tion learning algorithm that enables a robot to learn a
policy through interaction with a human teacher. In this
learning approach, the robot begins with no initial knowledge
and learns a policy incrementally through demonstrations
acquired as it practices the task.

Each demonstration is represented by a state-action pair,
(s, a), symbolizing the correct action to perform in a par-
ticular state. The robot’s states is represented using ann-
dimensional feature vector that can be composed of con-
tinuous or discrete values. The robot’s actions are bound
to a finite seta ∈ A of action primitives, which are the
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Fig. 1. (a) Diagram of Confidence-Based Autonomy, showing the interplay between the Confident Execution and Corrective Demonstration components.
(b) Visualization of multi-robot demonstration learning.

basic actions that can be combined together to perform the
overall task. The goal is for the robot to learn to imitate the
demonstrated behavior by learning a policy mapping states
si to actions inA. The policy is learned using supervised
learning and is represented by classifierC : s → (a, c),
trained using state vectorssi as inputs, and actionsai

as labels. For each classification query, the model returns
the highest confidence actiona ∈ A and action-selection
confidencec. CBA can be combined with any supervised
learning algorithm that provides a measure of confidence in
its classification. In this work, the policy is represented by a
one-against-one multiclass Support Vector Machine (SVM)
with a radial basis function kernel [3].

The most important element of the CBA algorithm is
the method for obtaining demonstration examples, which
consists of two components,Confident Execution (CE), an
algorithm that enables the robot to learn a policy based
on demonstration examples selected by regulating its au-
tonomy, andCorrective Demonstration (CD), an algorithm
that enables the teacher to improve the learned policy by
correcting mistakes made by the robot through additional
demonstrations. Combined, these techniques provide a mech-
anism for obtaining teacher demonstrations, regulating the
robot’s autonomy during the learning process, and learning
an individual policy for each robot. Figure 1(a) presents an
overview of the combined learning process.

A. Confident Execution

The Confident Execution algorithmenables the robot to
select demonstrationsin real time as it interacts with the
environment, targeting states that are unfamiliar or in which
the current policy action is uncertain. At each timestep,
the algorithm obtains the current robot state and determines
whether a demonstration of the correct action in this state
will provide useful information and improve the robot’s
policy. If demonstration is required, the robot stops and
actively requests help from the teacher (through sound,
speech or other means) and waits for the person to select

an action using a graphical interface. Upon obtaining the
demonstration, the algorithm updates the robot’s policy using
the acquired action label and performs the demonstrated
behavior. If a demonstration is not required, the robot
autonomously executes the action specified by its policy
without consulting the teacher. Demonstrations are selected
based on the action selection confidence of classifierC.

B. Corrective Demonstration

The above Confident Execution algorithm enables the
robot to identify unfamiliar and ambiguous states and pre-
vents autonomous execution in these situations. However,
states in which an incorrect action is selected with high con-
fidence can still occur, typically due to over-generalization
of the classifier. When allowing the robot to select demon-
stration and regulate its own autonomy, it is important to
provide a mechanism for correcting unwanted behavior. The
Corrective Demonstration algorithmenables the teacher to
correct the robot’s mistakes by performing additional demon-
strations. If an incorrect action is selected for autonomous
execution by the Confident Execution algorithm above, Cor-
rective Demonstration allows the teacher to retroactively
demonstrate what action should have been selected in its
place. In addition to indicating that the wrong action was
selected, this method also provides the algorithm with an
additional training point, leading the robot to learn quickly
from its mistakes.

III. M ULTI -ROBOT LEARNING

Multi-robot learning is achieved by replicating instancesof
the single-robot CBA architecture, as shown in Figure 1(b).
This approach takes advantage of the adjustable autonomy
provided by the Confident Execution component of CBA to
enable a single teacher to work with multiple robots at the
same time. Controlled by its independent instance of CBA,
each robot will act autonomously only when highly confident
in its actions, and pause to wait for a demonstration in low
confidence states.



Using this approach, each robot acquires its own set of
demonstrations and learns its individual task policy. Specif-
ically, given a group of robotsR, our goal is for each robot
ri ∈ R to learn policyΠi : Si → Ai mapping from the
robot’s states to its actions. Note that each robot may have
a unique state and action set, allowing distinct policies tobe
learned by possibly heterogeneous robots. In Section VI we
explore a special case of CBA learning in which the desired
policy Πi is the same for all robots. We show that for this
case, the number of demonstrations and overall training time
can be reduced by learning a singlecommonpolicy.

Algorithm 1 outlines the general procedure followed by
the teacher in performing multi-robot demonstrations. Using
this approach, the teacher alternates between responding to
demonstration requests when they are present, and correcting
any mistakes in the autonomous behavior of the robots. Note
that the teacher interacts with only a single robot at any one
time, while other robots are monitored in the background.
The functionf(D), which regulates the selection demonstra-
tion requests, can be used to implement a variety of selection
policies, such as a first-in-first-out or round-robin ordering.
In the experiments presented in this paper, a demonstration
request is selected arbitrarily from the set by the teacher.

Communication is an important part of many multi-robot
tasks. To differentiate between data sources, we represent
each robot’s state as the union of subsets,s = {Fo∪Fs∪Fc},
such that:

• Fo = set of private, locally observed state features
• Fs = set of locally observed state features that are

automatically communicated to teammates each time
their value changes

• Fc = set of state features containing data either directly
contained in, or calculated based on, information com-
municated from teammates

This representation seamlessly combines local and commu-
nicated data, allowing each robot to make decisions based
on all available information.

The CBA demonstration learning algorithm and the pre-
sented multi-robot framework have been applied to a wide
variety of domains, ranging from a simulated driving task [4]
to a ball-sorting task involving two Sony humanoid QRIO
robots [6]. In the following section we introduce a new multi-
robot domain that is used in the scalability analysis.

IV. M ULTI -ROBOT BEACON HOMING DOMAIN

Evaluation of the scalability of the Confidence-Based
Autonomy algorithm was performed in a beacon homing
domain using Sony AIBO robots. Figure 2 shows three
examples of these distributed autonomous robots operating
in the domain, which consists of an open area with three
uniquely-colored beacons (B = {B1, B2, B3}) located
around the perimeter. Each robot is able to identify the
relative position of a beacon using its onboard camera, and to
communicate information via the wireless network. The set
of action available to each robot is limited to basic movement
commands,A = {Forward, Left, Right, Search, Stop},
used by each robot to navigate in the environment.

Algorithm 1 Multi-robot demonstration procedure.
Let D be set of current demonstration requests
loop

if D 6= ∅ then
- Select robot demonstration requestr according to
some functionf(D)
- Perform demonstration for robotr

else
- Observe autonomous execution of the robots
if correction is required for robotr then

- Perform correction for robotr
end if

end if
end loop

For this task, we represent the robot’s states by the
following set of features:

• Fo = {B1d, B1a, B2d, B2a, B3d, B3a}
• Fs = {myBeaconID}
• Fc = {B1nr, B2nr, B3nr}

The set of observed features,Fo, contains information about
the robot’s relative distance (bd) and angle (ba) to each
beaconb ∈ B. For any beacon not currently in view, the
distance and angle are set to the default values 4000 mm
and 1.8 rad, respectively, to indicate that this beacon is far
away. The set of shared state features,Fs, contains a single
value,myBeaconID, which is set to a beacon’s ID number
if the robot is within a set distancer of a beacon, and
−1 if the robot is not located near a beacon. Each robot
communicates the value of this feature to its teammates.
In turn, all robots use this shared information to determine
the values of the calculated featuresFc, which maintain the
count of the current number of robots occupying each of the
beacons.

In summary, using the above representation, each robot
knows its position relative to beacons that it observes, and
the number of other robots already located at each of the
beacons. Using this information, we would like the teacher to
teach each robot to navigate from a random initial location in
the center of the open region to one of the colored beacons.
Specifically, the selection of a beacon is governed by the
following rules:Given a maximum limitm for the number of
robots that can occupy a marker, search for a beacon until
one is found for which the number of robots,bnr, is less than
m. Navigate to that beacon and occupy it by stopping within
a set distancer. If at any point the number of robots at the
selected beacon exceedsm, search for another beacon.

These explicit rules of the task are known only to the
teacher. During the learning process, each robot in the exper-
iment learns an independent policy representing this behavior
from demonstrations. All robots were taught the same task to
ensure a fair comparison between robots for the scalability
evaluation. The maximum number of robots allowed per
beacon for each experiment was set tom = ceil( #Robots

#Beacons
),

such that at least one beacon must contain the maximum
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Fig. 2. Beacon homing domain: (a) Example starting configuration, 3 robots. (b) Example intermediate stage, 5 robots. (c) Example final configuration,
7 robots.

number of robots. Each experiment began with all robots
located in the center of the open region (Figure 2(a)) and
ended once all robots had reached a beacon (Figure 2(c)).
Training was performed until all robots executed the desired
behavior correctly without requesting demonstrations.

V. EVALUATION

The scalability of the CBA algorithm was evaluated in
the beacon homing domain using 1, 3, 5, and 7 robots. In
this section, we discuss how the number of robots taught
by the teacher at the same time affects the number of
demonstrations required to learn the task, the demands for
time and attention placed on the teacher, and the delay that
each robot experiences in obtaining a demonstration.

All evaluation results presented in this paper were per-
formed with a single teacher. As with all human user trials,
we must account for the fact that the human teacher also
learns and adapts over the course of the evaluation. To
counter this effect, the teacher performed a practice run
of each experiment, which was then discarded from the
evaluation. An alternate evaluation method would be to
eliminate the human factor by using a standard controller to
respond to all demonstration requests in a consistent manner.
This approach, however, would prevent us from evaluating
the effect multiple robots have on teacher performance.

A. Robot Autonomy

Figure 3 shows how the level of autonomy, measured as
the percentage of autonomous actions versus demonstrations,
changes for an individual robot over the course of training.
Data in the figure presents the average autonomy over time
of robots in the 5-robot beacon homing experiment. The
shape of the curve seen in this figure is typical of CBA
learning, in which robots begin with no initial knowledge
about the task and request many demonstrations early in the
training process. The domain knowledge acquired from these
initial demonstrations provides the robot with the experience
for handling most commonly encountered domain states.
As a result, following the initial burst of demonstration
requests, the robot quickly achieves 80–95% autonomous
execution. The remainder of the training process then focuses

Fig. 3. Average level of autonomy of a single robot over the course of
training (5-robot learning example).

Fig. 4. Average number of demonstrations performed by the teacher for
each robot.

on refining the policy and addressing previously unencoun-
tered states. The duration of this learning time is dependent
upon the frequency with which novel and unusual states are
encountered. Learning is complete once the correct action is
selected for all states with high confidence.

B. Number of Demonstrations

In this section, we examine how the number of demon-
strations performed by the teacher on average for each robot,
and in total for each experiment, changes with respect to the
number of robots. Figures 4 shows that as the number of
robots grows, we observe a slight increase in the number of



Fig. 5. Total number of demonstrations performed in each experiment.

Fig. 6. Total training time with respect to number of robots.

demonstrations required per robot. This possibly surprising
increase is due to the fact that, although the number of state
features in the representation of our domain does not change,
the range of possible feature values does. Specifically, in
an N -robot experiment, the value of features representing
the number of robots located at a beacon,bnr, have the
range [0,N ]. As a result, extra demonstrations are required
in the presence of a greater number of robots to provide
guidance in the additional states. While similar effects are
present in many domain representations, state features can
often be designed or modified in such a way that their range
is independent of factors such as the number of robots.
For example, in the beacon homing domain this could be
achieved by convertingbnr to a boolean feature that indicates
whether the beacon’s capacity has been reached or not.

Figure 5 shows how the total number of demonstrations
required for each experiment changes with respect to the
number of robots. The rate of growth is nearly linear, with
seven robots requiring nearly 300 total demonstrations to
learn the task. The overall number of demonstrations that
must be performed has a significant effect on the overall
training time, as discussed in the next section.

C. Training Time

Figure 6 presents the change in the overall experiment
training time with respect to the number of robots. The data
shows a strongly linear trend, with seven robots requiring
just over 1.5 hours to train. This result is significant as it

Fig. 7. (a) Attention demand on the teacher.

Fig. 8. Graphs showing the distribution of the number of simultaneous
requests for each experiment.

suggests that this approach will continue to scale to even
larger tasks.

D. Attention Demand on the Teacher

In addition to the overall training time and number of
demonstrations, it is important to understand the demands
that multiple robots place on the teacher. The teacher expe-
riences the greatest number of demonstration requests during
the earliest stages of learning, possibly from multiple robots
at the same time. To evaluate the demand on the teacher’s
attention during this most laborious training segment, we
calculate the longest continuous period of time during which
the teacher has at least one demonstration request pending.
This value provides insight into the degree of mental effort
that is required from the teacher.

Figure 7 plots the duration of the longest continuous period
of demonstration requests for each experiment. The data
shows that the length of this time period grows quickly,
possibly exponentially, with the number of robots. In ex-
periments with only a single robot, demonstration requests
last only a few seconds at a time; as soon as the teacher
responds to the request, the robot switches to performing
the demonstrated action. As the number of robots increases,
however, so does the number of simultaneous requests from
multiple robots. In the 7-robot experiment, this results ina



Fig. 9. Average amount of time a robot spends waiting for a demonstration
response from the teacher.

3.5 minute uninterrupted segment of demonstration requests
for the teacher.

Additionally, we examine the total time per experiment
that multiple demonstration requests are pending. Figure 8
presents a set of graphs showing the distribution of the
number of simultaneous requests for each experiment. This
data indicates that for all experiments, the greatest percentage
of time is spent with only a single demonstration request.
However, the teacher spends over 3 minutes in the 5-robot
experiment, and over 13 minutes in the 7-robot experiment,
faced with multiple queries. This growing number of simul-
taneous queries has a significant impact on demonstration
delay, the amount of time that passes between the robot’s
initial request and the teacher’s response.

E. Demonstration Delay

As discussed in the previous section, simultaneous demon-
stration requests from multiple robots become common as
the number of robots increases. As a result, robots are often
required to wait while the teacher responds to other robots.
Figure 9 shows that the average time a robot spends waiting
for a demonstration grows with respect to the number of
learners from only 2 seconds for a single robot to 12 seconds
for seven robots. Figure 10 plots the percentage of time a
robot spends waiting on average for a demonstration over
the course of training. Not surprisingly, we observe that the
demonstration delay is greatest early in the training process
when the teacher is most busy with initial demonstration
requests. A promising direction for future work is to examine
the possibility of staggering the times at which novice robots
are introduced to the task in order to reduce the demand of
the initial training phase on the teacher.

F. Evaluation Summary

In summary, our findings show promising trends for
the scalability of the presented multi-robot demonstration
learning approach. Particularly significant is that the total
training time grows linearly with the number of robots,
allowing learning to scale easily to larger tasks. Somewhat
unsurprisingly, we also found that increasing the number
of robots also significantly increases the workload of the

Fig. 10. Average percentage of time a robot spends waiting for a
demonstration over the course of training.

teacher, as measured by the number of pending demonstra-
tion requests. In our evaluation, we show that this in turn
impacts demonstration delay and robots must spend more
time waiting for the teacher’s response. While this has no
negative impact on learning in the presented domain, delay
may impact performance in other tasks.

Further studies are required before making broad con-
clusions about the scalability of the presented approach.
In particular, more research is needed to determine what
impact state representation, action duration, and degree of
collaboration between robots have on learning performance
and scalability.

However, based on the presented case study we find that no
absolute upper bound exists on the number of robots that can
be taught at the same time. The maximum number of robots
used in the experiments, seven, represents our own limitation
in terms of time and the number of available robots, not a
limitation of the algorithm. Furthermore, insights gainedin
this evaluation can be used as a guide for the development
of future applications for CBA learning. For example, our
knowledge of the trend in overall training time requirements
can be used to limit the number of robots in other applica-
tions for which the availability of an expert teacher is limited
to some fixed time. Similarly, the number of robots in other
domains may be affected by the amount of time a robot may
remain idle while waiting for a demonstration.

VI. COMMON POLICY LEARNING

In the standard formulation of the CBA learning algorithm,
analyzed above, the teacher provides each robot with an
individual set of demonstrations from which a unique policy
is derived. This generalized approach is highly suitable
for domains in which robots perform different roles and
functions. However, in some domains, as in our experiments,
the same behavior may be desirable for each robot. In such
cases, teaching the same policy to multiple robots results
in a large number of redundant demonstrations. To address
this case, we propose that all robots learning the same
task learn a single,common, policy by consolidating all
demonstration data. The sharing of information can occur
by collecting all data within a single dataset, or by freely
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Fig. 11. Comparison of the single common policy and multipleindividual policy CBA learning approaches. (a) Total training time. (b) Attention demand
on the teacher.

exchanging each demonstration among all robots so as to
maintain a distributed set of identical policies. In this section,
we evaluate the performance of the common policy approach
using the 7-robot beacon homing domain.

Our study found that using the common policy technique,
the teacher was required to perform a total of only 44
demonstrations, compared to nearly 300 total demonstrations
previously required for this task. Figure 11(a) shows the
overall training time of the experiment, which was similarly
reduced to only 23 minutes, compared to the 95 minutes for
the standard approach. In fact, while seven robots learning
a common policy require more of the teacher’s time than
a single learner, they require less time than three robots
learning individual policies.

Figure 11(b) shows that a common policy similarly re-
duces the attention demand that seven robots require of the
teacher. This effect can be attributed to the fact that fre-
quently a demonstration performed for one robot addresses
the queries of other currently waiting robots. An additional
effect of this occurrence is that the average waiting time of
the common policy approach is reduced from 12 seconds to
1.2 seconds. This evaluation clearly shows the benefits of the
common policy approach over distributed policy learning in
cases where a common policy is desired.

Note that performing common policy learning in multi-
robot domains with independent robots, results in the same
policy as when training a single robot alone. Using multiple
robots in this case may speed up learning, however, since
uncommon states are more likely to be encountered with
many learners. In the case of multi-robot domains with non-
independent robots, as in the case of the beacon homing
domain, common policy learning differs from training and
replicating a single robot policy as it additionally allowsthe
robots to learn the collaborative aspects of the task.

VII. C ONCLUSION

In this paper, we presented the first known application of
demonstration learning to more than two robots, enabling
a single person to train up to seven robots at the same
time. We contributed an evaluation of the Confidence-Based
Autonomy multi-robot demonstration learning algorithm and

evaluated the scalability of this approach with regard to
the number of demonstrations required to learn the task,
the demands for time and attention placed on the teacher,
and the delay that each robot experiences in obtaining a
demonstration. The results of our case study indicate that
no strict upper bound exists on the number of robots due
to limitations of the algorithm. Instead, knowledge gained
from this evaluation can be used to guide the design of real-
world applications for CBA learning in which real-world
constraints on teacher time and robot performance must be
taken into account. Additionally, we contributed analysis
of a special case of CBA learning in which a common
policy is learned by all robots by sharing demonstrations.
The presented work serves as a stepping stone for further
research, opening the door to many promising directions for
multi-robot demonstration learning reseach.
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