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ABSTRACT

In this paper, we present flexMLfD, a robot independent
and task independent demonstration learning system that
supports a variable number of robot learners. Our approach
is based on the Confidence-Based Autonomy (CBA) demon-
stration learning algorithm, which provides the means for a
single robot to learn a task policy through interaction with
a human teacher. The generalized representation and ad-
justable robot autonomy provided by the CBA algorithm en-
able the flexible system design and multi-robot learning ca-
pabilities of fletMLfD. Building upon the CBA single-robot
algorithm, we contribute a robot-independent modular soft-
ware architecture for multi-robot learning, interaction and
control. To highlight the generality of the presented learn-
ing system, we present three example domains, each utilizing
from two to seven real robots.

Categories and Subject Descriptors
1.2.9 [Artificial Intelligence]: Robotics

General Terms

Algorithms, Design, Human Factors

Keywords

human-robot interaction, learning from demonstration, multi-
robot learning

1. INTRODUCTION

The interaction of robots with humans is inherently com-
plex and varied and many methods of human-robot interac-
tion have been developed for different robotics applications.
In this paper, we examine robot interaction and control in
the context of learning from demonstration (LfD). Learning
from demonstration, also known as teaching by demonstra-
tion, is a learning approach based on human-robot interac-
tion that provides an intuitive technique for robot program-
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ming. In this approach, a teacher, usually a human, per-
forms demonstrations of the desired behavior to the robot.
The robot records the demonstrations as sequences of state-
action pairs, which it then uses to learn a policy, a map-
ping from all world states to actions, that reproduces the
observed behavior.

Demonstration learning inherently requires interaction be-
tween the robot and the teacher. Many different demonstra-
tion learning systems have been proposed utilizing a variety
of interaction methods, including natural language [2], ges-
tures [3], joysticking devices [15] and execution of the task by
other robots [12]. Regardless of the method of interaction,
existing approaches share certain common features, such as
application-specific design and dependence on one-to-one in-
teraction with the teacher. In this paper, we highlight two
research directions that we believe to be fundamental for the
future development of demonstration learning, and present
a complete learning system addressing these challenges.

Platform and task independent system design: When de-
veloping a learning system with a particular application in
mind, it is often tempting to take advantage of task-specific
optimizations and simplifications to improve performance.
However, task-specific elements severely limit the applica-
bility of the developed technique to new domains. Inspired
by general purpose robot development software such as MS
Robotics Studio [1] and the Player Project [9], which pro-
vide a flexible programming interface for a wide range of
robotic platforms, our goal is to develop a task-independent
and robot-independent system for learning from demonstra-
tion. A general learning system of this kind will serve as a
stepping stone for future development in this research area,
allowing for faster development times and greater compari-
son between algorithms.

Multi-robot demonstration learning: For many applica-
tions, it is desirable for a single person to teach multiple
robots at the same time. This can occur for a variety of
reasons, for example, when teaching collaborative robot be-
haviors in which the actions of one robot depend upon the
state and actions of its teammate. Requiring an individual
teacher for each robot is inefficient and impractical in many
real-world settings. Instead, we would like a single person
to teach independent, and possibly unique, policies to multi-
ple robots at the same time. We refer to this policy learning
method as multi-robot learning from demonstration (MLfD).

In this paper, we present flexMLfD, the first task-independent
and robot-independent control interface for multi-robot demon-

stration learning. Our approach is based on the Confidence-
Based Autonomy (CBA) demonstration learning algorithm [4],



which enables a single robot to learn a task policy through
interaction with a human teacher. The generalized represen-
tation and adjustable robot autonomy provided by the CBA
algorithm enable the flexible system design and multi-robot
learning capabilities of flexMLfD. Based on this single-robot
algorithm, we contribute a robot-independent modular soft-
ware architecture for robot learning, interaction and control.
The presented system can be applied to a variable number of
learners, from one to multiple, independent or collaborative,
robots.

The flexMLfD system has been fully implemented and
tested using multiple real-world domains and robotic plat-
forms. In the following section, we discuss related work
in the area of human-robot interaction (HRI), followed by
an overview of the CBA algorithm in Section 3. We then
present the complete multi-robot architecture in Section 4,
and an overview of the demonstration learning process in
Section 5. We conclude by presenting three real-world tasks
that have been successfully learned using this system, each
involving from two to seven robots.

2. RELATED WORK

Interfaces for the interaction and control of multiple robots
have been studied in the HRI community for many robotics
applications. A significant portion of existing work has fo-
cused on the human side of the interaction, examining the
effects of various design elements on user performance [13,
11]. For example, closely related to our problem of multi-
robot demonstration learning is an interface proposed by
Glas et al. [10] for the control of multiple social robots.
However, significant differences between the proposed social
interface and our own work include the type and level of in-
teraction and the need for policy learning. In this paper, we
examine the interaction and control problem from the robot
perspective, presenting a complete software system that en-
ables robots to learn to perform tasks with complete auton-
omy. Usability and design studies of the proposed interface
have been left for future work.

Much previous work has been devoted to the evaluation
and study of multi-robot control from the systems perspec-
tive. Humphrey et al. [14] present a relational display de-
signed for the control of a variable number of robots, which
was successfully used to teleoperate up to nine simulated
robots in a bomb defusing task. Fong et al. [8] present
HRI/OS, a software framework for establishing interaction
and dialog in human-robot teams. Targeted at execution of
operational tasks, such as resource collection, this system
supports a variety of user interfaces and robot platforms
through an extensible API, making it applicable to a wide
range of applications.

Wang and Lewis [16] present a study evaluating how the
degree of operator control affects task performance in multi-
robot tasks. The authors conclude that mixed initiative
teams of robots performed more successfully at a simulated
urban search and rescue task than either fully autonomous or
manually controlled teams. Similar results are supported by
other studies in adjustable autonomy research, motivating
the use of partial autonomy in our multi-robot demonstra-
tion learning framework.

All of the above systems provide interfaces for robot con-
trol and navigation, but do not include a learning compo-
nent. In particular, we are not aware of any system designed
to address multi-robot interaction and control in the context

of learning from demonstration. While demonstration-based
systems have much in common with other interactive and
semi-autonomous robotic systems, they have the following
unique set of design requirements:

e Policy Learning The most important goal of the learning
from demonstration system is to enable the robot to learn
a policy representing the demonstrated behavior and to
successfully reproduce this behavior in further trials.

e [nteraction The system must provide a method of demon-
stration and interaction between the robot and teacher.

e Adjustable Autonomy To facilitate scalability to multi-
robot applications, demonstration learning systems should
be designed with adjustable autonomy such that the robot
acts autonomously when it is familiar with the task and
requests guidance in the form of a demonstration upon
encountering an unfamiliar situation. In contrast to most
adjustable autonomy systems, however, the autonomy of
the robot should increase over time as the task is learned
until full autonomy is reached.

e Correction of Unwanted Behavior Similarly to existing
control systems, demonstration learning requires a method
of correcting any mistakes made by the robot during au-
tonomous execution. However, in addition to correcting
the physical action, the system should allow the robot to
learn from its mistake so that it will not be repeated in
the future.

e (Control System Design To be effective, the system must be
applicable under a wide range of conditions. The system
design must therefore maintain:

platform neutrality: allowing the use of any robotic plat-
form

domain neutrality: applicable to a wide range of tasks

location neutrality: executable on a wide range of com-
puter systems, onboard or offboard the robot

o Multi-Robot Learning The teacher must be able to effec-
tively monitor and interact with multiple robots at the
same time.

In the following sections we describe all components of the
fleeMLfD system and how they address these challenges.

3. SINGLE-ROBOT DEMONSTRATION
LEARNING ALGORITHM

In this section, we present a summary of the CBA demon-
stration learning algorithm that lies at the heart of the
fletMLfD learning system. For full details and evaluation
of the algorithm, please see [4, 6].

Confidence-Based Autonomy is a single-robot demonstra-
tion learning algorithm that enables a robot! to learn a pol-
icy through interaction with a human teacher. In this learn-
ing approach, the robot begins with no initial knowledge
and learns a policy incrementally through demonstrations
acquired as it practices the task.

Each demonstration is represented by a state-action pair,
(s,a), symbolizing the correct action to perform in a par-
ticular state. The robot’s state s is represented using an

!Physical or simulated.
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Figure 1: Overview of the fletMLfD demonstration learning system: (a) single robot learning architecture

(b) high-level overview of multi-robot learning.

n-dimensional feature vector that can be composed of con-
tinuous or discrete values. The robot’s actions are bound to
a finite set a € A of action primitives, which are the basic
actions that can be combined together to perform the overall
task. The goal is for the robot to learn to imitate the demon-
strated behavior by learning a policy mapping states s; to
actions in \A. The policy is learned using supervised learning
and is represented by classifier C : s — (a,c), trained using
state vectors s; as inputs, and actions a; as labels. For each
classification query, the model returns the highest confidence
action a € A and action-selection confidence c. CBA can be
combined with any supervised learning algorithm that pro-
vides a measure of confidence in its classification.

The most important element of the CBA algorithm is the
method for obtaining demonstration examples, which con-
sists of the following two components:

Confident Execution This algorithm enables the robot to
select demonstrations in real time as it interacts with the
environment, targeting states that are unfamiliar or in which
the current policy action is uncertain. At each timestep, the
algorithm evaluates the robot’s current state and actively
decides between autonomously executing the action selected
by its policy and requesting an additional demonstration
from the human teacher. Demonstrations are selected based
on the action selection confidence of classifier C.

Corrective Demonstration This algorithm enables the
teacher to correct the robot’s mistakes by performing ad-
ditional demonstrations. If an incorrect action is selected
for autonomous execution by the Confident Execution algo-
rithm above, Corrective Demonstration allows the teacher
to retroactively demonstrate what action should have been
selected in its place. In addition to indicating that the wrong
action was selected, this method also provides the algorithm
with an additional training point, leading the robot to learn
quickly from its mistakes.

Together, Confident Execution and Corrective Demon-
stration form an interactive learning algorithm that takes
advantage of the robot’s and teacher’s complimentary abili-
ties — the robot’s knowledge of its underlying policy and the
teacher’s knowledge of the task. Note that we assume that
the domain allows the robot to pause and request demon-
strations during the learning process.

The CBA algorithm addresses several of the key design re-
quirements for an effective multi-robot demonstration learn-
ing system, including interactive policy learning, adjustable
autonomy and correction. Additionally, the generic state
and action representation used by the algorithm provides
the basis for a task-independent learning system. Next, we
show how a complete multi-robot demonstration learning
system is built around this algorithm.

4. MULTI-ROBOT SYSTEM DESIGN

In this section, we present flexMLfD, our multi-robot demon-
stration learning system. We believe this to be the first ap-
proach that enables a single teacher to teach multiple robots
at the same time.

At the core of the flexMLfD system lies the CBA algo-
rithm, which establishes a general state and action represen-
tation and provides a means for single-robot policy learn-
ing through adjustable autonomy. To utilize the CBA al-
gorithm, we present the single-robot learning architecture
shown in Figure 1. The single robot architecture consists of
several software modules, at the heart of which is the Learn-
ing Control Interface (LCI). The LCI is a task-independent
and robot-independent software component that provides a
central control point for learning, managing the interaction
between the teacher, a single robot and the policy learner.
The LCI houses the CBA algorithm and provides interfaces
to the policy learner and the robot’s onboard software con-
troller. Additionally, the LCI provides a standard graphical
user interface (GUI) for interaction between the learning
software and the teacher. In the following sections, we de-
scribe each component of the learning system in detail.

4.1 Teaching Multiple Robots

Multi-robot learning is achieved by replicating instances of
the single-robot architecture, as shown in Figure 1(b). Using
this approach, each robot acquires its own set of demonstra-
tions and learns an individual task policy. Specifically, given
a group of robots R, our goal is for each robot r; € R to learn
policy II; : S; — A; mapping from the robot’s states to its
actions. Note that each robot may have a unique state and
action set, allowing distinct policies to be learned by possi-
bly heterogeneous robots.

The flexible design of this architecture has two great ben-
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Figure 2: Screenshot of the LCI graphical user in-
terface.

efits for the demonstration learning system. First, the flex-
ibility of the underlying single-robot architecture enables
this approach to be applied to a wide variety of tasks with
minimal configuration. Second, the automatic regulation of
each robot’s autonomy, provided by the Confident Execu-
tion component, enables multiple robots to be taught at the
same time. During learning, the teacher is able to moni-
tor the activities of all robots either visually or through the
LCI graphical interface. Demonstrations are provided to one
robot at a time.

In this paper, we show how the proposed system can be
successfully applied to training up to seven robots at the
same time. Due to space limitations, we are unable to in-
clude a full analysis of the scalability of flexMLfD. For a
detailed analysis of how the number of robots affects learn-
ing performance and demands on the teacher, please see [5].

4.2 Graphical Interface

The graphical user interface of the LCI serves as a two-way
communication device between the robot and the teacher.
The interface displays valuable system information, such as
the robot’s current state and the notification of a demon-
stration request. Using this interface, the teacher is able to
use the interface to select among a set of possible actions
for the robot to execute. Additionally, the GUI also pro-
vides the teacher with the capability to control the learning
process by activating different execution modes and to undo
incorrect demonstrations. A screenshot of the GUT is shown
in Figure 2 with labels highlighting different regions of the
display. Below we describe the function of each interface
element:

Robot Name/ID Display — Window label indicating the name
or ID number of the robot associated with this LCI.

LCI State Indicator Color Bar — Color bar indicating the
current state of the LCI: not connected to the robot (black),
connected and executing action (gray), connected and wait-
ing for a demonstration (red). The color indicator enables
the teacher to identify at a glance when a demonstration
is required or when problems with network connectivity be-
tween the LCI and the robot occur.

Execution Mode — Set of buttons for selecting the current

LCI execution mode. A detailed description of each mode
are provided in Section 4.4.

Robot State — Display showing the current state of the robot.
State features are organized by their source, separated into
information observed locally through the robot’s sensors and
information received through communication from remote
sources, such as teammates or external sensors. Commu-
nicated data can be especially difficult for the teacher to
monitor without the GUI interface. The robot state display
therefore provides vital information necessary to ensure that
the teacher’s view of the world matches that of the robot.

Robot Actions — Set of buttons specifying the list of robot
actions available for demonstration.

Undo Demonstration — A button allowing the teacher to
“undo” the last demonstration performed. This functional-
ity is useful in the case that the wrong action was acciden-
tally selected by the teacher. The undo operation erases
the last demonstration performed from the policy database.
However, it does not undo the effects of the incorrect action
that was executed by the robot as a result of the mistaken
demonstration.

Action Information — When action execution is in progress,
this display shows the current action being performed by the
robot. When the robot is idle and a demonstration request
is pending, the display shows the highest confidence policy
action as a recommendation to the teacher.

4.3 Software Architecture Design

The modular structure of the presented learning system
has many benefits. Most importantly, it allows individual
components, such as the physical robot platform or the pol-
icy learning algorithm, to be switched in and out freely.
This not only enables the user to apply the base system
to a variety of robotic platforms and tasks, but also allows
for independent development and testing of each individual
component.

The teacher configures the system for each learning task
using an XML configuration file which specifies various pa-
rameters. These include robot information (name, IP, and
port), choice of policy learning algorithm (e.g. SVM, GMM),
list of features composing the robot state, list of actions
available for demonstration, and the name of the log file in
which a record of demonstrations is maintained.

Communication between software components occurs over
Transmission Control Protocol (TCP) sockets. TCP sockets
are a general communication method that enables platform
and location neutrality. In our implementation, the LCI and
policy learning components are located offboard the robot
on a remote PC. This provides the user with a graphical in-
terface, mouse and keyboard for interaction with the robot,
and provides ample processing power for the policy learn-
ing algorithm. Many alternate solutions exist. For example,
policy learning can be performed on a remote computing
cluster for especially computationally challenging tasks, or
all three components can be located onboard the robot if
enough processing power and a suitable video display are
available.

Two channels of communication exist over TCP connec-
tions in the fletMLfD system:

LCI-Robot Communication Communication between the
LCI and the robot consists of state and action information.



The robot reports its state, consisting of raw and processed
sensor values, to the LCI at a fixed time interval while it is
not performing an action. This information is used by the
policy learning component and the teacher to select actions
for the robot to perform. During action execution, state
information is not reported because action selection does
not need to take place during this time.

The flexMLfD system makes no assumptions about the phys-
ical embodiment and onboard software architecture of the
robot beyond the following requirements:

e The robot’s onboard controller is able to establish a TCP
connection with the LCI for data transfer.

e The robot’s onboard controller is able to perform a set
of predetermined actions the execution of which can be
triggered by the LCI over the TCP connection.

Any robotic, or even software, system that meets these gen-
eral requirements can be used for demonstration learning.

LCI-Policy Communication The LCI provides a general
interface to the policy learning component, which can be
viewed as a black box containing the classifier of the teacher’s
choosing. Communication between the LCI and policy learner
consists of three types of information. State information ac-
quired from the robot is used by the LCI to query the pol-
icy, which returns the policy-selected action and its action
selection confidence. These values are used by the CBA al-
gorithm within the LCI to regulate the robot’s autonomy.
Each time a demonstration is performed, the LCI commu-
nicates the new state-action pair to the policy learner to
update the policy.

Using the above methods, the LCI coordinates the ex-
change of information between all system components. The
LCI has multiple execution modes which determine the level
of interaction and control that takes place, ranging from
CBA demonstration learning to fully autonomous execution
of the policy by the robot. Details of the possible execution
modes are presented in the following section.

Finally, we highlight that the LCI is an interface for learn-
ing a task policy. Once the task is learned, the LCI begins
to act simply as an intermediary between the robot and pol-
icy components. The teacher’s involvement is no longer re-
quired as the robot is able to execute the task autonomously.
When this final learning stage is reached, the teacher may
continue to use the LCI in order to monitor the robot’s sta-
tus or to have additional control over the robot’s execution
mode. Alternatively, the LCI can be eliminated from the
system entirely, allowing the robot to interact directly with
the policy component over the established socket interface.

4.4 LCIl Execution Modes

The LCI operates in one of five execution modes, each
of which provides the teacher with a different level of con-
trol and interaction with the robot. The list below presents
each execution mode in detail. A summary of the interac-
tion between system components for each execution mode is
presented in Figure 3.

Off — This is the initial mode of the learning system, in
which the LCI is inactive. No communication occurs be-
tween components.
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Figure 3: Interaction between the LCI and system
components in each execution mode.

Manual — This mode provides the teacher with manual con-
trol of the robot’s actions, similar to a joystick. The LCI
displays the robot’s current state and allows the teacher to
select actions for execution. The robot executes the specified
actions, but no learning takes place. This mode is useful for
basic interaction with the robot, such as for testing action
performance or for teleoperation.

Non-Interactive — This mode enables the teacher to per-
form demonstrations without receiving feedback from the
LCI regarding when and what demonstrations should be
performed. Instead, the LCI requests a demonstration at
every learning timestep, regardless of action selection confi-
dence. This mode enables the teacher to perform long batch
demonstration sequences, which can be useful for bootstrap-
ping the learning process, as discussed in [4]. This learning
mode is not used in the experiments presented in this paper.

CBA — In this mode, the LCI uses the CBA algorithm to
control the learning process and select demonstrations. Each
time the LCI receives a new robot state, it queries the pol-
icy to obtain the highest confidence action and its action
selection confidence. This information is then used by the
CBA algorithm to select between demonstration and auton-
omy. If autonomy is selected, the policy-selected action is
immediately communicated to the robot for execution. If
a demonstration is required, the LCI notifies the teacher
of the demonstration request using the LCI state indicator
color bar. Once the teacher selects an action, the action is
communicated to the robot and a new training datapoint,
consisting of the robot’s current state and the demonstrated
action, is used to update the policy.

Note that while waiting for the demonstration, the robot’s
state may change due to changes in the environment. The
LCI continues to update the state information and query the
policy each time an update is received from the robot. The
robot continues to wait until either a demonstration is per-
formed, in which case it is associated with the most current
state, or the robot finds itself in a state of high confidence,
in which case the demonstration request is cancelled and the
robot executes the policy-selected action autonomously.



In addition to responding to demonstration requests, the
teacher may also initiate corrective demonstrations. If the
teacher observes the robot performing an incorrect action, a
correction is performed by selecting the correct action in the
graphical interface. When this occurs, the LCI records the
new demonstration, communicating it to the policy learner.
The incorrect action already being executed by the robot is
allowed to complete without interruption; interrupting an
action may cause the robot to enter an unstable or unsafe
state.

Autonomous — In this mode, robot’s actions are fully con-
trolled by the current learned policy. The robot is autonomous,
not relying on the teacher for any demonstrations.

5. OVERVIEW OF TEACHING PROCESS

This section presents an overview of a typical multi-robot
learning process:

1. flexMLfD Configuration — The teacher initializes
learning by configuring an instance of flexMLfD for each
robot. This is performed by creating an XML configuration
file specifying robot information, as well as selecting the set
of state features and actions relevant for the task at hand.
Once a connection to the robot is established, these values
are displayed in the LCI GUI. Learning is initiated by acti-
vating the “CBA” learning mode.

2. Demonstration Learning — All robots begin with
no prior knowledge about the task and initially request a
demonstration. Demonstration requests remain frequent dur-
ing the early stages of learning, and the teacher commonly
has multiple pending demonstration requests from different
robots. In the current implementation, the teacher selects
arbitrarily among the demonstration requests. As training
data is gathered over time, the quality of each robot’s pol-
icy improves and its autonomy increases. By practicing the
task, each robot refines its policy upon encountering rare or
complex states. Learning is complete once the correct action
is selected for all states with high confidence and the entire
task is performed correctly without help from the teacher.

3. Autonomous Task Execution — Once policy learning
is complete, the robot uses the policy to execute the task
autonomously .

Figure 4 shows how the level of autonomy, measured as the
percentage of autonomous actions versus demonstrations,
changes for an individual robot over the course of train-
ing. The data curve shows that following an initial burst of
demonstration requests, the robot quickly achieves an aver-
age autonomy rate of 80-90% as it continues to refine the
policy. The data in the graph was recorded in the beacon
homing domain (see Section 6), but the trend seen here is
is typical of most learning domains in which initial demon-
strations provide the robot with the experience for handling
most commonly encountered domain states.

6. EXAMPLESOF MULTI-ROBOT

DEMONSTRATION LEARNING

The flexMLfD system has been applied to a wide range of
both single-robot and multi-robot domains [4, 7]. In this
section, we present three example multi-robot tasks that
showcase the flexible design of the fletMLfD system. These
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Figure 4: Average level of autonomy of a single
robot over the course of training.

tasks were performed using the legged Sony AIBO and the
humanoid Sony QRIO robots. We assume that each robotic
platform has a set of sensing and acting abilities that are
known to the user. In the case of the AIBOs, the robots
are able to detect objects in the environment using their on-
board camera, to calculate the relative distance and angle of
these objects, and to communicate via the wireless network.
The QRIO robots can similarly detect and locate objects
and communicate wirelessly in addition to detecting sounds
using an onboard microphone array. Both robotic platforms
also support a wide range of actions.

At the beginning of the learning process, the teacher se-
lects among these basic abilities and specifies the state fea-
tures and actions relevant to the current task using the XML
configuration file. This selection process speeds up learning
by reducing the state representation only to relevant fea-
tures, and simplifies the user interface for demonstration.
Note that within each of the presented domains, all robots
of the same type utilize the same state and action represen-
tation. However, this is not a requirement of the algorithm
or learning system.

Below, we present a brief summary of each task:

Ball Sorting Domain The ball sorting domain, shown in
Figure 5(a), consists of two sorting stations connected by
ramps. Each station has an individual queue of colored balls
(red, yellow or blue) that arrive via a sloped ramp for sort-
ing. The task of the two Sony QRIO humanoid robots is to
sort the balls by color into four bins. This is achieved by
picking up and sorting each ball into the left or right bin,
or by passing the ball to the robot’s teammate by placing it
into the teammate’s ramp. Additionally, each robot commu-
nicates to its teammate the status of its queue, empty or full.
When its teammate’s queue is empty, a robot in possession
of a ball should pass the ball to the teammate. However,
only balls that can be sorted by the other robot should be
passed. If both queues are empty, the robots should wait.

Beacon Homing Domain The beacon homing domain,
shown in Figure 5(b), consists of an open area with three
uniquely-colored beacons (B = {B1, B2, B3}) located around
the perimeter. Seven Sony AIBO robots operate in the do-
main, able to identify the relative position of each beacon
and to navigate in the environment by selecting the direc-
tion of motion. All robots begin at the center of the open



(a) Ball sorting domain

(b) Beacon homing domain

(c¢) Playground domain

Figure 5: Multi-robot demonstration learning domains with Sony QRIO and AIBO robots.

Ball Sorting Beacon Homing Playground
Robots 2 QRIOs 7 AIBOs 2 QRIOs and 4 AIBOs
Actions Wait, SortBallLeft, SortBall- | Forward, TurnLeft, TurnRight, | Q: Talk, WalkToOpenSpace,
Right, PassBallRamp, Send- | Stop, Search CallAIBOs, Wait, LeadAIBOs
HaveBall A: Forward, Left, Right, Stop,

Search, Play

Action Description | High-level manipulation, com- | Low-level navigation Low-level navigation, high-
munication level behavior, communication
State HaveBall, TeammateHaveBall, | Bl,, Blg, Bln,, B2., B24, | Q: Bell, InOpenSpace,
BallColorg, BallColorg, | B2nr, B3a, B34, B3nr, | CalledAIBOs, NumStudents
BallColorg, SentHaveBall OccupiedBeaconl D A: RecvdQRIOCall, Q1,,

Qla, Q24, Q24

State Description Noisy real-valued and boolean

Noisy real-valued and discrete

Noisy real-valued and boolean

features features features

Communication Explicit communication ac- | Passive communication Explicit and passive communi-
tions cation

Interaction Loosely collaborative task, no | Non-collaborative task, full | Loosely collaborative task, full

physical interaction

physical interaction

physical interaction

Table 1: Overview of demonstration learning tasks.

region and must navigate to and occupy one of the beacons.
Specifically, each robot must search for a beacon until one is
found that is occupied by fewer than 3 robots. Upon locat-
ing such a beacon, the AIBO should navigate to its location
and occupy it by stopping within a set radius r. If at any
point the number of robots at the selected beacon exceeds
3, the AIBO must search for another beacon.

Playground Domain The playground domain, shown in
Figure 5(c), consists of an open space simulating a school
playground. Two humanoid QRIO robots represent “teach-
ers”, and four AIBO robots represent “students”; each QRIO
is assigned two AIBO students as its “class”. The task sim-
ulates a playground scenario in in which the teachers collect
their students at the end of recess and take them back to
lessons. The task begins with recess, during which the QRIO
robots talk to each other while the AIBOs play. Once the
bell sounds, the QRIOs stop their conversation and walk to
opposite sides of the playground. Each QRIO then calls its
respective class and waits for it to arrive. The AIBOs play
in the open space until they are called. Once called, each
robot should navigate to its QRIO teacher. Once a QRIO
has all of its students around it, it leaves the playground
with the AIBOs following.

All three of the above tasks were successfully learned us-
ing the fletMLfD system. Table 1 presents an overview of

the various aspects of each learning task, including the state
and action representations and styles of interaction and com-
munication. Different elements of each task showcase the
flexibility of the proposed system, including the following
features:

e Multiple robotic platforms, the Sony QRIO and AIBO.
e Variable number of robots, from 2 to 7.
e Heterogeneous and homogeneous groups of robots.

e Each robot platform was utilized for multiple tasks, with
distinct states, actions and policies. The QRIO robots in
particular use very different abilities in the ball sorting
and playground domains.

e The ability to train an individual policy for each robot
provides the teacher with the choice of train all robots the
same policy, as in the beacon homing domain, or distinct
policies, as in the ball sorting and playground domains.

e The flexible action representation supports wide range of
actions, ranging from low-level navigation commands such
as TurnLeft, to high-level behavioral commands such as
Talk, which causes the QRIO to use conversational pose
and gestures to simulate speaking.

e The flexible state representation includes boolean, dis-

crete and real-valued features and both locally observed
and communicated information.



e Communication actions are incorporated seamlessly into
a robot’s policy along with physical actions. Teaching
communication actions explicitly, such as SendH aveBall
in the ball sorting domain, enables the teacher to specify
the exact conditions under which communication should
occur, a useful technique for domains with high communi-
cation costs. Alternately, passive communication can be
used to automatically communicate data at a fixed time
interval, as is done in the beacon homing domain for the
OccupiedBeaconlI D feature.

e Policy learning supports variable degrees of collaboration
and interaction between robots, ranging from physically
separate but collaborating QRIO robots in the ball sort-
ing task, to competitive and physically interacting AIBO
robots in the beacon homing domain.

All of the above variations are fully supported by the
flecMLfD learning system and no special adaptations to the
underlying architecture are required for each task. Instead
all task-specific elements are specified within the XML con-
figuration file prior to training.

7. CONCLUSION

In this paper, we introduced a new class of policy learn-
ing algorithms, multi-robot learning from demonstration,
and contributed flexMLfD, a robot-independent and task-
independent demonstration learning system that supports a
variable number of robot learners. Our approach is based on
the Confidence-Based Autonomy demonstration learning al-
gorithm, which provides the means for a single robot to learn
a task policy through interaction with a human teacher. We
utilized the generalized representation and adjustable au-
tonomy provided by the CBA algorithm to develop a flexi-
ble multi-robot demonstration learning system. To highlight
the generality of the presented approach, we presented three
multi-robot domains which showcase learning using multi-
ple robotic platforms in uniform and heterogeneous groups,
utilizing different state features, actions, and styles of com-
munication and collaboration.
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