
Prioritized Multi-Hypothesis Tracking by a Robot with
Limited Sensing

Paul E. Rybski Manuela M. Veloso
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA, 15213
{prybski,mmv}@cs.cmu.edu

Abstract

To act intelligently in dynamic environments, mobile robots must estimate object positions
using information obtained from a variety of sources. We formally describe the problem of
estimating the state of objects where a robot can only task its sensors to view one object at a
time. We contribute an object tracking method that generates and maintains multiple hypothe-
ses consisting of probabilistic state estimates that are generated by the individual information
sources. These different hypotheses can be generated by the robot’s own prediction model and
by communicating robot teammembers. The multiple hypotheses are often spatially disjoint
and cannot simultaneously be verified by the robot’s limited sensors. Instead, the robot must
decide towards which hypothesis its sensors should be tasked by evaluating each hypothesis on
its likelihood of containing the object. Our contributed algorithm prioritizes the different hy-
potheses, according to rankings set by the expected uncertainty in the object’s motion model,
as well as the uncertainties in the sources of information used to track their positions. We
describe the algorithm in detail and show extensive empirical results in simulation as well as
experiments on actual robots that demonstrate the effectiveness of our approach.

1 Introduction
Robot perception processing consists of a mapping from sensory data to an estimate of the state
of the elements of the environment that are of relevance to the task under execution. For example,
a robot traversing a maze needs to estimate the area and position of open space and walls from
its sensory data. Similarly in a team of soccer robots, each robot has the potential to estimate the
state of the environment based on its own sensing and on the information communicated by its
teammates. The complexity of state estimation greatly increases with the task, the dynamics of the
environment, and the sensing capabilities of the robots.

In our work, we consider that robots have limited sensing and operate in complex and dynamic
environments executing tasks that rely on multiple elements. We investigate robot state estimation

1

as a result of the integration of sensory information obtained from a variety of sources, namely the
robot’s own sensors and actions, models and communicated information from teammate robots’
sensors and actuators, and models of the dynamics of the environment.

Concretely, we investigate the problem when robots have limited and narrow perceptual scope,
such that they are only capable of observing a single object (or a reduced set of objects) at a time
with their sensors. Thus, the relative size of the robot’s sensor scope is small compared to the
environment and while the state of a single object is being updated by the sensors, the evolving
state of all other non-sensed objects must be predicted from communicated information or from
models learned from observations or provided a priori.

Adding to the complexity of the problem, not all sources of information about a single object
can and should be handled equally, as in the traditional sense of weighting those estimates by their
covariance. There are times when empirical evidence has proven that some modalities must be
ignored as they are unreliable in certain circumstances. Additionally, non-deterministic effects of
actuators can create several distinctly different potential outcomes, each of which must be tracked
and reasoned about separately.

To address this challenge, we define a method for reasoning over a disjoint hypothesis space
whereby high-level domain knowledge is used to impose a strict ordering on estimates created
by different sources of information. By segmenting the sources of information used to reason
about the state of environmental quantities into different classes, each with different state dynamics
and expected effect of robot actions, a prioritized hierarchy of state estimates can be inferred.
Additionally, when tracking multiple objects simultaneously, the evolving states of those objects
must be considered carefully when deciding where to task the robot’s sensors.

We describe a hybrid state estimation algorithm that attempts to reduce the complexity of the
generated probability density functions over a quantity of interest by factoring the problem into a
series of small estimation problems that are tied to the different sources of model world information
possessed by the robot. A high-level policy is used to determine where to task the robot’s sensors
to best track the objects in the environment. Such policies for creating hierarchies can be defined a
priori, or they could potentially be learned from data. Using this policy, the decision process that
governs each individual robot’s actions can easily select the most informative state estimate to use
as its input. The priorities are set by the expected uncertainty in the object’s motion model, as well
as the uncertainties in the sources of information used to track their positions. A robot’s actions
directly affect its perception of the environment as well as the environment itself, and the best
estimate is often one that will allow the robot to obtain more information about its surroundings to
further clarify its estimate of quantities of interest. This in turn provides more information to the
robot that further updates the ordered hierarchy of possible estimates.

This paper describes an active state estimation algorithm, as applied to a real-time adversarial
multi-robot domain, which combines action policies determined from high-level domain knowl-
edge with multi-modal probabilistic state estimators. In this work, we assume that each of the
objects that are detected and tracked have unique sensor signatures whereby the additional com-
plexity of the data association problem can be avoided so that we instead focus on analyzing the
multiple hypothesis reasoning algorithms. Thus, we contribute an algorithm to address the problem
of tracking a single object with multiple hypotheses. We have successfully applied this approach to

2

the RoboCup Four-Legged league where a team of Sony AIBO robots autonomously play soccer
against another team of AIBO robots, as shown in Figure 1.

Figure 1: Sony AIBO robots preparing to play robot soccer at a RoboCup competition.

2 Related Work
We discuss some related work along the three main aspects of our work: (i) probabilistic state
estimation; (ii) object tracking; and (iii) reasoning about multiple hypotheses from multiple sensing
sources.

Most probabilistic estimation techniques follow a Bayesian filtering approach [11] and have
been successfully applied to robot state estimation e.g. [25]. Object tracking using a Bayesian
filter formalism relies on an a priori model of the object’s motion that allows the algorithm to
predict the object motion given noisy observations. One of the most widely used methods for state
estimation is the Kalman filter [12], in which the system model is assumed linear and the noise
is assumed Gaussian. When the linearity assumption becomes a limitation, the dimension of the
state vector can be changed as the tracked object changes its perceived dynamics, such as with a
variable state dimension (VSD) filter [4]. We also consider the object dynamics, but our approach
changes the number of hypotheses, while the specific dimensions of those hypotheses’ estimates
do not change. Furthermore, we maintain multiple hypotheses independently as potential object
locations.

An approach to reasoning about a complex motion model consists of maintaining multiple
models. The interacting multiple models (IMM) filter [3] uses a weighted mixture of different
process models. Our approach differs in that it maintains a disjoint set of hypotheses which are
not merged or fused [7], but are prioritized and visited according to a specific policy. Similar ap-
proaches maintain separate estimations based on subjective sensing and other sources, e.g., sensing
from robot teammates [19, 23].

3

A more general approach is the Switching Kalman filter model [20], which represents multiple
independent system state dynamics models and switches between them (or linearly combines them)
to best fit the observed (or predicted) non-linear dynamics of the system being modeled. Our
approach creates multiple independent belief states (or hypotheses) rather than a single state with
multiple potential models.

A Multiple Hypothesis Tracking (MHT) [22, 6] approach uses multiple independent state es-
timators to estimate a multi-modal probability density. This approach has been used successfully
for challenging mobile robot localization problems [24], where non-parametric distributions are
estimated through sampling techniques, such as the particle filtering [2]. The number of parti-
cles used can be dynamically adjusted as computational resources become available or are needed
elsewhere [8]. Approaches that factor in a joint state estimation have been used successfully for
tracking an object with a mobile robot [13], where the actions of the robot change the process
characteristics of the tracked object. Our approach extends the MHT paradigm by reasoning about
the different hypotheses as a function of the source of information that generated them.

Finally, object tracking is a complex problem addressed by different approaches that capture
connected dynamics of the multiple objects. We address the problem of object tracking from a
different perspective, namely in terms similar to that of sensor planning [1]. Sensor (or actuator)
planning generally requires that a policy be determined over a state space which dictates the ap-
propriate action to take based on the state of the world and the robot. In [15] where reinforcement
learning is used to find the a policy that avoids the problems of a state space explosion as well as
the problems associated with missing sensor information. Our problem is defined over a continu-
ous state space (e.g. the space of tracked object poses) whereby the effects of various actions are
difficult to quantize into a state space on which a policy could be learned. In [9] a dynamic pro-
gramming algorithm is proposed by which a static policy state over the entire field is determined
that dictates when the robot should stop its body and localize itself. In our model, the actions of the
objects being tracked in the world are highly dynamic and are unlikely to be captured in a single
policy over the entire space of poses. In [17, 18] mechanisms for attention control are proposed
that use expected information gain and cost to acquire the information as criteria to determine what
the robot should do and when. A decision tree is learned to represent the policy of the robot. Our
approach uses similar criteria to determine what the robot should do and when though in this work,
we do not discuss mechanisms for how the knowledge is obtained (e.g. learned offline or hand-
coded) but rather focus on the utility of using such concepts and applying them to probabilistic
state estimators that operate over a continuous state space.

We consider that the robot has a narrow sensor scope incapable of capturing more than one
object at a time. Our algorithm includes a policy for directing the sensor machinery towards
multiple objects. Furthermore, we consider different types of objects with different motion models
which are used to update the confidence on the state estimation of each individual object.

3 Challenges of Dynamic World Modeling
We are interested in problems associated with having a robot autonomously build and maintain
accurate world models in dynamic environments where the states of many objects must be esti-

4

Sensor

View

Robot

Teammate

Static object
Dynamic object

Figure 2: The general world modeling problem in a dynamic environment includes requiring that
a robot use a narrow scope sensor to track the positions of multiple (static and dynamic) objects
in an environment. Determining when and how to use additional sources of information, such as
from the effects of actuation, and teammate sensor information is a non-trivial task.

mated simultaneously. A robot will be able to make use of multiple sources of information that
can describe the motion of objects in the environment. In any environment of reasonable complex-
ity, a robot is incapable of viewing the entire environment at a single time with its sensors. In the
extreme case, the robot can only track a single object at a time with its sensors. Figure 2 illustrates
the general class of world modeling issues addressed in this work. We are primarily concerned
with the issues involved with object tracking rather than issues involved with the complementary
field of map building which is not part of our discussion.

We consider the challenges of tracking multiple objects, where each object has multiple sources
of sensor and model information that are available as a combined problem. In this work, we do
not address the additional complexity of the data association problem where multiple objects have
identical or ambiguous sensor signatures. In order to keep track of the positions of all objects in
the environment, the robot must continually re-task its sensors to refresh the models with more ac-
curate position data. Deciding which object to track next is dependent on the expected uncertainty
in the motion model for that object as well as the availability and quality of the different sources
of information that can provide estimates for the expected position of the object.

To formally describe the problem, we define the following concepts:

• A : the set of all actions a(t) ∈ A, including the null action, that the robot is capable of
performing at time t.

• O : the set of all objects in the environment where Oj is the jth object of which the robot
must keep track. The set includes moving objects of which the robot must maintain an
accurate estimate as well as stationary objects with which the robot must maintain periodic
contact (such as landmarks for localization).

5

• XOj(t) : the estimated position of object Oj at time t.

• LOj(t) : a sensor observation of object Oj at time t which can be null in the case that the
robot does not perceive object Oj .

• MOj : the motion model as a function over objects and robot actions. Defines the expected
change in object position over time regardless of whether the robot has obtained a sensor
observation.

MOj : (XOj(t), a(t))→ XOj(t+ 1) (1)

• SrOj : the sensor model of robot r as a function over objects and sensor observations. Defines
the updated object position at the current time.

SrOj : (XOj(t), LOj(t))→ XOj(t+ 1) (2)

Note that in the case of no observations of object Oj at time t, the output position is identical
to the input position:

SrOj : (XOj(t), NULL) = XOj(t) (3)

• Erα
Oj

: a sensor observation from an external source, such as another robot rα:

Erα
Oj

= SrOj , where rα 6= r (4)

For the problems in which we are interested, we identify three different classes of objects that
have distinct motion model dynamics.

1. Static: objects that do not move on their own, such as goal markers and landmarks used for
localization. Even though these landmarks do not move, the robot’s own position estimate
with respect to these objects can be uncertain.

2. Quasi-Dynamic: objects which do not move on their own, but which move by being ma-
nipulated or pushed by a robot. The motion model for this kind of object encapsulates the
actuation dynamics from manipulation when the robot manipulates it, but also must take into
account that the object can move unexpectedly when another robot makes contact with it.

3. Dynamic: objects, such as other robots, which can move under their own power and control.
The internal state of these robots is unobservable and their motion can be difficult to predict.

4 Object Tracking
For any environment of interest, a robot’s sensors will not have the capability to view all aspects
of an environment at the same time. Thus, the robot must change the direction that its sensors are
pointing in order to continually update its world model with new readings of the objects that it is
tracking. In the most difficult case, the robot can only track a single object at a time and must
predict the positions of the other objects with their motion models. The longer an object is not

6

visible, the less accurate the robot’s model will be due to noise and unmodeled dynamic changes
in the object’s motion. Deciding how and when to re-task the robot’s sensors depends highly on
the objects being tracked as well as the environment in which they exist.

Our solution is to define a policy over all objects that describes when the robot should point its
camera from one object to the next. A formal description follows:

• AL : a subset of actions A which cause the robot to change the angle of its sensors in order
to gather a new observation of an object.

• πob : a policy over the position of a set of objects ~XOj that decides which object the robot
should track next.

πob : (~XOj)→ aj (5)

πob takes as input the vector of all estimated object positions XO and computes the best
action aj ∈ AL (possibly NULL if no best action exists) that moves the robot’s sensors to
track an object Oj .

Two functions for πob are considered in this work:

1. Naı̈ve : takes no notion of object uncertainty into account. Cycles robot’s sensor between
all objects equally.

2. Greedy : selects the object with the greatest uncertainty to track. Expected uncertainty is
derived from the motion models for the object.

The rest of this work describes the instantiation of these concepts into a set of algorithms and
analyzes their performance in simulation and on real robots.

5 Prioritized Multi-Hypothesis Model Tracking
To effectively estimate the state of objects in the environment, sensor observations SrOj must be
obtained which provide some update as to the position of the object. In the absence of good sensor
readings, models MOj of the expected motion of the objects must be used to predict the change in
the object’s state. In all but the most degenerate cases, such models will not be able to completely
describe the motion of the object. Noise and unexpected changes in the dynamics of the object will
cause the robot’s estimate to rapidly diverge from the object’s true position.

Multiple sources of information exist that a robot can use to search for an object that is not
visible in its sensors. Each source represents a potential hypothesis on the location of the object.
For example, non-deterministic effects of actuators can create several distinctly different potential
outcomes, each of which should be tracked and reasoned about separately. Similarly, teammates
may provide some information about the state of an object, but the quality of this information could
be quite poor if the position estimate of the teammates is erroneous due to localization errors.

Our approach to the problem of object estimation, where multiple sources of information about
the objects are available, is to define a policy over the set of objects which prioritizes when and how

7

the robot should task its sensors based on the kinds of objects being tracked, information returned
from sensors about the object, and a priori models of how the robot interacts with the object (such
as with its actuators).

• hi : a hypothesis over the location of object Oj . Each hypothesis is defined as: hi : P (XOj)
where P (XOj) is a probability distribution over XOj consisting of the pose and uncertainty.

• HOj : the set of hypotheses hi that represent the set of possible locations for object Oj .

• πjmh : a policy for a particular objectOj which describes a ranking of the different hypotheses
hi that could exist at any given time for it.

• fmh : a function over the sources of information that can be used to predict object Oj’s
location at time t.

fmh : (MOj , S
r
Oj
, < Erα

Oj
, . . . >, πjmh)→ X ′Oj(t) (6)

where X ′Oj(t) is the most highly ranked pose given the set of available hypotheses, and
< Erα

Oj
, . . . > is the set of all available observations from teammates. Table 1 illustrates the

hypothesis ranking function.

The following list illustrates how information returned from the robot’s sensors, model infor-
mation from actuators, and teammate observations can be ranked:

1. Robot’s own sensors

2. Successful actuation

3. Failed actuation

4. Teammate observations

In this case, the robot’s own sensors, such as a camera, is trusted over all other sources of infor-
mation. All other sources of information are not sensed directly but are instead obtained indirectly
through models and teammate information. Actuation is assumed to be done blindly where the
contact with the object is invisible to the robot’s cameras. Actuator success is assumed over fail-
ure. Finally, because of the possibility of poor self-localization, teammate information is listed to
only when no other sources of information are available.

Because all hypotheses are represented as probability distributions, their state can be estimated
with appropriate probabilistic tracking algorithms, such as the Kalman Filter, Particle Filter, or
other Bayesian filter-based approaches.

8

fmh : (MOj , S
r
Oj
, < ErαOj , . . . >, π

j
mh)→ X ′Oj (t)

• Given:

1. H = list of hypotheses Hi (from last invocation)

2. H ′ = [] (empty list of hypotheses)

• Execute:

– Generate hypotheses h′k from MOj , S
r
Oj

, < ErαOj , . . . >, and add to H ′

– for each h′k in H ′ do

∗ if h′k matches some hi in H

· Update hi with data from h′k

∗ else
· Add h′k to H

– Rank and sort hypotheses in H based on policy πjmh
– Prune all hn from H if uncertainty over threshold

– If H is empty return NULL

– return h1 (first ranked hypothesis)

Table 1: Definition of Hypothesis Ranking Function

6 World Modeling in a Multi-Agent Dynamic Adversarial Do-
main

In the RoboCup Four-Legged league, two teams of four Sony AIBO robots autonomously play soc-
cer against one another. While robots on the same team use 802.11b wireless Ethernet to commu-
nicate with each other, no additional off-board computation is allowed. A deployed team becomes
a distributed sensor processing network. Several sources of information are available to each robot
that allow it to build a model of its environment, including its sensors, kinematic models of its own
body and actuators, and information communicated to it from its teammates. Additionally, each
team possesses an a priori map of the field which gives the locations of the markers, goals, and
field lines in a global reference frame. Some details of how the robot visually segments the world
using its camera to detect and track objects, how the robot localizes its position in the world based
on visually-identified landmarks, and the details of some of the control algorithms that determine
the robot’s general behavior are described here [26, 27]. Visual observations of fixed environ-
mental features are used to localize the robot on the field using a particle filter localization called
Sensor Resetting Localization (SRL) [14]. All sensing, world modeling, and behavior selection is
performed at 30Hz which is the frame rate of the robot’s camera. Our robots are programmed to

9

operate as a team where each member has a different role that dictates its behavior [16]. For the
experiments in this paper, the robot takes on the role of an “attacker” whose job is to head straight
for the ball, intercept it, and then dribble/kick it up field towards the opposing goal. Please see our
prior work for details on the behavior strategy.

In the RoboCup domain, knowing the location of the ball at all times is critical for successful
play. The problem of knowing the ball’s position is a challenging combination of active search
and tracking. A number of specific factors serve to confound the modeling problem. Each of
these factors contributes a quantity of error that introduces noise that must be contended with.
Unfortunately, the full extent of some of the noise factors is extremely difficult to model. These
factors include:

• Inaccurate sensing: Each robot is equipped with a color digital camera, located in the front
of its head, that it uses to perceive the world. Because the robot is very low to the ground,
its view can very easily and quickly be occluded by opponents and/or teammates. When the
robot is actively tracking the ball, it is typically unable to localize as often, which contributes
to pose uncertainty error.

• Interactions between the robot and target: The four-legged chassis of the AIBO gives it a
wide variety of motions that it can use to manipulate objects such as the ball. However, due
to slippage of the joints and variability of the initial starting positions of robot and ball, the
effects of these actions can vary considerably. Specifically, the effect of an action can have
a single successful mode and multiple independent failure modes, each of which has its own
dynamic characteristics.

• Interactions between the robot and environment: The four-legged chassis is also a large
source of odometric noise as the complex physics of how the robots limbs strike the ground
coupled with the fact that the robot is typically jostled heavily during game play means that
the robot’s confidence in its own position can very quickly become erroneous even if it had
very recently correctly localized itself.

• Erroneous information from teammates: Using their wireless Ethernet, the robots can
share local observations made about the environment with their teammates. Because the
robots do not have a centralized server, they do not have a method of synchronizing their
internal clocks. The lack of accurate timestamps on observations makes fusion of the sen-
sor data much more challenging. Because of the positional uncertainty, global positions of
objects reported by teammates can very easily be erroneous if the robot’s position or (more
importantly) its heading are estimated badly. This source of information is very likely the
most problematic as a teammate can broadcast a very tight and accurate covariance estimate
even though it has become very poorly localized due to an undetected collision with an op-
ponent. These errors are highly non-linear as errors in robot orientation contribute greatly to
errors in reported ball pose.

Attempting to reason effectively about each of these sources of error directly can be very chal-
lenging and difficult to do precisely. Because a robot’s actions directly affect its position in the

10

environment and the position of the ball, as well as the amount of information that the robot can
obtain from its sensors, the algorithm for selecting the correct action to perform at a given time is
extremely important.

6.1 Prioritized Multiple Hypothesis Object Tracking
In our group’s long experience with the RoboCup legged league, we have observed many effects
of noise on our robots that are caused by such a dynamic environment. In particular, we have
identified a number of places where more abstract knowledge about the high-level domain can be
helpful when estimating the position of the ball on the field.

1. Occlusions occur enough that the ball can often be in the robot’s visual field even though
it is behind another robot. Persistence in searching for the ball in an area last believed to
be its location is preferable to immediately giving up the search and looking elsewhere on
the field. Thus, the actions performed by the robot are highly dependent upon the source of
information used to generate the hypothesis being tracked.

2. Ball estimates returned from teammates are never as accurate as the robot’s own estimates.
Our team uses a dual world model [23] where the robot’s own perceptions build a model that
is kept independent of the model built from its teammate’s perceptions.

Our approach tags the contribution of each source of information to the state estimate. This
allows additional information, such as the utility of the source of data on the estimate, to play a
factor in the decision processes that the robot makes when solving its task. Concretely, the state
vector to be estimated is segmented into a set of parallel and independent hypotheses, each of
which represents a probability distribution over the state vector. These individual estimates are
maintained in parallel and an external decision process chooses which ones to ignore and which
one (or ones) to use.

6.2 RoboCup Hypothesis Selection Policy
In order to incorporate domain-specific data into the estimation algorithm that can be used in
hypothesis ranking and persistence, we define a specific policy for reasoning about the specific
sources of information. In the RoboCup Four-Legged league, there are multiple sources of infor-
mation that must be accounted for when tracking the ball. The individual sources of information
are used to generate a disjoint hypothesis space that is filtered for the most relevant information.
The different sources include:

• Vision: The robot’s own camera is the most reliable source of information that allows the
robot to compute the ball’s position by itself.

• Game Manager: When the ball goes out of bounds, it is immediately replaced in a fixed
location depending on the offending team and the quadrant of the field where the ball went
out. When the game manager reports a throw-in, the robot can be sure that the ball has
jumped to a new location, as the referee will have moved it.

11

• Actuation: Kicks are performed blindly as the ball is usually under the robot’s camera. A
large library of pre-defined kicking motions is available to each robot on the team. The robot
is typically unable to visually track the ball during a kick because the ball is under the chin
and behind the camera when the kick is initiated. Models of the predicted position of the ball
after the kick are learned empirically in the lab [5] and used by the estimator to re-acquire the
ball after a kick has been performed. Because kicks are not always successful due to noise
in the interaction between the robot, ball, and the rest of the environment, we distinguish
between two effects of actuation, namely: Kick Success and Kick Failure.

• Teammate: Teammate ball information is typically the worst source because, while their
tracked local information is accurate with respect to their local reference frame, the global
position can be erroneous if they are mis-localized.

The different sources of information are ranked in order of expected quality and are used to
guide the behaviors to search for the ball and track it when found. The hypothesis database encodes
all of the relevant domain knowledge that is necessary for segmenting the hypothesis space into
the relevant subsets so that the robot can use this information to act effectively. The specific policy
defined for our AIBO team for deciding which source of information to use in the hypotheses
returned from the estimator is summarized in Table 2.

7 Empirical Evaluation
Estimating the state of quantities in an environment is typically done through the generation of
a complex probability density function. In typical real-world problems of interest, the density
functions are typically highly multi-modal and can rapidly diverge from the true estimate due to
noise. Our hybrid approach to state estimation factors the complete probability density function
into smaller sub-problems based on the a priori policy function over the problem. We have ap-
plied this approach to the challenge of robot soccer in the RoboCup Four-Legged league by first
making use of a robust probabilistic algorithm for solving the underlying state estimation problem
of simultaneous self-localization and tracking of the ball. Our hypothesis selection algorithm then
maintains multiple independent state estimators which are created, updated, or deleted as the robot
interacts with its environment and gains information from its sensors and teammates.

7.1 1D Simulation Study
To analyze the prioritized multi-hypothesis object tracking algorithm described in this paper in
a statistically significant fashion, a simple one-dimensional version of the tracking problem is
implemented in simulation. The simulation contains the following elements:

• A robot capable of self-locomotion, manipulation (pushing) of object, and tracking different
objects one at a time. The robot uses a Kalman Filter for tracking the multiple objects.

12

• Given:

1. Set of hypotheses based on the game manager : Hg

2. Set of hypotheses based on the robot’s own sensors : Hr

3. Set of hypotheses based on teammate sensors : Ht

• Select game manager, self, or teammate information

– If Hg not empty

∗ Select game-hypothesis

– else if Hr not empty and Ht not empty

∗ If vision data actively supports a hypothesis in Hr then select self-hypothesis
∗ else If time since ball viewed < threshold then select self-hypothesis
∗ else select teammate-hypothesis

– else if Hr not empty then select self-hypothesis

– else if Ht not empty then select teammate-hypothesis

– else return

• Track hypothesis classes

– If game-hypothesis

∗ Track hypothesis Hg created by game manager

– else if self-hypothesis

∗ If ball is actively in view of the camera, filter self estimates with source vision
and actively track the most likely one

∗ else If ball is in possession, track possession estimates
∗ else If ball was kicked, track the kick estimates starting with the Kick Success

estimate and switching to the Kick Failure estimate when the former is pruned
∗ else Track any estimates based on older vision information

– else If teammate-hypothesis

∗ Rank the teammate estimates based on current self-role
∗ Track best ranked estimate based on teammate role and position

Table 2: Hypothesis Selection Policy for Ball Tracking in AIBO Robot Soccer

• Several objects that exhibit stochastic motion models that can be classified as static, quasi-

13

dynamic and dynamic. The class of motion to which each object belongs is known to the
robot. All object motion is described by a noisy linear dynamical system.

• One or more “teammate” robots that can provide their own observations of objects to the
primary robot. These teammates do not manipulate any objects or affect the environment in
any way. Because of localization errors, the reported objects positions may be erroneous.

The task for the robot is to track the positions of all of the objects as closely as possible.

7.1.1 Object Tracking

Before introducing the concept of tracking multiple hypotheses per object, the utility of the de-
scribed approach for deciding when to track a specific object is evaluated. In this experiment, three
different objects with increasingly dynamic motion models are simulated. The robot’s task is to
maintain a good estimate of each of the three even though it is able to observe only a single object
at a time. The robot is not to manipulate any objects and no teammates are present to assist the
robot in the tracking problem. As before, it is assumed that each object is uniquely identifiable
from the robot’s sensors so that there is no data association problem.

The performance of the naı̈ve tracking policy is compared against the greedy tracking policy. In
the naı̈ve case, the robot gives equal time to tracking each object regardless of that object’s motion
model and associated uncertainty. Uncertainty in this work is the covariance associated with the
error in the estimated position of the object. For as long as the object is unobserved, the uncertainty
of that object’s covariance will increase. For the greedy case, the robot tracks the object with the
greatest uncertainty at the time.

The simulation is run for 500 trials of 500 timesteps each. The sums of the errors between
estimated position and ground truth across all three objects are computed. The average error across
all trials for the greedy policy (µ = 19.617, σ = 1.584) is less than the average error across all
trials for the naı̈ve policy (µ = 22.300, σ = 2.141). This result is statistically significant (one-
tailed, two-sample t-test). Figure 3 illustrates an example run of the simulation with three objects
being tracked using the greedy policy.

7.1.2 Multi-Hypothesis Object Tracking

In this simulation, the robot’s task is again to track three objects, but additionally, it must also move
up to a quasi-static object and manipulate (push) it. After manipulation, the robot must re-acquire
sensor contact with that object. Several hypotheses are generated after each manipulation: one
which reflects a successful manipulation of the object, a second which reflects a failed manipula-
tion, and a third which is the teammate estimate. The simulation is set up such that the actuation
succeeds 90% of the time but fails 10% of the time. The physical modeling of the actuation is also
corrupted by random noise. The teammate’s localization estimate is corrupted by random noise as
well as an offset bias which is randomized between trials to reflect the uncertainty in a teammate’s
localization. Because of the localization error, the positions reported by the teammate are nearly
always worse than the robot’s own estimates.

14

Figure 3: Tracking objects with the greedy policy. Example run of the one-dimensional simulation
showing the positions of three objects being tracked with the greedy policy. Only 100 timesteps
out of 500 are shown for clarity. For each object, ’x’ marks the target’s estimated position. The
most dynamic object (bottom) is tracked 52% of the time, the second most dynamic (middle) is
tracked 33% of the time, and the least dynamic (top) is tracked 15% of the time.

Several different multi-hypothesis tracking policies (shown in Table 3), which describe the
order in which the hypotheses are visited by the robot’s sensors, are evaluated as part of this
experiment. Once again, the naı̈ve and greedy object tracking policies are evaluated as part of
this experiment. Figure 4 illustrates a sample run of the robot chasing the object it must actuate
(for clarity, the other two objects are not shown). The simulation is run for 10,000 trials of 500
timesteps each. The sums of the errors between the estimated position and ground truth for all
three objects are compared. Table 4 illustrates the results for all twelve policy configurations.

Policy 1st Hyp. 2nd Hyp. 3rd Hyp.
1 successful push failed push teammate
2 failed push successful push teammate
3 teammate successful push failed push
4 successful push N/A N/A
5 failed push N/A N/A
6 teammate N/A N/A

Table 3: Six multi-hypothesis tracking policies tested in simulation. Policies 4-6 only ever track a
single hypothesis.

As expected, the policy configuration that performs the best over all other policy configurations
is the greedy object tracking policy with hypothesis policy 1 (see Table 3 for an explanation). These
results are statically significant over all other policy configurations (one-tailed, two-sample t-test).

15

Figure 4: Example run of the one-dimensional simulation showing the robot chasing and actuat-
ing an object. After actuating the object, the robot maintains three separate hypotheses: one for
actuation success, one for actuation failure, and one for the noisy external teammate observation.
Actuation succeeds at times 21, 125, 300, and 341. Actuation fails at time 205. The object is moved
by an external force at time 307 and the robot must use the teammate observation to re-localize it.
Not shown are the other two objects that the robot is tracking.

The best hypothesis selection policy is the one which most closely matches the physics of
the true environment. However, if the robot were to possess a damaged actuator which caused
the actuation effect to fail more often, or if the teammate could be assured to be well localized
(such as a stationary teammate), policies 2 or 3 (respectively) would most likely be the superior
choices. Thus, the selection of the specific hypothesis policy must be done with care after the
robot’s performance in its chosen environment has been observed and carefully measured.

7.2 2D Simulation Study
For initial testing of our algorithm, we have developed a robust simulation environment for running
our algorithms in test soccer matches. Our simulator incorporates a basic dynamics engine allow-
ing us to simulate the forces and accelerations applied to rigid bodies moving about (and colliding
within) the environment. Actuation and sensor noise is also simulated with models measured from
our real-world robots. Figure 5 shows a typical view from the simulator.

To systematically evaluate the effectiveness of the use of a high-level hypothesis policy to factor

16

Hyp. Policy Targ. Policy µ σ

1 Greedy 1.667 1.644
1 Naı̈ve 1.819 1.844
2 Greedy 1.891 1.731
6 Naı̈ve 2.028 2.226
3 Greedy 2.054 2.170
3 Naı̈ve 2.067 2.240
2 Naı̈ve 2.086 2.098
6 Greedy 2.105 2.160
4 Naı̈ve 2.122 2.400
4 Greedy 2.164 2.360
5 Naı̈ve 2.574 2.912
5 Greedy 2.648 2.764

Table 4: mean error and std dev for all 12 cases evaluated over 10,000 trials in simulation. The
policy combinations are sorted with the least error on top and the largest error on bottom. The first
column represents the hypothesis selection policy, as described in Table 3, and the second column
represents the target tracking policy.

a probabilistic state estimation problem into a more tractable form, several hundred robotic runs
were performed with our simulation package. The underlying estimation algorithm used in this
study was a Rao-Blackwellized particle filter (RBPF), similar to the algorithms reported in [13]
and in [10], where the state of the ball as well as motion model of the ball are stochastically
sampled based on the expected activities of the robot and its sensor information.

In these experiments, single robot kicks the ball between several different waypoints on the
field. The robot’s sensor readings as well as the actuation models are stochastically corrupted with
noise. We compared the performance of the RBPF which estimated the full state of the ball and
motion model against our hybrid approach where each motion model is given its own independent
state estimate (also using a RBPF for each) and the robot chooses which model to track based on
its actions and expected performances therein.

The ground truth of the ball’s position on the field was recorded and compared to the robot’s
current estimate. After several hundred experiments, we found that the hybrid policy estimator
outperformed the single estimator in a statistically significant fashion (0.732m error on average
for the single RBPF vs 0.592m on average for the policy selection algorithm). We note that the
parameters for all of the RBPFs were kept the same for both experiments. Figure 6 illustrates
an example estimate from both approaches. Note in Figure 6(b) how the density from the policy
selection algorithm is focused mainly around the areas from the expected outcomes of the actions
where the density of the particles in Figure 6(a) is more spread out.

A series of simulation experiments were performed to evaluate the effectiveness of the policy
selection algorithm on a variety of different environment. In this study, a single robot was required
to find the soccer ball on the field, and manipulate it with its kicking mechanism through a series
of waypoints. As with the 1D simulation study, a number of different policies were evaluated for

17

Figure 5: Simulation package used for evaluation of robot soccer algorithms. The robots are
represented as red and blue circles.

where the robot should task its sensors in order to find the ball when it was not in view of the
robot’s sensors. Table 5 illustrates the list of different policies.

Policy 1st Hyp. 2nd Hyp. 3rd Hyp.
1 successful kick failed kick teammate
2 failed kick successful kick teammate
3 teammate successful kick failed kick

Table 5: The multi-hypothesis tracking policies tested in 2D simulation.

In the simulation study, four different environmental cases were studied. These included several
different environmental cases that we have observed in real RoboCup soccer matches:

• Case A: High probability of kick success with bad teammate localization

• Case B: Low probability kick success with bad teammate loc localization

• Case C: High probability kick success with good teammate loc localization

• Case D: Low probability kick success with good teammate localization

The kick success is directly affected by the state of the environment whereby the texture, fric-
tion, and dampening of the soccer field will directly affect how well the kicking action works.
The effects of teammate localization are also heavily dependent on the state of the lighting in the
environment.

Each trial of the simulation consisted of the robot approaching, grabbing, and kicking the ball
such that it could manipulate it through a series of waypoints on the field continuously for 10
minutes. A stationary teammate robot tracked the ball and relayed its observations when the ball

18

(a) (b)

Figure 6: Example illustration of the simulated world where the robot has just kicked the ball.
The vanilla RBPF estimator tracking the ball (a). The hybrid bank of RBPF estimators tracking
the ball in (b). In (b), the three different hypotheses are represented as different shaped particles
(vision=circle, kick success=cross, kick failure=square).

was in view. The results were evaluated on how well the kicking robot’s state estimate matched
the global ground truth of the world and by how much time the robot actually had the ball in its
view. The results are summarized in Table 6 for the error in the robot’s ball estimates and Table 7
for the amount of time that the robot had the ball in view of its sensors.

Case A Error in meters Case B Error in meters Case C Error in meters Case D Error in meters
Policy µ σ Policy µ σ Policy µ σ Policy µ σ

1 0.58 0.12 2 1.06 0.08 3 0.28 0.05 3 0.16 0.04
2 0.85 0.07 1 1.17 0.01 1 0.48 0.14 2 0.59 0.03
3 1.79 0.05 3 1.73 0.05 2 0.74 0.06 1 0.75 0.03

Table 6: Results of the 2D simulated soccer simulation experiment showing a list of the poli-
cies ordered from best (top) to worse (bottom) based on the estimator error for the four different
experimental cases. Every result is statistically significant (based on t-test).

In general, the appropriate policies performed well in the environmental conditions where they
were placed. We did not expect that the outcomes of the different policies would have the same
ranking in performance for both the average error in the estimated ball position as well as the
average time that the ball was visible in the robot’s sensors. However, when looking at the results,
it can be seen that the rankings of the 3 policies are the same for both metrics.

In cases A & B, the teammate robot was unable to localize itself very well and as a result, the
policy that made use of that information first performed the most poorly in those cases. However, in
cases C & D, the opposite was true. The challenge must be faced by any team of robots is to decide

19

Case A Frames visible Case B Frames visible Case C Frames visible Case D Frames visible
Policy µ σ Policy µ σ Policy µ σ Policy µ σ

1 1087 48.08 2 568 50.80 3 1248 19.30 3 965 51.96
2 925 27.26 1 477 68.50 1 1167 47.42 2 714 30.99
3 866 59.19 3 442 43.98 2 981 40.84 1 633 29.9

Table 7: Results of the 2D simulated soccer simulation experiment showing a list of the policies
ordered from best (top) to worse (bottom) based on the time the ball is in view for the four different
experimental cases. Time is measured in frames of video where the ball is visible (frame rate is
33Hz). Every result is statistically significant (based on t-test), except for the times of policies 1
and 3 in case B.

when to trust the information returned by their teammates. Teammate information, particularly in
the RoboCup environment where individual robots are crowded and jostled by opponents, can very
easily be corrupted without the teammate being aware of it until it attempted to re-localize itself.
When the teammate’s position is corrupted with error any information about tracked objects that
are converted from the robot’s egocentric coordinate systems to a global coordinate system will
also be corrupted. This is a very serious problem because in addition to translational error, any
error in the orientation will generate a significant additional error in the global pose of the object.

The only results that were not statistically significant were the times that the ball was visible
in case B for policies 1 & 3. Case B was probably the hardest for the robot because its kicking
actions were the most likely to fail and the teammate’s reported ball position was very error-prone.
Thus, if the robot did not first look to the kick failure hypothesis first, it would spend a lot of time
chasing phantoms in either of those two cases.

7.3 Real World Study
We have implemented our hybrid policy selection algorithm on our AIBO RoboCup team where
the robots and algorithm have performed (and won) in competition. In the AIBO implementation,
the underlying probabilistic state estimation algorithm for tracking the ball is a simplified Multi-
Hypothesis Tracker using an Extended Kalman Filter. The deciding factor for the choice of this
estimator was the need for computational efficiency on a very limited CPU budget. Other algo-
rithms, such as the computer vision and self-localization, require a large percentage of the available
computation as well. Our hybrid hypothesis selection algorithm was implemented as described in
the previous section. Each hypothesis estimate is allowed one or two Kalman Filters (merging or
splitting as needed). An example of the hypothesis selection policy, as implemented on our AIBO
robots, is illustrated on a simple example in Figure 7.

The Kalman filter [12] is a Bayesian filtering algorithm which estimates the state of a system
by modeling the process and sensor noise with zero-mean univariate Gaussian distributions. The
Kalman filter estimates a quantity with a propagation step whereby the predicted state of the sys-
tem is computed according to a dynamics model, and a sensor update step, where a (noisy) sensor
reading model corrects the predicted state. In both steps, the state estimate and the uncertainty as-

20

sociated with the state are updated. However, a shortcoming of the basic Kalman filter algorithm is
that it assumes that all of the noise models can be estimated using white Gaussian noise. Addition-
ally, the final state and uncertainty estimate are also represented as a single Gaussian distribution.
Thus, our approach uses a variation on the Multiple Hypothesis Tracker (MHT) [22] Kalman filter
algorithm where a multi-modal probability density is estimated by a bank of Kalman filters.

Interestingly enough, the deterministic approximation to the state estimation problem solved by
the MHT paradigm can be considered analogous to approximate inference methods for performing
stochastic inference in Switching Kalman Filter models via a Rao-Blackwellized particle filter [21].
At this time, it is not clear whether one approach is superior to the other. For efficiency purposes,
the AIBOs use the Kalman filter to generate a probabilistic estimate for the position of the ball.
Particle filters typically require greater computational power due to the large number of samples
that must be maintained and updated. While significant for a robot its size, the AIBO’s on-board
computer, a 600MHz MIPS processor, must handle a great deal of additional processing, such
as vision, localization (already using a particle filter), and kinematics. Computational issues of
the robot aside, we assert that our proposed hypothesis selection algorithm is independent of the
particular representation used for the state estimates. Instead of Kalman Filters for each estimate,
independent sets of particle filters could be used to represent the different hypothesis classes. By
keeping them disjoint, the robot can select the appropriate hypothesis to explore using the proposed
algorithm.

Each element of the disjoint state estimate is represented using a bank of L Kalman filters. In
this way, a multi-modal estimate generated by multiple potentially conflicting or ambiguous sensor
readings can be maintained until additional sensor information removes one or more hypotheses
that are inconsistent with new sensor data. When new sensor data arrives, a gating function is used
to determine which filter should be updated with the new information. If no hypothesis matches
the data, a new hypothesis will be initialized. All hypotheses have an uncertainty model which
is represented as a covariance matrix P . As per the propagation algorithm, the uncertainty of
the covariance matrix will continuously grow if there is no sensor data. Eventually, a check is
performed to determine whether the covariance of the estimate has grown too large to be practical.
In this case, a particular filter is no longer informative (essentially a uniform density distribution)
and is removed from consideration.

The sources of information that feed into this estimator can have distinctly different process
models which describe how quickly the uncertainty grows in the model. Our approach makes use
of this in order to exploit both positive and negative information returned from the sensors to adapt
the process noise of the estimates. When the tracked object is observed by the sensors, the process
noise is set to a model which best describes the dynamics of that object. Specific estimate process
noise is based on the following states and is ranked from lowest (1) to highest (5):

1. Visible: The estimate is being actively observed and tracked with the camera.

2. Possession: The estimate is not seen, but the robot believes that the object is under its chin
and can be manipulated.

3. Not in camera view: The estimate is not within the expected field of view of the camera as
the robot’s sensors have been directed elsewhere.

21

X̂t/t Estimated state at time t with accumulated sensor readings from time t
X̂t/t+1 Estimated state at time t + 1 with accumulated sensor readings from time t. This occurs

when the system dynamics are propagated but no sensor reading has yet been obtained at
time t+ 1

F State transition Jacobian matrix
B Control matrix
ut Control input at time t
Pt/t Covariance matrix at time t with accumulated sensor readings from time t
Pt/t+1 Covariance matrix at time t+1 with accumulated sensor readings from time t. See definition

of X̂t/t+1 above.
G Process noise Jacobian matrix
Qt Process noise covariance matrix at time t
zt Sensor reading at time t
ẑt Estimated value of sensor reading at time t
H Sensor Jacobian matrix
rt Residual between expected and actual sensor readings
R Sensor noise covariance
St Computed covariance of sensor reading at time t
Kt Kalman gain at time t

Table 8: Description of terms used in the Multiple Hypothesis Kalman filter algorithm

4. In camera view but occluded: The estimate is expected to be visible in the calculated
camera view but currently is not. However, occluding objects (such as other robots) are also
present in the image, so the object could still be present.

5. In camera view but not visible: The estimate is expected to be visible in the calculated
camera view but it is not. No additional occluding objects are present.

As the process noise increases, the estimate uncertainty will increase and decrease the likeli-
hood that it will be selected as the next hypothesis to explore by the robot. Thus, when the sensors
view an area where the tracked object is expected, but no readings are found, the process noise
increases drastically to reflect the notion that the object has moved.

The specific notation for these algorithms is described in Table 8. The propagation algorithm
for our disjoint Multiple Hypothesis tracker is shown Table 9, and the sensor update algorithm is
shown in Table 10.

Directly evaluating this algorithm on real robots is much more difficult due to the challenge
of obtaining the ground truth of the ball and the robot in the environment. However, we have
conducted controlled experiments where we have measured the time that it takes for the robot to
maintain visual contact with the ball with the policy algorithm vs. a straight estimator with a naı̈ve
search. The mean times for visually re-acquiring the ball after losing track of it are statistically
significant on the order of several seconds. This time to re-acquire the ball is even more significant
when dealing with reported teammate estimates. Due to the difficulty of localizing the robot in the

22

Multiple Hypothesis Kalman Filter propagation algorithm

• Given:

1. A list of Kalman filters L

2. Sensor poses and expected fields of view

• Propagate

– For each filter l (with state estimate X̂t/t and covariance matrix Pt/t) do

∗ Propagate the state and covariance matrix from time t− 1 to time t

X̂t+1/t = FX̂t/t +But

Pt+1/t = FPt/tF
T +GQtG

T

∗ Update the process noise matrix Q of the filter based on the expected readings
of the sensor

∗ If likelihood of Pt+1/t is less than a threshold, delete filter l from the list

Table 9: Multiple Hypothesis state estimation propagation algorithm

dynamic RoboCup environment, teammates can potentially broadcast very inaccurate information.
In actual competition games where the teammate information was given higher priority, the robots
tended to be more lost than in games when they used their own models first before listening to
teammates.

Figure 8 illustrates how the multiple disjoint hypothesis tracking algorithm steps through the
different hypothesis classes in an attempt to drive the robot towards the correct estimated ball
position. In this example, two AIBOs are tracking two different balls on the field. The AIBO in
the center is actively attempting to score a goal with its ball. The stationary AIBO in the upper
right corner of the field tracks a ball that is occluded from the first AIBO. The moving AIBO
continuously receives a global position estimate for the ball from the stationary one.

In Figure 8(a), an AIBO observes the ball on and moves towards it in an attempt to kick it
into the goal. In Figure 8(b), the robot performs a side kick that uses its head and the current
hypothesis changes to the class of kicks and is split into two cases. The first case is the success
case, which models the kinematics of the kick and predicts the motion. The second case is a failure
case which models the situation where the AIBO failed to kick the ball. The kick success case is
initially higher priority, and so the robot attempts to track its position. The kick success hypothesis
estimates the ball’s new position at each timestep by modeling the velocity of the ball after the kick,
as shown in Figure 8(c). Because the robot missed the ball, the successful kick hypothesis is not
valid and when the robot aims its camera towards it, no ball is observed. This negative information
greatly increases the process noise of the kick success model and the uncertainty grows quickly,
as shown in Figure 8(d). The success hypothesis quickly expires and the robot brings its attention

23

Multiple Hypothesis Kalman Filter sensor update algorithm

• Given:

1. A list of Kalman filters L

2. Reading from a sensor z

• Update

– If Kalman filter list L is empty, initialize a new filter based on the sensor reading and
exit

– else For each Kalman filter l do

∗ Compute the Mahalanobis distance for the filter l and the sensor reading

ẑt+1 = HX̂t+1/t

rt+1 = zt+1 − ẑt+1

St+1 = HPt+1/tH
T +R

M = rt+1S
−1
t+1r

T
t+1

– Select the Kalman filter li with the smallest Mahalanobis distance Mi

– If Mi <= thresh, apply the sensor estimate to that filter

Kt+1 = Pt+1/tH
TS−1

t+1

X̂t+1/t+1 = X̂t+1/t +Kt+1rt+1

Pt+1/t+1 = Pt+1/t − Pt+1/tH
T
t+1S

−1
t+1Ht+1Pt+1/t

– else Initialize a new filter based on the sensor reading and add it to the list.

Table 10: Multiple Hypothesis state estimation sensor update algorithm

to the kick failure hypothesis. As shown in Figure 8(e), once again, because the ball is not there,
the negative information causes the uncertainty of that hypothesis to grow until it expires as well.
In Figure 8(f), the kick failure hypothesis also expires and the robot finally uses the teammate
observations to direct its motion to the upper corner of the field.

We have conducted controlled experiments on the real robots where we have measured the
time that it takes for the robot to maintain visual contact with the ball with our proposed search
policy algorithm vs. a standard MHT-EKF state estimator coupled with a naı̈ve search. We have
run a set of experiments to compare the performance of the two different estimators. The naı̈ve
search is considered to be a policy where the robot always tracks the estimated position of the ball
assuming a successful kick. In both cases, after the tracked hypothesis expires due to exceeding
an uncertainty threshold, the robot will revert back to a more expensive generic ball search which

24

constitutes spinning in place while scanning its camera to exhaustively search at different distances.
In a real game situation, minimizing the time to find the ball is critical as the longer the robots
search for the ball, the greater the chance that the other team will find and control the ball.

In these experiments, similar to the simulation experiments, the robots were required to locate
the ball and kick it to a specific position on the field. This emulates normal game behavior where
the robots will attempt to move the ball up the field (and potentially near teammates). The time
between when each kick was performed and the ball was re-acquired by the vision system was
recorded. The time to re-locate the ball in the AIBO’s camera image is used as the performance
metric rather than the position difference in the robot’s estimate and the real world estimate for
several reasons. First, the soccer ball used by the Four-legged league is a hollow plastic ball which,
due to nonuniformities in its casting, will often roll in a very non-linear fashion at low speeds. In
our prior work with kick modeling, we observed that immediately after a successful kick, the ball
will travel along a straight line until it slows down due to friction. At a certain speed, the ball will
often curve away from the expected linear position.

We found that if the ball is successfully kicked, it will travel far enough from the robot that
even if its trajectory moves in a curve, the ball will still be visible in the robot’s field of view. This
is because when the robot aims its camera toward a specific hypothesis for analysis, the camera is
cast along the entire area of the uncertainty in the estimated position. In contrast, if a kick fails,
the ball will often times roll to the side of the robot or sometimes behind it. In order to re-acquire
it, the robot will have to perform a search behavior which requires that it spins in place and casts
its camera around the local area. Thus, rather than using the estimated position as a metric, we feel
that a more practical metric is the amount of time required for the robot to actually re-acquire the
ball in its camera. Once this has been accomplished, the robot can move straight for the ball as
well as tell its teammates where the ball can be found.

A set of ten experiments was performed where the times to find the ball after the first ten suc-
cessful kicks as well as the first ten failed kicks were recorded. Kicks can fail due to misalignment
of the ball to the robot’s head and legs. In a game situation, this happens very frequently due to the
robot being jostled by opponent robots. The results are illustrated in Table 11.

PMHWM EKF Simple EKF
Successful kick µ = 0.98, σ = 0.01 µ = 0.97, σ = 0.01

Failed kick µ = 3.07, σ = 0.42 µ = 5.00, σ = 0.52

Table 11: Mean times (in seconds) and standard deviations to find the ball after successful and
unsuccessful kicks. Finding the ball after a successful kick was statistically the same time while
finding the ball after an unsuccessful kick was statistically much faster with the PMHWM ap-
proach.

On an empty field, the kicks fail approximately 10% of the time. However, as mentioned pre-
viously, when jostled in a real game situation, this kick failure can be in excess of 50% and is often
much higher in crowded situations. Thus, it is very important that the robots reason effectively
about the potential outcomes of their actions at a high level in order to more rapidly re-acquire the
target.

25

This time to re-acquire the ball can be even more significant when dealing with reported team-
mate estimates. Due to the difficulty of localizing the robot in the dynamic RoboCup environment,
teammates can potentially broadcast very inaccurate information. In actual competition games
where the teammate information was given higher priority, the robots tended to be more lost than
in games when they used their own models first before listening to teammates. Because the robots
have no sense of touch, if they are knocked off course due to a collision, they do not know that their
localization estimate has become inaccurate until they attempt to re-localize themselves based on
the nearly markers. However, as all robot are attempting to track the position of the ball as much as
possible, teammates can potentially transmit very poor ball information for long periods of time.

8 Summary and Conclusions
In this paper, we describe an approach for multi-hypothesis state estimation in a dynamic environ-
ment where a robot must contend with uncertain sensor readings and incomplete models of objects.
We formally describe the problem of tracking objects with multiple hypotheses based on models
and other information sources. Specifically, we have addressed the problem of tracking an object
(or objects) that are uniquely identifiable by a robot’s sensors. For any environment of reasonable
complexity, a robot is incapable of simultaneously tracking all objects of interest with its sensors
as the scope of the robot’s sensor field is simply too narrow (or otherwise limited) compared to the
size of the environment.

Probabilistic state estimates are powerful mechanisms for representing the uncertainty in a
robot’s state estimate. However, due to the multi-modal nature and potentially high dimensionality
of these estimates, estimating the complete density function can be exceedingly challenging, par-
ticularly when the noise models are not known exactly. More importantly, in many applications,
maintaining an accurate estimating of the density is not as important as choosing an action quickly
in a dynamic environment. We believe that the fusion of a high-level policy-based approach with
effective probabilistic state estimation algorithms will allow robots to maintain better estimates of
their world by combining effective action selection with robust state estimation.

We describe a mechanism by which the robot can intelligently decide how best to aim its sen-
sors to maintain an accurate estimate of the state of all objects. When an object is not in view, its
position must be predicted from analyzing multiple sources of model information that can include
models for the success or failure of actuation as well as external observations from teammates.
We describe a formal policy mechanism by which the robot can select appropriately among mul-
tiple hypotheses based on domain information in order to augment a traditional state estimation
algorithm to allow the robot quickly re-acquire the object. Deciding on the correct policy for the
robot can be done a priori and can rapidly be changed if the situation warrants. Our approach was
developed for and successfully applied to several real multi-robot systems. We have validated it
through an extensive empirical simulation study and have used it successfully in competition on
our real robots. Our current work is to analyze how we can learn these policies in real-time on the
robots as they perform their tasks rather than having to rely on a priori defined policies. Future
work will relax the assumption that the objects are uniquely identifiable and address the important
complexity of how to address the data association problem in the context of this research.

26

Acknowledgements
We would like to thank the members of the CMDash’05 and CMDash’06 RoboCup Four-Legged
league team for their help and support. In particular, we would like to thank Sonia Chernova
and Colin McMillen for their contributions to individual robot behaviors and team coordination,
respectively.

References
[1] S. Abrams, P. Allen, and K. Tarabanis. Dynamic sensor planning. In Proceedings of the

International Conference on Robotics and Automation, 1993.

[2] S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on particle filters for on-
line non-linear / non-gaussian bayesian tracking. IEEE Transactions on Signal Processing,
50(2):174–188, 2002.

[3] Y. Bar-Shalom, K. C. Chang, and H. A. P. Blom. Tracking a maneuvering target using input
estimation vs. the interacting multiple model algorithm. IEEE Transactions on Aerospace
and Electronic Systems, 25:296–300, March 1989.

[4] Y. Bar-Shalom and K. Kirmiwal. Variable dimension filter for maneuvering target tracking.
IEEE Transactions on Aerospace and Electronic Systems, 18(5):621–629, September 1982.

[5] S. Chernova and M. Veloso. Learning and using models of kicking motions for legged robots.
In In Proceedings of the International Conference on Robotics and Automation (ICRA’04),
New Orleans, LA, May 2004.

[6] I. J. Cox and S. L. Hingorani. An efficient implementation and evaluation of reid’s multiple
hypothesis tracking algorithm for visual tracking. In International Conference on Pattern
Recognition, pages 437–442, 1994.

[7] H. Durrant-Whyte. Sensor models and multisensor integration. The International Journal of
Robotics Research, 7:97–113, December 1988.

[8] D. Fox. Adapting the sample size in particle filters through kld-sampling. International
Journal of Robotics Research (IJRR), 22, 2003.

[9] T. Fukase, M. Yokoi, Y. Kobayashi, R. Ueda, H. Yuasa, and T. Arai. Quadruped robot naviga-
tion considering the observational cost. In A. Birk, S. Coradeschi, and S. Tadokoro, editors,
RoboCup 2001: Robot Soccer World Cup V, pages 350–355. SPringer-Verlag, Berlin, 2002.

[10] Y. Gu. Tactic-based motion modeling and multi-sensor tracking. In In Proceedings of the
American Association for Artificial Intelligence (AAAI), pages 1274–1279, Pittsburgh, PA,
July 2005.

[11] A. Jazwinsky. Stochastic Processes and Filtering Theory. Academic, New York, 1970.

27

[12] R. E. Kalman and R. Bucy. New results in linear filtering and prediction theory. Transactions
of ASME, Journal of Basic Engineering, 83:95–108, 1961.

[13] C. Kwok and D. Fox. Map-based multiple model tracking of a moving object. In In Proceed-
ings of the RoboCup 2004 Symposium, Lisbon, Portugal, July 2004.

[14] S. Lenser and M. Veloso. Sensor resetting localization for poorly modelled mobile robots. In
In Proceedings of the International Conference on Robotics and Automation (ICRA’00), San
Francisco, CA, April 2000.

[15] A. K. Mccallum. Learning to use selective attention and short-term memory in sequential
tasks. In From Animals to Animats 4: Proceedings of the Fourth International Conference on
Simulation of Adaptive Behavior, pages 315–324. MIT Press, 1996.

[16] C. McMillen and M. Veloso. Distributed, play-based role assignment for robot teams in
dynamic environments. In Proceedings of Distributed Autonomous Robot Systems (DARS),
Minneapolis, MN, July 2006.

[17] N. Mitsunaga and M. Asada. Visual attention control for a legged mobile robot based on
information criterion. In Proceedings of the 2002 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 244–249, 2002.

[18] N. Mitsunaga and M. Asada. How a mobile robot select landmarks to make a decision based
on an information criterion. Autonomous Robots, 21(1):3–14, August 2006.

[19] N. Mitsunaga, T. Izumi, and M. Asada. Cooperative behavior based on a subjective map with
shared information in a dynamic environment. In In Proceedings of the 2003 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, pages 291–296, Las Vegas, October
2003.

[20] K. Murphy. Learning switching kalman filter models. Technical Report 98-10, Compaq
Cambridge Research Lab, 1998.

[21] K. Murphy. Dynamic Bayesian Networks: Represenation, Inference, and Learning. PhD
thesis, University of California, Berkeley, 2002.

[22] D. B. Reid. An algorithm for tracking multiple targets. IEEE Transaction on Automatic
Control, 24(6):843–854, December 1979.

[23] M. Roth, D. Vail, and M. Veloso. A real-time world model for multi-robot teams with high-
latency communication. In In Proceedings of the 2003 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 2494–2499, Las Vegas, NV, October 2004.

[24] S. I. Roumeliotis and G. Bekey. Bayesian estimation and kalman filtering: A unified frame-
work for mobile robot localization. In In Proceedings of the International Conference on
Robotics and Automation (ICRA’00), San Francisco, CA, April 2000.

28

[25] S. Thrun. Robotic mapping: A survey. In G. Lakemeyer and B. Nebel, editors, Exploring
Artificial Intelligence in the New Millenium. Morgan Kaufmann, 2002.

[26] M. Veloso, P. E. Rybski, S. Lenser, S. Chernova, and D. Vail. Cmrobobits: Creating an
intelligent aibo robot. AI Magazine, 27(1):67–82, Spring 2006.

[27] M. Veloso, E. Winner, S. Lenser, J. Bruce, and T. Balch. Vision-servoed localization and
behavior-based planning for an autonomous quadruped legged robot. In In Proceedings of
the Fifth International Conference on Artificial Intelligence Planning Systems, pages 387–
394, Breckenridge, CO, April 2000.

29

Case (1a): Robot tracks and ap-
proaches the ball for a kick.

Case (1b): Robot performs an
open-loop grab motion and kick
which succeeds.

Case (1c): The robot looks to the
location of the kick success hy-
pothesis for the ball.

Case (2a): In a different kick,
the open-loop grab and kick
fails.

Case (2b): The robot looks to
the location of the kick suc-
cess hypothesis for the ball but
doesn’t find it.

Case (2c): The kick success hy-
pothesis is pruned and the robot
looks to the kick failure hypoth-
esis.

Case (3a): The robot attempts to
kick, but the ball is stolen by ex-
ternal forces.

Case (3b): A nearby teammate
is shown the ball. Both the
kick success and kick failure hy-
potheses are evaluated.

Case (3c): All of the kick hy-
potheses expire and the robot
tracks the teammate’s reported
hypothesis (the ball is hidden
from the first robot’s view.)

Figure 7: An illustrative example of the prioritized Multiple Hypothesis algorithm for reasoning
about possible locations for the ball.

30

(a) Approaching the ball for a
kick.

(b) Kicking creating 2
hypotheses (success & failure).

(c) Tracking success hypothesis
but cannot see ball.

(d) Success hypothesis rapidly
grows in uncertainty.

(e) Success hypothesis is
pruned. Tracking failure

hypothesis.

(f) Failure hypothesis is pruned.
Robot heads toward teammate

information.

Figure 8: A top-down view of the multi-hypothesis algorithm running on the robot which demon-
strates how the algorithm directs the robot’s actions. The field of view of the robot’s camera is
shown with white lines while the circles represent the uncertainty in the tracked object position.

31

