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Abstract. Modern robot soccer control architectures tend to separate
higher level tactics and lower level navigation control. This can lead to
tactics which do not fully utilize the robot’s dynamic actuation abilities.
It can furthermore create the problem of the navigational code breaking
the constraints of the higher level tactical goals when avoiding obstacles.
We aim to improve such control architectures by modeling tactics as
sampling-based behaviors which exist inside of a probabilistic kinody-
namic planner, thus treating tactics and navigation as a unified dynam-
ics problem. We present a behavioral version of Kinodynamic Rapidly-
Exploring Random Trees and show that this algorithm can be used to
automatically improvise new ball-manipulation strategies in a simulated
robot soccer domain. We furthermore show how opponent-models can
be seamlessly integrated into the planner, thus allowing the robot to
anticipate and outperform the opponent’s motions in physics-space.

1 Introduction

Multi-agent control architectures as encountered in robot soccer tend to follow
a common paradigm: controls are layered in a hierarchical structure with higher
level decision-making controls located at the top, flowing to more concrete, lower
level controls as we move towards the bottom. One particularly successful ap-
proach is the “Skills, Tactics, and Plays” (STP) model [1]. Here, a multi-agent
playbook performs role-assignment at the top of the hierarchy. These roles are
then executed by the individual agents and modeled in the form of tactics which
again consist of a state machine that can invoke even lower level skills. Naviga-
tional controls are modeled on the skill level and can range from very simplistic
reactive controls to more elaborate motion planning techniques.

While this STP approach has proved very successfully in several real-world
robot domains, there exists at least one remaining limitation. The lower level
motion planning code is generally unaware of the higher level strategic goals of
the game. Similarly, the higher level strategy is mostly unaware of the inher-
ent dynamics of the physical world that the robot is acting within. While the
navigational control might for example perform obstacle-avoidance to prevent
collisions, it might at the same time also violate the assumptions of the higher



level tactic, such as being able to dribble the ball successfully towards the goal.
A related issue is the problem of predictability. There might exist several tactics
that the agent can chose from, but each of them will typically perform its task
deterministically, given the current state of the world. There is little to none
creative variation in the motions that the robot executes, which can ultimately
not only lead to missed opportunities, but also to the opponent team quickly
adapting to one’s strategy.

Our work aims to solve these problems by embedding the skills and tac-
tics components of STP into a kinodynamic planning framework. By treating
soccer as a physics-based planning problem, we are able to automatically gen-
erate control sequences which achieve higher level tactical goals while adhering
to any desired kinodynamic navigation constraints. To generate such control
sequences, we introduce Behavioral Kinodynamic Rapidly-Exploring Random
Trees: a randomized planning algorithm that allows us to define tactics as non-
deterministic state machines of sampling-based skills. Finally, we show that our
approach is able to creatively improvise new ball-manipulation strategies in a
simulated soccer domain and compare its performance with traditional static
tactic approaches.

1.1 Related Work

Several multi-agent control architectures exist that are applicable to robot soccer
[1-5]. Our presented approach aims to improve the single-robot control compo-
nents of such layered approaches and is able to work underneath any higher level
multi-agent role assignment methodology, such as playbooks [1], state machines,
or even market-based methods [6]. In terms of single agent control, our work
adopts the concept of tactics as a state machine of skills as presented in [1].
However, in our case, both the tactics and skills are modeled inherently prob-
abilistically and act as search axioms inside of a kinodynamic planner. We are
currently unaware of any other approach that has unified planning, strategy, and
lower-level dynamics in such a way.

Our approach builds heavily upon kinodynamic randomized planning. Intro-
duced by LaValle [7], Rapidly-Exploring Random Trees (RRT) are a planning
technique which allows rapid growth of a search tree through a continuous space.
The algorithm has been refined by Kuffner and LaValle [8] and has been used
for collision free motion planning in many robotics applications, such as in the
RoboCup Small Size team by Bruce and Veloso [9, 10]. LaValle and Kuffner [11]
successfully showed that RRT can be adapted to work under Kinematic and
Dynamic planning constraints.

Internally, our planning algorithm uses a rigid-body simulator to perform
its state transitions. The task of robustly and accurately simulating rigid body
dynamics is well-understood [12] and there exist several free and commercial
simulators, such as the Open Dynamics Engine (ODE), Newton Dynamics, and
Ageia PhysX.



2 Modeling Soccer as a Kinodynamic Planning Problem
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Algorithm 1: Standard RRT Fig. 1. A visual demonstration of the

standard RRT algorithm.

Instead of artificially separating our control model into higher level tactics
and lower level navigation, we treat soccer as a general control planning problem.
Given an initial state x;,; in the state-space X, our algorithm is to find an
acceptable sequence of control parameters which lead us to a final state zgpq
located within a predefined goal region Xg,q; € X. Additional constraints might
exist on the intermediate states of our action sequence, such as collision avoidance
or velocity limits. A very common tool to solve such problems is randomized
planning.

Randomized planning techniques are search algorithms which apply proba-
bilistic decision making. One advantage of randomized approaches is that we are
able to shape their behavior by modifying the underlying sampling distributions.
More importantly, randomized techniques tend to work well in continuous envi-
ronments as they are less likely to “get stuck” due to some predefined discretiza-
tion of the set of possible actions. Rapidly-Exploring Random Trees (RRT) is a
popular example of modern randomized planning techniques. Standard RRT as
introduced by LaValle [7] is outlined in algorithm 1. We start with a tree T' con-
taining a single node x;,; representing our initial state. We then continuously
sample random points Zsempie located anywhere within our domain. We locate
the node Zgource in T' that is closest to Zsgmpie using a simple nearest neighbor
lookup. We extend node spyree towards & sgmpie, using a predefined constant dis-
tance, thus giving us a new node, ;. Finally, we add Z,ep to T with Zsoyrce
being its parent. This process is repeated until we either reach the goal or give
up. A visual example of a typical RRT search is given in figure 1.

Since robot soccer is a problem which can contain kinematic and dynamic
constraints, we want our planner to operate in second order time-space. In the
planning literature this is commonly referred to as kinodynamic planning [13].



RRT can be adapted to work in a kinodynamic environment as shown by LaValle
and Kuffner [11].

Finally, it is important to point out that planning robot soccer tactics is
significantly more challenging than a pure path planning problem. The crucial
difference is that in robot soccer, our agent’s motions and the higher level plan-
ning goal are actually allowed to be disjoint subsets of our state space. For
example, our planning goal is typically defined in terms of the ball being deliv-
ered to a particular target, whereas our actions can only be applied to the robot,
but not the ball itself. Thus, the only way to manipulate the ball, is through
the interactions defined by our physics simulator, such as rigid body dynamics.
This prevents us from using a simple goal-heuristic such as modifying RRT’s
sampling distribution. Without the bias of a useful goal heuristic, our search
would become infeasible.

2.1 Behavioral Kinodynamic Planning for Robot Tactics

Traditional Approach: Our Approach:
Multi-Robot Strategy H Multi-Robot Strategy
Single Robot Role Assignment Single Robot Role Assignment
v (e.g. “Goalie”, “Attacker”, etc..) (e.g. “Goalie”, “Attacker”, etc..)
Tactics (e.g. FSM) v Behavioral Kinodynamic Planner

Non-Deterministic FSM of
Tactic’s navigation request: Sampling-Based Skills
v (e.g. go to point P, avoid obstacles)

Apply action a to Generate Xg,mple
Navigation Skill simulate dynamics from and find closest
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Physics == Search-
Send control Engine Add X, t0 T TreeT
sequence to robot
v Send best control
sequencein T to robot

Fig. 2. A diagram of a traditional STP-style approach (left) in comparison to our
behavioral kinodynamic planning approach (right).

To guide our search through dynamics space, we embrace and extend the
concept of tactics and skills as presented by Browning and colleagues in [1]. For
our work, tactics and skills still follow their traditional role to act as informed
controllers of our robot by processing the input of a particular world state and
providing an action for our robot to execute. In other words, they act as an im-
plementation of a robot’s behavior (such as “Attacker” or “Goalie”) and contain
some kind of heuristic intelligence that will attempt to reach a particular goal
state.



However, the significant difference is that in our case, both the tactic and its
skills reside within a kinodynamic planner. That is, instead of greedily executing
a single tactic online, we use planning to simulate the outcome of many different
variations of a tactic in kinodynamic space. Our agent then selects one particu-
larly good solution for execution. To achieve this variation in tactic execution, we
modify the traditional definition of a tactic to be modeled probabilistically as
a Nondeterministic Finite State Machine. Similarly, skills are sampling-based,
and thus deliver nondeterministic actions. A diagram showing this structural
difference is shown in figure 2.

In the nondetermininistic FSM, transitions are modeled probabilistically. The
probabilities are defined by the programmer and act as a behavioral guideline
for how likely the tactic is to chose a particular sequence of state-transitions. By
being modeled in this nondeterministic fashion, each execution of the tactic can
result in a different sequence of state-transitions, thus reducing predictability of
our robot’s actions. However, we are in full control over how much “creative free-
dom” we want to provide to the tactic by adjusting the transition probabilities.

To further increase the freedom of choice in our agent’s behavior, we also
modify our Skills to act non-deterministically. In traditional STP, a skill would
normally perform an analytic reactive control given the current state of the
world. For example, a traditional “shoot-on-goal” skill would aim for the center
of the largest opening in the goal, and take a shot. This not only leads to very
high predictability, but it also ignores the fact that there might exist other shots
that could be more likely to succeed, given a particular dynamics state of the
world. In our new non-deterministic version of a “shoot-on-goal” skill, we instead
use sampling to select randomly from a set of target points throughout the goal
area. We then rely on the fact that our planner will execute this skill many times,
always selecting a different sample point and simulating the skill’s outcome in
kinodynamic space.

Given this non-deterministic model of tactics and skills, we can now use
search to cover many different simulated executions of the tactic in our kinody-
namic search space. The goal of this methodology is to be able to search over a
variety of executions and find one particular instance that leads us successfully
to the goal state. The inherent creativity of this approach arises from the fact
that skills no longer execute deterministic motions based on the state of the
world, but instead can chose randomly from different perturbations of their typ-
ical behavior. The way that these skills are then chained together into a control
sequence is again a probabilistic process, thus allowing the planner to come up
with new, and unique solutions to the problem. Since all the planning occurs
inside of a kinodynamic framework, we can guarantee that the solutions will
satisfy any physics-based constraints that we might have (such as collision-free
navigation).

We are now ready to formalize the concept of Behavioral Kinodynamic RRT.
The State Space X describes the entire modifiable space of our physical domain.
More concretely, a state x € X is defined as z = [t, fsm,ro,...,7,] where t
represents time, fsm represents the agent’s internal behavioral FSM-state, and



r; represents the state of the i-th rigid body in our domain. A rigid body state
in a second order system is described by its position, rotation, their derivatives,
and any additional state. That is, r; = [p, ¢, v, w, O]T where

: position (3D-vector)
: rotation (unit quaternion or rotation matrix)
: linear velocity (3D-vector)

: angular velocity (3D-vector).

o &€ 2 a

: optional additional state-variables (e.g. robot’s actuators).

It is important to point out that r may include both active and passive rigid
bodies. Active rigid bodies are the ones which we can directly apply forces to as
an execution of our planning solution, such as robots. All other bodies which can
solely be manipulated through rigid body dynamics (e.g. the ball) are considered
passive. For simplicity, we will assume that the total number of rigid bodies in
our domain stays constant.

The Action Space A (also known as control space) is defined by the set of pos-
sible actions of our agent. An action a € A of an agent consists of force, torque,
and possibly actuation commands, such as kick or dribble. Robot-dependent
kinematic constraints are modeled by the possible torques and forces that can
be applied to the robot.

The Sampling Space S is what we draw our random samplings from. It is a
subset of the state-space, i.e. S C X.

T.AddVertex (Xnit) ;

for k£ — 1 to K do

Srandom <— SampleRandomState();

Xsource <— KinematicNearestNeighbor (T,srandom);

fsm_state < FsmTransition (Xseyrce.fsSm);

if IsValidFSMstate (fsm_state) then

a < ApplyFsmBehavior (fsm_state,Xsource,Srandom) ;

Xnew <— Simulate (Xsource,a,At);

Xnew-t = Xsource.t + At;

Xnew-fsm «— fsm_state ;

if IsValidPhysicsState(Xnew) then
T.AddVertex (Xpew) ;

T.AddEdge (Xsource,Xnew,a) ;

if Xpew € Xgoat then
| return Xxpew ;
end

end
end

end
return Failed;

Algorithm 2: Behavioral Kinodynamic RRT



Using this terminology, we can now define Behavioral Kinodynamic RRT
as shown in algorithm 2. We start with a tree 7' containing an initial state
Zinit € X. We then enter the main RRT loop. The function SampleRandomState
uses an internal probability distribution to provide us with a sample Syqndom
taken from the sampling space S. It is important that the sampling space S and
the probability distribution are carefully chosen to match the particular robot
domain. For a typical omni-directional robot movement, the sampling space
S might consist of three dimensions, representing a point and orientation in
space. Similarly, the sampling distribution might be spread uniformly throughout
the confines of the domain. The KinematicNearestNeighbor function defines a
distance metric between a sample S,4ndom and an existing state x from our tree

T.

The definition of a consistent distance metric is crucial for a correct opera-
tion of the algorithm. Since we are planning in second order timespace, using
an Euclidean nearest neighbor distance approach will fail. This is because the
Euclidean distance between two nodes’ positions ignores the fact that the nodes
have velocities attached to them. Thus, distance is not a good indicator of how
much time it will take to reach a particular node. A much more reliable approach
is to define a metric based on estimated time to get from x; € T to Syqndom- This
can be achieved by using a simple acceleration-based motion model to compute
the minimal estimated time for the robot to reach its target position and ori-
entation. While this certainly will not always constitute an accurate prediction
of the time traveled (in particular because we are not taking potential obstacles
into account), it is still a good heuristic for the nearest neighbor lookup.

Once we have located the nearest neighbor zsurce towards Syandom, we now
call FsmTransition to perform a nondeterministic FSM state transition giving
us the new internal FSM state fsm_state. We then make sure that this state
is valid by ensuring that the FSM has not reached any end-condition. Finally,
we apply the behavior associated with fsm_state by calling ApplyFsmBehavior.
The actual FSM behavior can be any skill, ranging from a simple “full stop” to
much more elaborate controls. It is important to note, that each FSM behavior
is able to make full use of the sample s,4n40m- For example, we might imagine
a skill called “move towards point” which will accelerate our robot towards
the sample S.qndom. This in fact implies, that the traditional kinodynamic RRT
algorithm is actually a subset of the introduced Behavioral Kinodynamic RRT. If
we imagine a behavioral FSM with a single behavior that implements the typical
RRT extend-operator then this behavioral RRT would behave algorithmically
identical to standard RRT.

The result of ApplyFsmBehavior will be an action a describing a vector in
the action-space A. We can now access our physics-engine, load the initial state
Tsource; apply the forces and torques defined by a, and simulate At forward in
time which will provide us with a new state x,c,. We then query the physics
engine to ensure that the simulation from Zsurce t0 Tpew did not violate any
of our dynamics constraints, such as collisions. If accepted, T,ey is added to T
This entire process is repeated until we either reach the goal, or give up. Once



the goal has been reached, we simply backtrack until we reach the root of T" and
reverse that particular action sequence.

The presented pseudocode will stop as soon as a solution has been found.
Because we are using a randomized planning scheme, there are no immediate
guarantees about the optimality of the solution. However, one could easily en-
hance the algorithm to keep planning until a solution of a desired quality has
been found. Various metrics, such as plan length or curvature could be used to
compare multiple solutions.

2.2 Domain and Robot Modeling

To plan in dynamics space, an accurate physics model of the domain is required.
Modern physics simulators allow the construction of any thinkable rigid-body
shapes and are sufficiently reliable in simulating motions and collisions based
on friction and restitution models. In our approach, this domain description is
treated as a module and can be interchanged independently of the planner, and
its tactics and skills. Skills are similarly designed with platform independence
in mind, allowing an abstracted description of motion, sensing, and actuation
which will then be translated into physics-forces defined by a modular platform-
dependent robot-model.

2.3 Opponent Modeling

Since we are dealing with a robot soccer domain, we need to assume that we are
planning against an adversary. Note, that our planner stores the entire physics
state x for any node when performing its search through our dynamics time-
space. This conveniently allows us to integrate an opponent model into the
search-phase. Similar to our own behavior, such opponent model can be reactive
to the given state of the world as defined in a particular xsyyrce. For example, we
can model an opponent which will attempt to steal the ball from us, by defining
a simple deterministic skill. Using this model, our planner will anticipate and
integrate the opponent’s motions during the planning phase and only deliver so-
lutions which will out-maneuver the predicted opponent’s motions. In algorithm
2, this opponent model would apply its actions for any given plan-state transi-
tion, similar to ApplyFsmBehavior. The Simulate function will then not only
simulate the actions of our own agent, but also the ones of the opponent. Ob-
taining an accurate opponent model is certainly a completely different challenge
that we will not cover in this paper. Nevertheless, even simple assumptions, such
as extrapolating the opponent’s linear motion, or assuming a simple “drive to
ball” strategy, should be significantly preferable over the assumption of a static
opponent.

3 Experimental Results

We present results in a simulated environment that resembles the RoboCup
Small-Size League. The simulated robot models represent our actual Small-Size
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Fig. 3. A behavioral nondeterministic finite state machine used for generating dribbling
sequences.

Fig. 4. An example of planning an attacker-tactic with chip and flat kicks. The left
two images show the growth of the Behavioral Kinodynamic RRT through the do-
main (robots and ball are not displayed). Yellow nodes represent the position of the
ball. Green nodes represent our agent, any other nodes represent the three defend-
ers respectively. The right three images highlight the selected solution and show the
attacker executing it.

RoboCup robots. Our simulated model has been proved successfully for devel-
oping RoboCup code and models the motion, sensing, and ball-manipulation
capabilities of our robots with good accuracy. The planning framework was im-
plemented in C++. Ageia PhysX was chosen as the underlying physics engine.
The results were computed on a Pentium 4 processor running Linux. The action
timestep At used in all tests was 1/60th of a second.

The first experiment used a probabilistic “Attacker” tactic to shoot a goal
against an opponent defense. The skills within this tactic were a sampling-based
flat kick and a sampling-based chip-kick. Kick-strength and kick-aiming for both
of those skills were modeled as free planning variables using uniform sampling
distributions. The decision between the two skills was also a free planning vari-
able because it was modeled using the nondeterministic state machine. The oppo-
nent defense was modeled using a simple RoboCup defender code, which would
try to block the ball from going into the goal. Visual results of planning an
attacker strategy can be seen in figures 4 and 5.

To evaluate the qualitative performance of our planning approach to tradi-
tional control methods, we ran samples of a linear execution of a deterministic
version of tactics and skills. We then compared the success rate (trials resulting
in a goal) of the linear execution with our approach using different maximum



Fig. 5. An example of planning an attacker-tactic which has been limited to flat kicks
only. The top row shows the growth of the Behavioral Kinodynamic RRT through
the domain (robots and ball are not displayed). Blue nodes represent the position of
the ball. Green, purple, and red represent positions of attacker, defender, and goalie
respectively. The bottom row highlights the selected solution and shows the attacker
executing it.

search tree sizes. The results are shown in figure 6. We can see that with growing
search size, the planner also ends up finding successful solutions more frequently.
In fact, even when limited to relatively small search tree sizes (such as 2500
nodes), we obtain a greater average success rate than linear executions.

Planning however, does come with the trade-off of computational time. A
timing analysis of our planner can be seen in figure 7. The total time spent on
physics and tactics computations scales linearly with tree size, which is to be
expected because they are constant time operations applied per node. For larger
tree sizes, the significant slowdown is the RRT nearest neighbor lookup which
scales exponentially as the tree size increases. However, for smaller trees, such as
5000 nodes, the physics engine is still the major bottleneck. This is good news
in a way, as processing power will undoubtedly increase and dedicated physics
acceleration hardware is becoming a commodity.

Our second experiment was designed to emphasize the creative power of our
approach. We created an opponent model which attempts to steal the ball from
our robot, whereas our robot attempts to out-dribble the opponent and score a
goal. The tactic used a state machine similar to the one outlined in figure 3. Note,
that all of the ball-manipulation skills within this state machine contain free
sampling-based planning variables to increase the variety of created solutions. It
is also interesting to note that some of the FSM transition probabilities actually
depend on the current state xpuree. Some visual results from this experiment
can be seen in figure 8. Note that additional videos are available at http://wuw.
cs.cmu.edu/~szickler/papers/robocup2008/.
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Fig. 8. An example of planning a tactic to out-dribble an opponent and score a goal.
The top row shows the growth of the Behavioral Kinodynamic RRT through the domain
(robots and ball are not displayed). Blue nodes represent the position of the ball. Green
and purple nodes represent the positions of the attacker and opponent respectively. The
bottom row highlights the selected solution and shows the attacker executing it.

4 Conclusion and Future Work

We presented a randomized behavioral kinodynamic planning framework for
robot control generation. In particular, we introduced the Behavioral Kino-
dynamic RRT algorithm and demonstrated how it can be used to effectively
search the dynamics space of a robot-soccer domain. We demonstrated that our
planning-based approach is able to execute attacker-tactics with a greater success
rate than linear approaches, due to its ability to sample from different possible
control-sequences.

One obvious goal of future work will be to apply this approach to real robotic
hardware, bringing along the challenges of model accuracy and computational
performance. Another aspect that should be addressed in the future is the ability
of re-planning. As the environment tends to change very quickly in a domain
such as the RoboCup Small Size league, it might be a better strategy to generate



shorter, but more densely sampled plans, instead of predicting the environment
too far into the future. Furthermore, the question how to re-use the previously
computed result during re-planning needs to be answered. Finally, it would also
be interesting to see how to integrate multi-agent control processes into the
planning framework. Currently, the presented framework computes the control
strategy for each robot independently, possibly using serial prioritized planning,
which can be globally non-optimal. Allowing the planner to devise a joint control
policy for sets of robots will be an interesting research problem, as it increases
the dimensionality of the planning problem significantly.
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