Robust Supporting Role in Coordinated
Two-Robot Soccer Attack

Mike Phillips and Manuela Veloso
mlphilli@andrew.cmu.edu, veloso@cmu.edu

Computer Science Department, Carnegie Mellon University

Abstract. In spite of the great success of the fully autonomous dis-
tributed AIBO robot soccer league, a standing challenge is the creation
of an effective planned, rather than emergent, coordinated two-robot at-
tack, where one robot is the main attacker and goes to the ball and the
other robot “supports the attack.” While the main attacker has its nav-
igation conceptually driven by following the ball and aiming at scoring,
the supporter objectives are not as clear. In this work, we investigate this
distributed, limited perception, two-robot soccer attack with emphasis
on the overlooked supporting robot role. We contribute a region-based
positioning of the supporting robot for a possible pass or for the recovery
of a lost ball. The algorithm includes a safe path navigation that does
not endanger the possible scoring of the teammate attacker by crossing
in between it and the goal. We then further present how the supporter
enables pass evaluation, under the concept that it is in a better position
to visually assess a pass than the attacker, which is focused on the ball
and surrounded by the opponent defense. We show extensive statistically
significant lab experiments, using our AIBO robots, which show the ef-
fectiveness of the positioning algorithm compared both to a previous
supporter algorithm and to a single attacker. Additional experimental
results provide solid evidence of the effectiveness of our passing eval-
uation algorithm. The algorithms are ready to incorporate in different
RoboCup standard platform robot teams.

1 Introduction

We conduct research on creating teams of robots that work cooperatively on
tasks in dynamic environments. In this paper, we focus on our work within
the domain of the RoboCup [4] 4-Legged robot soccer using the Sony AIBO
robots. The robots are fully autonomous with onboard control, actuators, and
in particular, limited visual perception. They can wirelessly communicate with
each other. These features are general to other robot platforms and are the basis
for our work for on the needed real-time coordination in robot soccer. While the
RoboCup 4-Legged league has been very successful, we have not seen coordinated
passes, for example, such as in the RoboCup small-size robot league. In this
paper, we investigate a two-robot attack with distributed, limited perception
equipped AIBO robots. We present cooperation algorithms for positioning and
coordination and show successful passing lab results.

More specifically, one robot has the role of attacker whose job is to go to the
ball, move it upfield, and score goals. This robot’s role is very clear since it is
ball and goal oriented. This paper is concerned with the interesting problem that
arises when a second attacker is added to the team, known as the supporter. The
supporting role, whose task is not quite as clear, when used effectively should
shorten the time it takes to score goals. This goal can be achieved through
proper positioning, to recover a lost ball more quickly, and to receive passes.
At the same time, it is critical for the supporter to not hinder the attacker’s
performance by crowding the ball, blocking the attacker’s shots on the goal, or
causing hesitation. With these objectives in mind, we present sets of algorithms.
We first provide an approach for selecting a supporting position while dealing
with supporting constraints, such as not crossing the attacker’s shot on goal with
domain constraints, like a bounded field. We present details as to how a supporter
gets to its support point quickly while accounting for opponent movement.

Secondly, we give insight into how a supporter can be used to evaluate the
option of passing. The attacker is defined to be the robot in possession of the
ball, making all decisions regarding how the ball is moved. We argue that this
generally accepted concept for deciding how the ball should be moved is not ideal
in the presence of limited perception and a highly dynamic environment, such
as robot soccer. We introduce an approach to outsource some of the decision
making to the supporting robot, which we note has more information about the
game state than the attacker does. The attacker has less information about the
ball’s surroundings because the attacker’s perception is completely focused on
the very close ball. Furthermore the ball’s attractive nature draws opponents
which obstruct the camera’s already limited view of the attacker.

Teamwork and the positioning of a supporter have been addressed with a
few approaches. The supporter robot has been positioned using potential [1].
However, this potential-field based algorithm does not take into consideration
the constraint of not crossing over the attacker’s shot on goal, does not take
opponents into account, and does not include planned passing. Another related
algorithm tries to position the supporter to be in the place where it has the
highest probability of being of use, applied in simulation and in the centralized
controlled small-size robot soccer [2] with centralized perception. Our problem
is inspired by these efforts, but made more difficult by the robots’ distributed
control and local view from a small and directional onboard camera. Furthermore
we address the dynamic positioning for passes in the presence of teammates and
opponents, in addition to static passing [7].

First, we briefly overview the RoboCup AIBO league, and our team’s role
framework. We then discuss region-based positioning and the pass determination
of the supporter robot. Each part includes experimental results.

The RoboCup 4-Legged league has teams of four Sony AIBO robots com-
peting against each other. The Sony AIBO (Figure 1) is a 4-legged robot whose
primary sensor is a low resolution camera, with a small field of view (less than
60 degrees). This camera is mounted in the robot’s head (at the tip of its nose)
and can pan 90 degrees in both directions as well as having two joints for tilting.

Fig. 1. A typical attacker situation: an AIBO robot surrounded by other robots

Our team uses a team control approach with roles being used to divide
the tasks of robot soccer amongst the four players. The four roles that we use
are goalie, defender, attacker, and offensive supporter. In CMDash’07, a specific
robot took the defender role and kept it throughout the game unless the other two
team robots would get penalized and out of the game. The goalie and defender
are used for defense with the former being in the goal box while the latter defends
from outside. The other two roles, which are the ones of interest for this paper,
are the attacker and supporter. The attacker’s role is well defined, being the
robot that acquires the ball, moves it up the field, and finally scores goals. The
supporter’s role is to assist the attacker. Our play-based framework allows the
attacker and supporter to swap roles when the supporter is evaluated to be more
likely to attain the ball [8]. Therefore, the supporter’s objectives involve trying
to prevent the loss of possession of the ball to opponents, and to recover lost
balls as quickly as possible, while not interfering with the attacker’s objectives.

Each robot in the distributed CMDash’07 team uses a world model that maps
perceptual data into positioning of all the objects in the domain, namely ball
and robots. Robots communicate to improve their assessment of the complete
world. Our robots follow an individual and shared world model approach [5].
The individual version contains Gaussian locations of recently seen objects, and
therefore smoothes the movement of objects, which removes spurious readings.
It also allows objects to continue to be modeled based on previous perceptions
and models of one robot’s actions, even if they have not been seen for a few
frames. The shared world model includes the shared ball and teammate locations
communicated between robots on the team. The world model is updated based
on the confidence of the information perceived, communicated and its recency
[6]. Due to compounded localization and vision errors, teammates do not yet
pass position information about the other robots they have seen.

2 Region-Based Supporter

Under our framework, the supporter only exists when the team has an attacker
that is either: in possession of the ball or has claimed the ball as its own, based
on the role selection algorithm (the attacker/supporter swap, mentioned earlier).
The supporter’s purpose is to help the team keep possession of the ball. It can
do this in two key ways: strategic positioning and receiving passes.

2.1 Positioning

Proper positioning of a supporter increases the number of balls that are recovered
by our team. We develop an algorithm that selects a good support point, while
also meeting several other objectives to maximize performance:

— The supporter should be in a location where the ball is likely to roll if our
attacker loses possession of the ball.

— When near the goal, the supporter should be placed to recover balls that are
deflected by the goalie without getting in the way of the attacker’s shots.

— In the offensive side of the field, it is important that the supporter does
not obstruct a shot on goal at any time. This objective can cause the ideal
supporting point to be unreachable due to the field bounds. The supporter is
then pinched and moving getting to the desired support point would require
it to go outside the boundaries. Therefore, the supporter needs to have a
“next best” point to support that is reachable.

— If the ball is in the defensive half of the field, the supporter should stay on
the offensive side to allow defenders to clear the ball upfield to it.

Some of these objectives only apply to certain parts of the field. Thus, our posi-
tioning algorithm uses three regions (offense, defense, goal), as seen in Figure 2,
to better handle the cases. The region is chosen based on the position of the ball.
Each region slighly overlaps with its neighbors (overlap not shown in Figure 2
in order to prevent oscillation. When the ball is in an overlapping area the robot
maintains the region that the ball was in previously.

Defense Region Offense Region Goal Region
A —— A

“Pinch Threshold”

“Pinch Threshold”

Fig. 2. Field with regions. Neighboring regions slightly overlap to prevent oscillation.
Note that we assume that the positive x axis points toward the opponent’s goal.

Before we present our region-based supporter positioning algorithm, we define
a few functions that the algorithms uses.

The function AligntoCloseSide takes the ball’s coordinates (b, b,) and the
robot’s y (ry), and a minimum value Zp,. It returns a tuple representing a
support point with coordinates (pg,py), respectively set to b, with a lower
bound, Z,;, and a constant offset from the ball, Cyogsct- Dy is on the side of b,

that the robot is closer to; p, is bounded at +Cp,q, just inside the field bounds.
A similar function, AlignToFarSide, selects p, by picking the side of the ball
the robot is farthest from.

— (ps,py) «— AlignToCloseSide(by, by, 7y, Tmin)
Pz — Max(bxa -rmin)
py — Maz(Min((by + Cyoset * Sign(ry — by)), Cymaz), —Cymaz)
return (p,,py)

The function AlignUpField takes the ball’s coordinates (b, b,) and robot’s
ry and returns a support point that is upfield of the ball, keeping its p, bounded
at the top of the field, Cypyqr. The py value is set to the edge of the field that
the robot is closer to than the ball.

— (ps,py) «— AlignUpField(b,, by, 1)
return (Min(by + Croffset; Comaz), Cymaz * Sign(ry —by))

The function Pinched returns a boolean that tells if the robot’s r,, is “pinched”
between the ball’s b, and the nearest field boundary. The ball’s b, is important
since we introduce different pinch constants for different regions.

— bool «— Pinched(bs, by, 1)
return ((bz > Cgoal,oﬁense bound and abs(by) > Cgoal pinch) or
(beCgoal,oﬁense bound and ab's(by) > Coﬁense pinch)) and
(abs(ry) > abs(b,) and Sign(r,) == Sign(by))
The function PathCollideWithAttack checks if the path from the robot
(rz,7y) to the support point (ps,p,) intersects with the attacker. The attacker

is estimated to be on the line segment straight back from the ball (b;,b,) at a
distance Cropot tength-

— bool «— PathCollideWithAttack(bs, by, 7z, 7y, Pz, Py)
return Intersects(((rz,7y), (P, Py)); (b2, by), (bz = Crobot tengths by)))

The function GoBehindAttacker returns a support point that is behind the
attacker. If the robot is not already behind the attacker, then it moves backward.
Otherwise the supporter moves horizontally toward the desired support point’s
y coordinate, py.

— (Pz,py) — GoBehindAttacker(by, by, 72,7y, Dy)
if Ty > ba: - Crobot length and abs(by - Ty) < C'7"obot length
return (Tx — 2% Crobot length ry)
else if ngbm - Crobot length
return (74, py)

The function CloseGoalCorner returns a support point with fixed = and
y coordinates that line up on the corner of the goal box. It chooses from the
two corners by selecting the corner that is on the same side of the ball as the
robot. A similar function, FarGoalCorner (not shown) chooses the corner on
the opposite side of the ball.

— (pz,py) « CloseGoalCorner(b,, 1)
return (Cgoal box bottom Cgoal boz side * Slgn(h, - by))

Supporter Positioning in the Offense Region The supporter in the offense
region (Figure 3 (a)) keeps the same = coordinate as the ball while maintaining
a constant distance offset from the ball’s y position. If the supporter becomes
pinched and is behind the ball (in terms of xz), it safely and effectively goes
around behind the ball and the attacker, resuming then its usual positioning. A
more difficult case arises when the supporter is ahead of the ball. Going around
the ball now is not only too time consuming, but it may actually be impossible
to do without walking out of bounds. Therefore, to remain in bounds and to
not block a shot on goal, the supporter moves upfield to allow for an upfield
pass. This position is not as desirable and therefore, as soon as the supporter
becomes un-pinched or gets the chance to go behind the attacker, it goes back
to its normal behavior. All motion is capped by the field boundaries.

(a) (b)

GetOrrensePomvt(b, 7) GerGoaLPomt(b, r)
(P py) «— ArionToCrLoseSE(by, by, 1y, by) (o Py) — CLoseGoaLCorner(by, r,)
if Pivcuen(b,, by, #,) if Pveuen(b,, by, #)
if I > bx if I > bx
(P py) « AviovUprieco(by, by, ry) (P py) — AviovUpriLn(by, b, ry)
else else
(P, py) — ArioNToF 4rSioE(b,, by, 1), by) (Pw p,) < FARG04LCORNER(D,, 7,)
if PATHCOLLIDEWITHATTACK(D:, By, Py, 1y P Py) || If PATHCOLLIDEWITHATTACK (DY, By ¥y Fyy P Py)
(Px-Py) < GoBEHWNDATTACKER(D: by 11 7y Py) (PDy) «— GOBEHINDATTACKER(Dy, by, 7 Fp2y)
return p return p

(c)
GerDEereNsePoNT(b, 7)
(px py) < ALioNToCroseSme(b;, by, ¥y, Cridiine)
if PvcHED(by, by, 1)
(., py) «—ALioNToF 4rRSDE(b,, by, 1y, Cidline)
return p

Fig.3. Region-based support point for (a) offense, (b) goal, (c) defense, regions

Supporter Positioning in the Goal Region In the goal region the focus is on
recovering the ball after the opposing goalie deflects it. Therefore, the supporter
chooses to sit on the goal box corner (Figure 3 (b)). The supporter still handles
being “pinched” the same way, except that the thresholds are moved in more,
so the ball never gets too close to the supporter. If the attacker switches sides,
the supporter moves to the other goal box corner.

Supporter Positioning in the Defense Region Finally, the supporter’s
behavior (Figure 3 (c)) when the ball is in the defense region is very similar to
that of the offensive region. However the supporter never goes below the midline,
so that when a defensive robot clears the ball, there is already a robot in the
offensive region. There is also no concern with interrupting a shot on goal since
the defense region is far away from the opponent’s goal. As a result, when the

supporter gets “pinched,” it always freely crosses in front of the ball’s shot on
goal to get the better supporting position.

2.2 Navigation to the Support Point

The region-based positioning algorithm shows how the optimal support point is
selected. However, this does not address how the robot actually moves to the
selected point quickly and safely while getting enough information from the field
to not hinder the support point selection algorithm. Therefore, we have some
key objectives that need to be addressed.

— The robot should move to the point quickly by prioritizing its walking di-
rections. The AIBO walks fastest forward, then backward, then sideways.

— When the supporter is going around opponents, it should keep itself between
them and the ball in order to get to the support point safely.

— The robot must maintain a good view of the ball in order to choose good
supporting points. This is difficult because the supporter is not moving to
the ball like the attacker.

— In the event that the supporter loses sight of the ball for more than a moment,
it needs some way to continue to make acceptable positioning decisions.

Our algorithm NavToPointSeeBall (pseudo code not shown due to limited
space) first determines whether it has seen the ball recently. If it hasn’t, then it
chooses the support point based on the attacker’s estimated ball location.

The algorithm prioritizes the primary walking directions so that the robot
can choose the fastest walking direction that still allows it to see the ball at
all times. With the proper constants, our algorithm makes minimal use of the
slower sideways walk, while choosing a direction that allows the ball to remain
centralized in the AIBO’s field of view. In our actual implementation, we overlap
the FOV regions slightly to prevent oscillation between walking directions.

Our algorithm extends the NavToPoint behavior, developed previously to be
used with object detection [3]. The algorithm in that paper describes how to
detect opponent robots. This behavior was written to make use of this opponent
detection when walking forward to a target point. We extended this algorithm to
use all four primary walking directions. This is still most effective when walking
forward as the robot is most likely to see opponents. Another key change was
to always go towards the ball when going around an opponent, putting the
supporter between the opponent and the ball.

3 Positioning Experimental Results

In order to test the effectiveness of our algorithms, we performed three sets of
experiments. All three sets involve a defensive team of a goalie and defender
protecting the goal. The goalie always begins in the goal box while the defender
is started a short distance in front of it. The ball is started just past the midline
on the defensive side. All three sets have the same attacker which starts a small
distance behind the ball. Figure 4 shows the initial field state for each trial.

Fig.4. The starting configuration for our experiments.

The three sets of experiments only differ in the supporter of the offensive
team. The first set uses our new positioning algorithms. The second set uses a
previously developed algorithm, where both offensive robots are attackers until
one gets close to the ball. When this occurs, the farther robot cannot get closer
than a constant distance to the ball, to prevent crowding. The third set is a
control group with no supporter and only one robot as attacker. All robots on
the field were given time to localize before each test began. We timed the time to
go from the starting configuration to scoring a goal. We ran the trials following
standard RoboCup rules for the 4-Legged League. After a goal was scored, the
time was recorded and the field was reset, to make each of the goals independent
of each other. We ran 30 trials of each approach. Table 1 shows the resulting
analysis of the data.

Region Supporter|Previous Supporter|No Supporter
Mean time to score (seconds) 75.2 133.5 164.8
Standard Deviation 67.2 113.5 133.0
Goals with supporter assistance 26/30 25/30 0/30

Table 1. Supporter positioning results

We performed unpaired t-tests using the data we collected. When comparing
our supporter positioning algorithms with the previous supporter algorithm, the
t-test gives us a two-tailed P value of 0.0188, which is statistically significant at
the standard 0.05 level. The comparison between our algorithms and the control
group with no supporter achieved a two-tailed P value of 0.0017, even more
significant. These results provide solid evidence of the value of our algorithms.
The algorithms described in this paper were used at RoboCup 2007 and were
instrumental in our team’s achievement of 3" place in our division.

4 Pass Determination

This section focuses on the problem of the specific coordination between the
attacker and supporter robots towards effective passing.

4.1 Distributed Decision Making

As stated previously, in robot soccer, the ball acts as an attractor for robots on
both teams. The field around the ball is therefore dense with robots, leading us
to two important realizations:

— The attacker with the ball is more likely to be in an opponent-rich environ-
ment than any teammate.

— The increased number of opponents trying to get close to the ball can easily
cause the attacker’s limited camera to become obstructed.

We consider that the attacker only has a few ways to move the ball: shoot on goal
(if close enough), pass, dodge, or dribble (if too far to shoot on goal). A pass to a
teammate seems like an obvious choice to escape the situation where the attacker
has opponents closing in on it, since it quickly moves the ball from a point of
high opponent density to one that is much lower. Also, the attacker has very
limited information about whether a pass is possible or not. This is due to many
factors. First, the general view of the attacker may be obstructed by opponents
which could leave other opponents unnoticed or leave the attacker mislocalized.
Also, due to the attacker’s closeness to the ball, the attacker may know very little
about the ball’s surroundings. Most importantly, the attacker cannot afford to
let go of the ball and look around to determine if passes are possible. Our idea
is to have the decision making be distributed to players who are better informed
to make a particular decision. This allows the attacker to make better decisions
since they are being sent to it from more informed teammates. This outsourcing
of decision-making also has the added benefit of being efficient since it reduces
the amount of computation the attacker must perform. The attacker now merely
has to look up the most recent message. Although in our situation we deal with
the decision of whether to pass or not, our concept of outsourcing decisions away
from the focal player to teammates can be generalized. Specifically, we show how
outsourcing can greatly improve accuracy when determining whether a pass to
another player (in this case an offensive supporter) is possible.

We use an offensive supporter as the pass receiver and as the robot to which
the pass evaluation algorithm is outsourced. The supporter robot is a good out-
sourcing choice as it can be well positioned to maintain an offset distance from
the attacker robot and near the goal as described in the previous section.

4.2 Pass Evaluation Algorithm

The algorithm we present assumes that opponent and teammate robots are de-
tected and represented in the world model, as in [3]. Our pass evaluation algo-
rithm, assumes that it runs on a supporter that is well positioned to keep the
ball in view (we used our earlier described positioning algorithm). The following
algorithm uses the positions of robots in the world model and the location of
the ball to determine whether a pass is likely to be successful, meaning it is not
likely to be intercepted by another robot. Figure 5 shows the pseudo code for our

algorithm, EvaluatePass, running on the supporter robot for distributed decision
making. It makes use of IsOpen and ApplySmoothing, two main functions of the
algorithm. They evaluate the pass on a single vision frame and apply smoothing
across a sequence of noisy vision frames, respectively.

EvaluatePass(posn, ball, robots)

open «— [sOpen(posn, ball, robots)

open +— ApplySmoothing(open)

if open # +1
ResetOpenTimer()

if OpenTime() > OPEN_THRESH
SendMessage(MSG_OPEN)

else if open = -1
SendMessage(MSG NOT OPEN)

Fig.5. Complete pass evaluation algorithm

EvaluatePass sends a MSG_OPEN message to its teammate (SendMessage)
if a pass is possible from the ball to the supporter. A pass is considered possible
if open has been +1 for an amount of time OPEN_THRESH. If open is -1, the
message MSG_NOT_OPEN is sent to its teammate, stating that a pass is not
possible. Lastly, if open is 0, no messages are sent since the supporter is currently
unsure, which means the attacker uses the last sent +1/-1 message. The function
IsOpen determines whether the supporter is open to receive a pass based only
on the current vision frame.

The IsOpen function determines if the supporter can receive a pass based
on the current vision frame. If the robot has not seen the ball recently, then it
certainly cannot receive a pass. If the ball was seen recently, then the function
uses vector math to determine if a robot is in the passing lane. It does this by
”drawing” a rectangle from the supporter to the ball, with a predefined width
and checks if a robot is contained within that rectangle. It allows for up to one
teammate to be in the rectangle since that is likely the attacker. However, if
there are opponents, or more than one teammate in the rectangle, then a -1 is
returned. If the passing lane is clear though, then +1 is returned.

The returned decisions of IsOpen are fed into ApplySmoothing, a simple
smoothing function. ApplySmoothing returns the decision +1/-1 if it has been
seen for a predefined number of consecutive frames, otherwise it returns 0.

5 Passing Experimental Results

In order to test our algorithm, we show that it performs well in assorted scenarios
that make use of all of the attacker’s ball movement options. The attacker is in
the shooting region so it can choose to shoot on goal, pass, or dodge. In all cases
we have the attacker, supporter, and ball start at the same locations. Figure 6-A
shows the set up for when the attacker should simply shoot on goal since there
is no opponent stopping it. Figure 6-B now has a static opponent placed in such
a way that the shot on goal is blocked and it is advantageous to pass to the open
teammate. Finally, Figure 6-C displays the setup for the case when the shot on

goal is blocked as well as the pass to our teammate meaning that the attacker
should resort to a dodge to attempt to not lose the ball.

Fig.6. Several scenarios for the attacker-supporter distributed decision making
A - open shot, open pass; B - blocked shot, open pass; C - blocked shot, blocked pass

We ran 10 trials for each case for both algorithms. Successes were based
on whether the attacker performed the best ball movement action, given the
scenario. The two algorithms we are using are identical except one of them has
the attacker make all decisions from its world model, while the other lets the
supporter determine if a pass is possible.

Scenario Pass Determination
(expected action) Attacker|Supporter
Goal open (shoot on goal) 100% 100%

Goal blocked, Pass open (pass to teammate) | 80% 100%
Goal blocked, Pass blocked (dodge opponent)| 10% 100%

Table 2. Pass success results

Both algorithms perform well on an open goal which is a good check since
the two are identical up to that point. If there is not an opponent in front, the
priority goes to shooting on goal. The next case is when the goal is blocked but
the pass is open, making a pass ideal because the ball would be movef from
a place of high opponent density to a lower one. Here our algorithm performs
well again. The supporter saw an open passing lane from itself to the ball and
told the attacker that it was open. When the attacker grabbed the ball and saw
opponent in front of it, it then had to decide whether to pass or not. It retrieved
the answer that the supporter had sent and then executed the pass.

The other algorithm is based only on what the attacker has in its world
model. The data shows that 80% of the time, the attacker’s world model had
no opponent in the passing lane and therefore it passed, which is good since
there was not an opponent in the passing lane. The 20% in which the attacker
instead chose to dodge is interesting because as the attacker went to the ball, it
must have seen an opponent on the edge of its field of view and added it to its
world model. This makes sense because the edges of the camera’s field of view
are not as accurate and head movement tends to blur the image further. It is

then possible that the attacker got this false reading randomly or by seeing its
own teammate. The supporter algorithm on the other hand does not run into
this problem since the passing lane is in the center of its field of view and its
head is relatively stationary.

The last case is when the goal and the passing lane are blocked. In this case,
the supporter algorithm once again performs well as it detects an opponent in
the passing lane. It then sends messages to the attacker so that if the attacker
chooses not to shoot on goal, then it also chooses not to pass, instead defaulting
to dodging. Not surprisingly, the algorithm where the attacker determines if a
pass is open or not performs poorly. It incorrectly chooses to pass 90% of the
time, giving the ball to the opponent, as it does not detect the opponent in the
passing lane.

6 Conclusion

In this paper, we contributed a positioning and pass evaluation algorithms for the
challenging supporter role in distributed robot soccer. We specifically introduced
a region-based positioning to capture multiple supporting strategies as a function
of the game challenges. We discussed the problems of having a single focal robot
making all the decisions, especially when the hardware limits the amount of
information the robot has. We introduced the outsourcing of passing decision-
making to the more informed supporter teammate. We have fully implemented
and experimentally analyzed the supporter algorithms. We showed statistically
significant lab results of their effectiveness.

References

1. D. Vail and M. Veloso. Dynamic Multi-Robot Coordination. In Multi- Robot
Systems, Kluwer, 2003.

2. M. Veloso, P. Stone, and M. Bowling. Anticipation as a Key for Collaboration
in a Team of Agents: A Case Study in Robotic Soccer. In Proceedings of SPIE
Sensor Fusion and Decentralized Control II, 1999.

3. J. Fasola and M. Veloso. Real-Time Object Detection using Segmented and
Grayscale Images. Proceedings of ICRA’2006, 2006.

4. H. Kitano, Y. Kuyinoshi, I. Noda, M. Asada, H. Matsubara, and E. Osawa.
RoboCup: A challenge problem for Al. Al Magazine, 18(1), 1997.

5. C. Marling, M. Tomko, M. Gillen, D. Alexander, and D. Chelber. Case-
based reasoning for planning and world modeling in the RoboCup small-
size league. In Proceedings of the IJCAI Workshop on Issues in Designing
Physical Agents for Dynamic Real-Time Environments, 2003.

6. P. Rybski and M. Veloso. Handling diverse information sources: Prioritized
multi-hypothesis world modeling. Technical Report CMU-CS-06-182, 2006.

7. P.F. Palamara et al. A Robotic Soccer Passing Task Using Petri Net Plans.
Proceedings of AAMAS, 2008.

8. C. McMillen and M. Veloso. Distributed, Play-Based Role Assignment for
Robot Teams in Dynamic Environments. Proceedings of DARS, 2006.

