
Learning Tactic-Based Motion Models with Fast Particle Smoothing

Yang Gu
School of Computer Science
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213
Email: guyang@cs.cmu.edu

Manuela Veloso
School of Computer Science
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213
Email: mmv@cs.cmu.edu

Abstract— Learning parameters of a motion model is an
important challenge for autonomous robots. We address the
particular instance of parameter learning when tracking mo-
tions with a switching state-space model. We present a general
algorithm for dealing simultaneously with both unknown fixed
model parameters and state variables. Using an Expectation-
Maximization approach, we apply a tactic-based multi-model
particle filter to estimate the state variables in the E-step,
and use particle smoothing to update the parameters in the
M-step. We test our algorithm both in simulation and in a
team robot soccer environment, as a substrate for applying
the learned models to object tracking in a team. One of the
soccer robots learns the actuation model of its teammate. The
experimental results show that the particle smoothing efficiency
is substantially increased and the tracking performance is
significantly improved using the learned teammate actuation
model.

I. INTRODUCTION

Many engineering applications are characterized by non-
linear or linear dynamic systems with a few possible models
[1]. For example, an industrial plant may have multiple dis-
crete models of behavior, each of which has approximately
linear dynamics. These problems are often referred to as
jump Markov or hybrid-state estimation problems [2].

This paper addresses estimating state and learning motion
models in such a hybrid-state system. We are interested in
tracking the ball in a robot soccer domain. This is a highly
dynamic and multi-agent environment. All the robots in the
field can actuate over the ball, e.g., grab and kick the ball,
making the motion model of the ball very complex [3]. The
good news is that we can acquire information about the ball
motion from multiple sources besides the sensor. First, the
robot’s tactics provides valuable information and a tactic-
based motion modeling and tracking algorithm is introduced
in such scenarios [4]. Second, when the robot is playing a
game as a member of a team, the team coordination knowl-
edge provides further information that can be incorporated
into the motion modeling and tracking process. We based
our work upon a plan-dependent tracking algorithm called
play-based tracking [5].

Any model consists of one or multiple parameters. Usually
the model parameters are set by a human expert, based
upon the experience with the environment and the robot.
In this paper, we present a novel method of automating
the procedure of acquiring this probabilistic motion model.
This approach deals simultaneously with both unknown fixed

model parameters and state variables. This not only relieves
the work burden from the human expert, but can be very
useful when the environment changes (e.g., moving from
inside to outside). This approach can be applied to learn the
motion model of the teammate or even the opponent, as a
substrate for opponent modeling. Furthermore, this method
provides a refined motion model based on the current one,
resulting in more accurate tracking performance.

The paper is organized as follows. We first talk about
related work to this paper. We give a brief description
of the hybrid system model and joint parameter and state
estimation. Next we show our algorithm of parameter-
learning-based forward particle filtering and backward parti-
cle smoothing. We describe the learning algorithm, leading
to our experimental results and conclusions.

II. RELATED WORK

There are several areas of previous work related to this
research. We discuss them along the two main axes of our
approach: (i) adaptively estimating; (ii) learning switching
linear models.

Adaptive estimation algorithms are considered to deal
with the uncertainty in a system. Among the multi-model
approaches, the Generalized Pseudo Bayesian (GPB) filter
carries out merging after the measurement update step [6].
The Interactive Multiple Model (IMM) filter yields similar
performance to GPB, but by merging after the hypothesis
branching step, a lower complexity and computational load is
achieved. The particle filter is a general, recursive, Bayesian
estimator; the approach is directly applicable to nonlinear
and non-Gaussian multiple-model case [7]. Our approach is
based on a multi-model particle filter; hypothesis branching
is approximated by resampling from the system switching
probability distribution function, and multi-model parameters
are learned through EM iterations.

Switching multi-model and specifically, switching linear
dynamic systems (SLDS) has been studied in many fields
like statistics and target tracking. Ghahramani [8] introduced
a Dynamic Bayesian Network (DBN) framework for learning
and approximate inference in one class of SLDS models. A
switching framework for particle filters applied to dynamics
learning is described in [9]. Our approach uses the particle
filter scheme, in which a framework for switching multi-
model learning is presented.

III. PROBLEM STATEMENT

A discrete-time hybrid system is given by:

xt = ft−1(xt−1, st, ωt) (1)

zt = ht(xt, st,vt) (2)

where f and h are the parameterized state transition and
measurement functions; xt, zt are the state and measurement
vectors at time t; ωt,vt are the process and measurement
noise vectors of known statistics. The model index parameter
s can take any one of M values, where M is the number of
models in the system. If the model variable is governed by
a discrete-state Markov chain with transitional probabilities

πij = P{st = j|st−1 = i}, (i, j ∈ S),

where S = {1, 2, · · · ,M}, the transitional probability matrix
Π = πij is an M×M matrix, we can represent such a system
using a jump Markov model.

A. Tactic-Based Motion Model

A robot control architecture, called Skills-Tactics-Plays,
was proposed in [10] to achieve the goals of responsive,
adversarial team control. We construct the robot cognition
using a similar architecture. Plays, tactics, and skills form a
hierarchy for team control. Plays control the team behavior
through tactics, while tactics encapsulate individual robot
behavior and instantiate actions through sequences of skills.
Skills implement the focused control policy for actually
generating useful actions.

In our soccer robot environment, we define five mod-
els, namely Free-Ball(F), Robot-Hold-Ball(H1), Robot-
Kick-Ball(K1), Teammate-Hold-Ball(H2), Teammate-Kick-
Ball(K2) to model the ball motion. They are similar models
as those introduced in [5]. F is a motion model that
describes the ball’s movement without external actuation. H1

and K1 are the two motion models that describe the robot’s
own actuation effects on the ball. H2 and K2 are the two
motion models that describe the teammate’s actuation effects
on the ball. All the five models are linear gaussian models.

The direction for how to infer which model to use and
how to transition from one model to another (πi,j) are
tactic-based. Therefore it is an extension of the ordinary
jump Markov model. For detailed explanations about tactic-
based motion tracking, please refer to [5]. Here is a short
example to illustrate the relation between the tactic and
the ball motion models. Suppose in our robot team we
have one goalie and one attacker. The goalie’s task is to
intercept the incoming ball, hold the ball until passing the
ball to its teammate. While the attacker is more tactically
offensive. The attacker does not hold the ball as long as the
goalie, and it kicks more frequently. The five circles in Fig.
1 corresponds to the five ball motion models we describe
above. Each number above the arrow lists the transition
probability between one model and the other. We use the
following examples to show the different effects on transition
models in terms of different tactics.

As is shown in Fig. 1:

• P (H1|F) = 0.1, P (H2|F) = 0.3. The attacker is more
willing to leave its own region to intercept a moving
ball, but it is better for a goalie to stay at its own position
to block the ball.

• P (K1|H1) = 0.03, P (K2|H2) = 0.2. The goalie holds
the ball as long as it can. The attacher does not hold
the ball that long.

F

H2

K2

0.3

1.0
0 .6

0 .6 0.2
H1

0.95

K1

0.02

0.1

0.
8

0 .20.03

0.
2

Fig. 1. An example of the tactic-based transition model based on a tactically
defensive robot and its tactically offensive teammate.

We use a DBN to represent the whole system for ball
tracking as shown in Fig. 2. st is the specific ball motion
model at time t (st = {F,H1,K1,H2,K2}). Its transitional
model πi,j is fixed for each given tactic. xt is a 4D state
vector at time t including the ball’s 2D position and velocity
. zt is a 2D measurement vector at time t.

The tactic-based transition model is fixed during our track-
ing and parameter-learning process. One of the contribution
of this paper is to use the tactic-based transition model as
the prior knowledge to learn the model-specific parameters
in such a hybrid system. Because the EM learning algorithm
we use depends on the smoothed densities of the state
variables, we have to do both a forward filtering and a
backward smoothing. We will discuss the two steps in the
next subsections.

B. Particle Filtering for DBNs

In order to do state estimation and learn the model param-
eters, we need to be able to perform inference in a DBN.
There have been several approximate inference techniques
proposed for DBNs, but they are designed primarily for
discrete domains [11]. Sequential Monte Carlo methods are
currently the only approach that allow us to perform filtering
in general purpose hybrid DBN models. The particle filter
is a Monte Carlo scheme for tracking and smoothing in
dynamic systems [2]. It maintains the belief state at time
t as a set of weighted particles p

(1)
t , · · · , p(N)

t , where each
p
(i)
t is a full instantiation of the tracked variables, N is the

number of particles.
Rao-Blackwellization is a technique to reduce the number

of particles in the particle filter. The idea is to partition
the state vector so that one component of the partition is
a conditionally linear Gaussian state-space model; for this
component one can work out the solution analytically and

x t -1

x t

zt -1

zt

s t -1

st

Vis ion
Measure-
m ent

 StateBall M o tio n
 M o d el

x t +1 zt +1st +1

Fig. 2. A dynamic Bayesian network for ball tracking with a soccer robot.
Filled circles represent deterministic variables which are observable.

use the Kalman filter. The particle filter is then used only
for the nonlinear non-Gaussian portion of the state-space. In
this way the majority of the computational effort is devoted
to the hard part of the problem rather than the easy part.

We denote the state of the system at time t as (st, xt).
st is the nonlinear non-Gaussian portion of the state-space,
while xt is the linear Gaussian portion of the state-space.
We factorize the posterior as follows:

p(st,xt|z1:t−1)
= p(st|z1:t−1) · p(xt|st, z1:t−1)

We represent the posterior by sets of weighted particles:
p(i)

t = (s(i)
t ,x(i)

t). Using the idea of Rao-Blackwellization,
we condition the ball estimate x

(i)
t on a particle’s ball motion

model s
(i)
t . This conditioning turns the ball estimate into a

linear Gaussian system that can be estimated efficiently using
a Kalman filter.

xt = A(st)xt−1 + ωt, ωt ∼ (0, Q(st)) (3)

zt = C(st)xt + vt, vt ∼ (0, R) (4)

where A(st), C(st) are the system matrices associated with
the linear state space model, Q(st), R are noise covariance
matrices. The forward filtering step proceeds by first drawing
samples from p(st|s(i)

t−1) to get a ball motion model s
(i)
t .

Next conditioned on the ball motion model, we do an exact
Kalman filtering on each particle and get ball estimate x

(i)
t .

The weight w
(i)
t of each particle is reevaluated. Particles are

resampled if necessary at the end of each time step.

FORWARD-FILTERING

({x(i)
t−1, s

(i)
t−1, w

(i)
t−1}Ni=1, zt)

1 for i ← 1 to N

2 do draw s
(i)
t ∼ p(st|s(i)

t−1)
3 x(i)

t ← KALMAN-UPDATE (x(i)
t−1, zt, s

(i)
t)

4 w
(i)
t ← p(zt|x(i)

t , s
(i)
t)

5 normalize weight
6 resample

7 return {x(i)
t , s

(i)
t , w

(i)
t }Ni=1

C. Particle Smoothing

In our problem, samples are drawn from the joint smooth-
ing density p(s1:T ,x1:T |z1:T). This technique is much more
efficeint in terms of computation time compared with the
two-filter formula or forward-filtering-backward-smoothing
[12]. The density can be factorized as follows:

p(s1:T ,x1:T |z1:T)

= p(sT ,xT |z1:T) ·
T−1∏
t=1

p(st,xt|st+1:T ,xt+1:T , z1:T)

where the product can be expanded as:

p(st,xt|st+1:T ,xt+1:T , z1:T)

=
∫

p(s1:t,xt|st+1:T ,xt+1:T , z1:T)ds1:t−1

=
∫

p(s1:t|st+1:T ,xt+1:T , z1:T)p(xt|s1:T ,xt+1:T , z1:T)ds1:t−1

where

p(s1:t|st+1:T ,xt+1:T , z1:T)
= p(s1:t|st+1,xt+1, z1:t)
∝ p(st+1,xt+1|s1:t, z1:t)p(s1:t|z1:t)
∝ p(xt+1|s1:t+1, z1:t)p(st+1|st)p(s1:t|z1:t)

Using the particle approximation from the forward fitering,

p(s1:t|z1:t) ≈
N∑

i=1

w
(i)
t δ(s1:t − s

(i)
1:t) (5)

we know how to draw smoothed samples {s̃t, x̃t; t =
1 · · ·T}

w
(i)
t|t+1 ∝ w

(i)
t p(s̃t+1|st)N (x̃t+1; ξ

(i)
t+1|t, P

(i)
t+1|t) (6)

where

s̃t ∼
N∑

i=1

w
(i)
t|t+1δ(st − s̃

(i)
t) (7)

x̃t ∼ N (xt; ξ̃t|T , P̃t|T) (8)

where N (xt; ξ̃t|T , P̃t|T) is a Gaussian density with argument
xt, mean ξ̃t|T and covariance P̃t|T .

The backward smoothing step uses the filtering result of
the forward step, it maintains the original particle locations
and reweights the particles to obtain an approximation to the
smoothed density.

BACKWARD-SMOOTHING

1 choose s̃T = s
(j)
T with probability w

(j)
T

2 set {ξ̃T |T , P̃T |T } = {ξ(j)
T |T , P

(j)
T |T }

3 draw x̃T ∼ N (xt; ξ̃T |T , P̃T |T)
4 for t ← T − 1 to 1

5 do calculate w
(i)
t|t+1 for i = 1 · · ·N

6 sample the indicator j = i with probability w
(i)
t|t+1

7 set s̃t = s
(j)
t

8 do Kalman smoothing and get {ξ̃t|T , P̃t|T }
9 draw x̃t ∼ N (ξ̃t|T , P̃t|T)

IV. THE LEARNING ALGORITHM

The EM algorithm is suitable for learning the parameters
of the above system since it is convenient to compute the
likelihood with the “complete” data. That is, we fill in
the hidden data st at each discrete time t, maximizing the
log-likelihood and iterating. EM algorithm begins with an
initial guess (θ0) of the unknown parameters θ. EM then
iteratively does the expectation and the maximization step
until the parameters converge. In the E-step, the conditional
expectation of the complete data log-likelihood is computed
given the current estimation of θn (n denotes the n-th
iteration of EM):

Q(θ|θn) = Eθ[log p(s1:T ,x1:T , z1:T)|z1:T , θn], (9)

Due to the nature of hybrid-state system’s mixture structure,
an exponentially increasing number of filters are needed to
estimate the state, which makes the calculation of above
expectation in close form impractical. To solve the problem,
a Monte Carlo EM algorithm is proposed [13]. The idea is
to use an approximation:

Q(θ|θn) ≈ 1
N

N∑
i=1

log p(s(i)
1:T ,x(i)

1:T , z1:T |θ) (10)

where {s(i)
1:T ,x(i)

1:T }, i = 1, · · · , N is a sample from
P (s1:T ,x1:T |z1:T , θn). In the M-step we maximize Q with
respect to the parameters θ: θn+1 = argmaxθQ(θ|θn).The
ball estimate x(i)

t is a linear Gaussian system condi-
tioned on s

(i)
t . The parameters of this system are θ =

{R,A(m), C(m), Q(m), µ(m), σ(m)}, m = 1, · · · ,M .
µ(m) and σ(m) are the initial mean and the covariance of
the ball state in the state-space model m respectively. Each of
these parameters is re-estimated by taking the corresponding
partial derivative of the expected log likelihood, setting
to zeros and solving. See Appendix for details about the
parameter update [13].

EM

1 Initialize the model parameters θ0

2 Initialize {x(i)
0 , s

(i)
0 , w

(i)
0 }Ni=1

3 for n ← 1 to nmax

4 do for t ← 1 to T
5 do FORWARD-FILTERING

6 for i ← 1 to N

7 do w
(i)
T |T ← w

(i)
T

8 for t ← T − 1 to 1
9 do BACKWARD-SMOOTHING

10 θn = UPDATE-PARAMETER(θn−1)
11 if log likelihood has converged
12 then return θn

13 return θn

The algorithm begins with an initial guess of θ. For given
parameters, the algorithm proceeds with a filtering step and
a smoothing step. With the outputs from the above two steps,
updated parameters are obtained from an estimation step. The
algorithm terminates when the log-likelihood has converged

or the number of iterations exceeds the maximum limit we
set.

V. APPLICATION

In this section, we test our algorithm both in simulation
and in a team robot soccer environment. The simulated test
verifies the efficiency of our proposed algorithm. We then
give a brief description of our robot, followed by real robot
test and results.

A. 2-D Simulated Object Tracking

The simulation considers a 2D object tracking scenario.
The state vector contains the object position and its velocity
(4D). The object position is the only observation we can
obtain. The system is a switching linear Gaussian state
space model populated with synthetic data. We keep the
model sufficiently simple to compare the rao-blackwellised
particle smoother with a particle smoother implemented with
a naive method. We report both the cpu time and the position
RMS for the naive and the fast method. The results in
Fig. 3 verify that our method is substantially more efficient
than the naive implementation of a particle smoother. The
efficiency is resulted from the partition of state-space with
rao-blackwellization.

Fig. 3. Left figure: fast particle smoothing results on synthetic data, shown
on a log-log scale. Right figure: RMS of position estimate, shown on a semi-
log-x scale.

10
1

10
2

10
3

10
4

10
−1

10
0

10
1

10
2

10
3

10
4

particles

cp
u

tim
e

(s
)

fast
naive

10
0

10
1

10
2

10
3

0

50

100

150

200

paticles

R
M

S

fast

naive

B. Segway RMP Soccer Robot

Segway RMP, or Robot Mobility Platform, provides an
extensible control platform for robotics research. In our
previous work, we have developed a Segway RMP robot base
capable of playing Segway soccer [14]. The main sensor on
our robots are two cameras. One is a pan-tilt camera mounted
on the top of a customized unit. The other is a wide-angle
camera. The infrared sensor acts as a secondary sensor to
detect the ball when the ball is in the catchable area of the
robot. Its measurement is a binary value indicating whether
or not the ball is in that area. Our robot is also equipped
with a catcher to trap the ball and a kicker to kick the ball.

C. Learning Teammate Actuation Model

In the parameter learning test, two Segway RMP soccer
robots are included. One of the robots acts as the observer
(A), who is executing the tactic CatchBall. The other robot
acts as its teammate (B) who is executing the tactic PassBall.
In this test, we assume there is no uncertainty on the

tactic level. We are only interested in learning the model
parameters for each motion model conditioned on the given
tactic. Each experiment trial starts from the state that robot B
holds the ball and searches A. When B finds A, it passes the
ball to A. A then aims at the ball and catches the ball when
the ball is within its catchable area. The trial ends once the
ball is being catched or runs out of the field without being
received.

At the beginning of each trial, A is at position (0,0) and
B is at position (2.5, 0). We run 30 trials on a pair of
robots. Vision sensor and infrared sensor logs are generated
for off-line learning usage. Obviously there is only position
information that can be obtained from both sensors. The
velocity (ẋ, ẏ) is unobservable through the measurements.
Robot A reads the logs and runs our learning algorithm in
each trial.

We set the convergence condition to be:

∆log-likelihood < 0.1.

The result demonstrates the ability of the proposed method
to learn the actuation model of the other robot. In each
learning trial, we monitor the log-likelihood of ball speed es-
timation. If the change is greater than a predefined threshold,
we mark the time as the beginning of teammate actuation.
We then run the fixed-interval particle smoothing on the
log starting at the mark point and update the parameters
using our proposed method. This time, we are interested in
learning the parameters µ1, σ1, which are the initial mean and
covariance of the state vector x respectively. The teammate
actuation can be represented by the velocity component of
µv, σv . Fig. 4 shows the graphical depiction of the change
in the actuation model. The x and y axis are σv’s x and y
component respectively.

−5 0 5

−4

−2

0

2

4

σ
v

σ v

initial model
final model

Fig. 4. Learning teammate actuation models .

To determine the performance of the learned motion
model, we also perform an experiment to apply the learned
process/measurement noise model and the teammate actu-
ation model to the existing tracking system. We then run
similar trials and use two different trackers simultaneously.
One is the previous tracker, the other is the new tracker
that includes the learned model parameters and the teammate
actuation model as well.

After 30 trials, we check the IR sensor log on robot
B and locate the time that the ball is grabbed and the
time that the ball is kicked. Though it is difficult for us
to get the ground truth data to compare the performance
of the two trackers, we can use the IR sensor log on the
other robot as a reference. We examine the state estimation
(particularly the velocity estimation) of both trackers on
robot A. We find that the tracker with the learned model
performs significantly better than the tracker with the initial
model. As is shown in Fig. 5, this is a plot of velocity
estimation (component vy) versus time step. Because the
robot kicks the ball in the direction that is perpendicular
to axis x, so we only consider vy here. The infrared sensor
measurement is represented using dashdot. We can see that
at approximately t = 60, robot B grabs ball (IR sensor
outputs 1). At approximately t = 130, robot B kicks the
ball to A (IR sensor outputs 0). In terms of vy estimation,
the old tracker is not “sensitive” to external actuation. Since
we know the initial speed of the ball is approximately 3m/s,
the old tracker consistently underestimates vy. However the
tracker with the learned model gives a close estimation of
velocity over each actuation moment identified by the IR
sensor log. Thus we claim that the tracker with the learned
model performs significantly better than the tracker with the
initial model.

0 50 100 150 200 250
−4

−2

0

2

4

6

time step (0.033s/step)

v y p
re

di
ct

io
n

(m
/s

)

initial model
final model
IR

Fig. 5. Comparing tracker performance using the initial model and the
learned model.

VI. CONCLUSIONS

In this paper, we present a general algorithm for dealing
simultaneously with both unknown fixed model parameters
and state variables. Using an Expectation-Maximization ap-
proach, we apply a tactic-based multi-model particle filter to
estimate the state variables in the E-step, and use particle
smoothing to update the parameters in the M-step. We test
our algorithm both in simulation and in a team robot soccer
environment, as a foundation for applying the learned models
to object tracking in a team. One of the soccer robots learns
the actuation model of its teammate. The experimental results
show the tracking performance is significantly improved
using the learned teammate actuation model.

VII. ACKNOWLEDGEMENTS

This research was sponsored in part by the United States
Department of the Interior under Grant No. NBCH-1040007
and the Boeing Corporation. The views and conclusions
contained in this document are those of the authors only, and
should not be interpreted as representing the official policies,
either expressed or implied, of any sponsoring institution.

VIII. APPENDIX

In this section, we derive detailed parameter update formulas of
our learning algorithm.

The E step of EM requires computing the expected log likelihood
Q = E[log p(X1:T , z1:T)|z1:t, θ], where X1:T = {s1:T ,x1:T }.

p(X1:T , z1:T)

= p(X1)

T∏
t=2

p(Xt|Xt−1)

T∏
t=1

p(zt|Xt)p(zt|Xt)

= exp{−1

2
[zt − C(st)xt]

′R−1[zt − C(st)xt]} ·
(2π)−p/2|R|−1/2

where p is the dimension of R.

p(Xt|Xt−1) = p(st|st−1)p(xt|xt−1, st)

= p(st|st−1) · exp{−1

2
[xt − A(st)xt−1]

′Q−1(st)

[xt − A(st)xt−1]} · (2π)−k/2|Q(st)|−1/2

where k is the dimension of Q. Assuming a Gaussian initial state
density,

p(X1) = p(s1,x1) = p(s1)p(x1|s1)

= p(s1) exp{−1

2
[x1 − x0]

′P̂0(st)
−1[x1 − x0]} ·

(2π)−k/2|P̂0(st)|−1/2

Therefore, the joint log probability is a sum of quadratic terms,

log p(X1:T , z1:T)

= −
T∑

t=1

(
1

2
[zt − C(st)xt]

′R−1[zt − C(st)xt]) − T

2
log |R|

−
T∑

t=2

(
1

2
[xt − A(st)xt−1]

′Q(st)
−1[xt − A(st)xt−1])

−T − 1

2
log |Q(st)| + log p(st|st−1)

−1

2
[x1 − x0]

′P̂0(st)
−1[x1 − x0]

−1

2
log |P̂0(st)| − T (p + k)

2
log 2π + log p(s1)

This joint log probability depends on three other expectations:

ξ̂t(m) = E[xt|z1:T , st = m] =

∑N

i=1,s
(i)
t

=m
x

(i)
t

N

P̂t(m) = E[xtx
′
t|z1:T , st = m]

=

∑N

i=1,s
(i)
t

=m
(x

(i)
t − ξ̂t(m))(x

(i)
t − ξ̂t(m))′

N

P̂t,t−1(m) = E[xtx
′
t−1|z1:T , st = m]

=

∑N

i=1,s
(i)
t

=m,s
(i)
t−1=m

(x
(i)
t − ξ̂t(m))(x

(i)
t−1 − ξ̂t−1(m))′

N

The main parameters of this system are A(m), C(m), R, Q(m).
Each of them is re-estimated by taking the corresponding partial
derivative of the expected log likelihood, setting to zeros and
solving. The result are as follows:

• Output matrix:

∂Q
∂C(m)

= −
T∑

t=1,st=m

R−1ztξ̂t(m)′

+

T∑
t=1,st=m

R−1C(m)P̂t(m) = 0

Cnew(m) =
(T∑

t=1,st=m

ztξ̂t(m)′
)(T∑

t=1,st=m

P̂t(m)
)−1

• Output noise covariance:

Rnew =
1

T

(T∑
t=1

ztz
′
t −

M∑
m=1

C(m)

T∑
t=1,st=m

ξ̂t(m)z′
t

)

• State dynamics matrix:

Anew(m) =

T∑
t=2

P̂t,t−1(m) ·
(T∑

t=2

P̂t−1(m)
)−1

• State noise covariance:

Qnew(m) =
1

T − 1

(T∑
t=2

P̂t(m) − A(m)

T∑
t=2

P̂t−1,t(m)
)

REFERENCES

[1] Z. Ghahramani and G. E. Hinton, “Variational learning for switching
state-space models,” Neural Computation, vol. 12, no. 4, pp. 831–864,
2000.

[2] A. Doucet, N. D. Freitas, and N. Gordon, Eds., Sequential Monte
Carlo Methods in Practice. New York: Springer-Verlag, 2001.

[3] C. Kwok and D. Fox, “Map-based multiple model tracking of a moving
object,” Proceedings of eight RoboCup International Symposium, July
2004.

[4] Y. Gu, “Tactic-based motion modeling and multi-sensor tracking.” in
Proceedings of the Tenth National Conference on Artificial Intelligence
(AAAI-05), 2005, pp. 1274–1279.

[5] Y. Gu and M. Veloso, “Multi-model motion tracking under multiple
team member actuators,” in AAMAS ’06: Proceedings of the fifth
international joint conference on Autonomous agents and multiagent
systems. New York, NY, USA: ACM Press, 2006, pp. 449–456.

[6] Y. Bar-Shalom, X.-R. Li, and T. Kirubarajan, Estimation with Appli-
cations to Tracking and Navigation. John Wiley & Sons, Inc, 2001.

[7] S. McGinnity and G.W.Irwin, “Multiple model bootstrap filter for
maneuving target tracking,” IEEE Trans. Aerospace and Electronic
Systems, vol. 36, no. 3, pp. 1006–1012, 2000.

[8] Z. Ghahramani and G. E. Hinton, “Switching state-space models,” 6
King’s College Road, Toronto M5S 3H5, Canada, Tech. Rep., 1998.

[9] A. Blake, B. North, and M. Isard, “Learning multi-class dynamics,”
1998.

[10] B. Browning, J. Bruce, M. Bowling, and M. Veloso, “Stp: Skills,
tactics and plays for multi-robot control in adversarial environments,”
IEEE Journal of Control and Systems Engineering, vol. 219, pp. 33–
52, 2005.

[11] Z. Ghahramani and M. I. Jordan, “Factorial hidden Markov models,”
in Proc. Conf. Advances in Neural Information Processing Systems,
NIPS, D. S. Touretzky, M. C. Mozer, and M. E. Hasselmo, Eds., vol. 8.
MIT Press, 1995, pp. 472–478.

[12] A. G. Gray and A. W. Moore, “‘n-body’ problems in statistical
learning.” in NIPS, 2000, pp. 521–527.

[13] C. A. Popescu and Y. S. Wong, “Nested monte carlo em algorithm for
switching state-space models,” IEEE Transactions on Knowledge and
Data Engineering, vol. 17, no. 12, pp. 1653–1663, 2005.

[14] B. Browning, J. Searock, P. E. Rybski, and M. Veloso, “Turning
segways into soccer robots,” Industrial Robot, vol. 32, no. 2, pp. 149–
156, 2005.

