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Abstract

In multi-robot settings, activity recognition allows a robot to
respond intelligently to the other robots in its environment.
Conditional random fields are temporal models that are well
suited for activity recognition because they can robustly in-
corporate rich, non-independent features computed from sen-
sory data. In this work, we explore feature selection in condi-
tional random fields for activity recognition to choose which
features should be included in the final model. We compare
two feature selection methods, grafting, a greedy forward-
selection strategy, and `1 regularization, which simultane-
ously smoothes the model and selects a subset of the features.
We use robot data recorded during four games of the Small
Size League of the RoboCup’07 robot soccer world cham-
pionship to empirically compare the performance of the two
feature selection algorithms in terms of accuracy of the final
model, the number of features selected in the final model, and
the time required to train the final model.

Introduction
Activity recognition is an important component for creating
intelligent robot systems. For example, robot soccer is a
domain where activity recognition has the potential to make
a large contribution. In robot soccer, a team of robots can use
activity recognition to classify the roles of their opponents
and base strategic decisions on that classification. In general,
activity recognition is important in any domain where robots
must act intelligently in the presence of other agents.

Activity recognition is a temporal classification problem.
A robot maps from a temporal sequence of observations to
the roles of the other agents in its environment. Roles extend
across time steps and a single role may consist of several ac-
tions. Returning to robot soccer, a defender in soccer blocks
shots, dribbles the ball around opponents, and passes the ball
upfield; all three actions are different, but all fall under the
single role of defender. Activity recognition is challenging
because observations do not directly map to roles. We must
infer roles from low level information extracted from sen-
sory data, such as positions and velocities. In practice, we
train classifiers to map from features of the observations to
roles rather than directly from observations to roles. Fea-
tures are functions of the observations that inject domain
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knowledge into the classification by transforming the ob-
servations into a more useful form for the classifier. As an
example, in robot soccer, the distance to the ball is an im-
portant feature. Rather than passing the coordinates of the
robot and the ball to the classifier, we input the actual dis-
tance instead.

Choosing an appropriate set of features is important for
accurate activity recognition. As humans designing features,
we can easily define prototypes for good candidate features.
For example, in soccer, a feature that tests if the distance
between two objects is less than a threshold is useful. In-
stantiating this prototype with different pairs of objects and
different thresholds results in a large pool of candidate fea-
tures, particularly in multi-robot domains where the number
of objects and relationships between objects is large. We use
feature selection to choose a small subset of the candidate
features to include in the final model. Reducing the num-
ber of candidate features is important to reduce over-fitting,
which would reduce the accuracy of the final model, and to
reduce the computational cost of classification so that roles
may be recognized and responded to online.

In this paper, we focus on feature selection for ac-
tivity recognition in multi-robot domains. Specifically,
we consider two approaches to feature selection in con-
ditional random fields (Lafferty, McCallum, & Pereira
2001). We consider grafting, a greedy forward-selection
algorithm (Perkins, Lacker, & Theiler 2003), and `1 reg-
ularization (Hastie, Tibshirani, & Friedman 2001), which
simultaneously selects features and smoothes the model.
We compare the algorithms using robot data that were
recorded (and generously shared) by the CMDragons’07
team (Bruce, Veloso, & Zickler 2008) during four games of
the RoboCup’07 robot soccer world championship (Kitano
1998).

The RoboCup Small Size League
We compare feature selection via grafting and `1 regular-
ization with robot data that were recorded by the CMDrag-
ons’07 robot soccer team during the Small Size League
games of RoboCup 2007. In the Small Size League, two
teams with five robots per team compete in a twenty minute
soccer match, as shown in figure 1. Each team is fully au-
tonomous and controlled wirelessly by an off-board com-
puter. The computers control the robots using global infor-



Figure 1: In the Small Size League, two teams with five
robots per team compete in a soccer match. The robots use
rotating rubber bars to grip a golf ball for “dribbling” and
can kick the ball at velocities of up to 10 m/s to pass or
shoot on goal. The robots are controlled wirelessly by an
off-board computer that tracks all ten robots and the balls
using overhead cameras mounted above the field.

mation from overhead cameras. The robots are 18 cm in
diameter and the field is approximately 5 m by 3 m in size.
Due to the scale of the robots, a golf ball is used as a soc-
cer ball. The robots move at up to 2.5 m/s and can kick the
ball at velocities of up to 10 m/s, which results in fast-paced
games. The role of goalie on each team is fixed, but the
remaining four robots take on a variety of offensive and de-
fensive roles as the game evolves. These roles are what we
recognize during classification.

Roles
In principle, each team defines its own unique set of roles. In
practice, many roles are shared across teams. We would like
to apply a classifier to new opponents to identify roles from
this common set. However, in the current work, our training
data comes from a single team and we are limited to predict-
ing the roles of the robots from that team. To test general-
ization with our limited data, we use two games as a training
set, a single game as a hold out set to choose model param-
eters, and test exclusively on data from the final match. The
final is never used as a training or hold out set. Table 1 lists
the roles of the CMDragons’07 robot soccer team, many of
which are general and observed in other teams as well. The
classification task, which we formalize below, is to recog-
nize those roles from the available sensor data, which con-
sists of the positions of the robots and the ball. The goal
is to create a classifier that can provide useful information
to robots that are playing against the team whose roles are
being classified.

The Classification Task
The classification task is to map from a sequence of obser-
vations about the world X = {x1, x2, ..., xT } to a sequence
of labels Y = {y1, y2, ..., yT }. We use xt and yt to re-
fer to observations or labels from a single time step t and

Role Name Description
Kickoff Position before play starts
Mark Opponent Man-to-man defense against a par-

ticular robot
Position for Pass Create openings for passing
Receive Chip Receive an incoming chip pass
Position Position on the field when not ex-

ecuting specialized behaviors to re-
ceive passes

Penalty Kick Take a penalty kick.
Wall Form a wall with teammates to

block a kick
Set-Play-Kick A coordinated play where one robot

passes the ball to another which de-
flects the pass towards the goal

Attacker Primary offensive role
Defend Circle Defend the goal at a fixed radius

Table 1: Roles of the CMDragons’07 robot soccer team.

T as the length of the sequence. Individual observations xt
are vectors of real values that contain the observed informa-
tion from a single time step. In our domain, xt contains 32
real valued elements that specify the positions and orienta-
tions of the ten robots as (x, y, θ) and the position of the ball
(x, y). The labels yt are drawn from the set of roles listed in
table 1 and correspond to the role of a single robot at time
t. Notably, the label yt does not contain the joint role for all
robots; recovering the roles of multiple robots requires run-
ning several classifiers, one per robot, in parallel. We present
our rational for using multiple, independent classifiers after
we introduce CRFs below.

Conditional Random Fields
Conditional random fields are undirected graphical models
for structured classification (Lafferty, McCallum, & Pereira
2001). In our setting, we use CRFs, where the labels form
a linear chain, to represent the conditional probability of the
label sequence given an observation sequence. Conditional
random fields are built from a vector of weights, which we
learn during training, and a vector of features. There is a
1-to-1 correspondence between weights and features. The
features take the form fi(t, yt−1, yt, X), where i is an index
in the feature vector f , t is an offset into the sequence, yt−1,
and yt are the values of the label pair at times t− 1 and t re-
spectively and X represents the entire observation sequence
across all values of t. The conditional probability of a label
sequence given an observation sequence is computed from
the weighted sum of the features as:

P (Y |X) =
1
ZX

T∏
t=1

exp(wT f(t, yt−1, yt, X)) (1)

ZX =
∑
Y ′

T∏
t=1

exp(wT f(t, y′t−1, y
′
t, X)) (2)

ZX is a normalization constant. ZX can be computed effi-
ciently via dynamic programming for tree-structured mod-



els (Sutton & McCallum 2006).
We train conditional random fields by finding a weight

vector w∗ that maximizes the conditional log-likelihood of
labeled training data:

`(Y |X;w) = wT f(t, yt−1, yt, X)− log(ZX) (3)
w∗ = argmax

w
`(Y |X;w) (4)

Features in conditional random fields are functions of the
form fi(t, yt−1, yt, X). We use the indicator function I ,
which evaluates to 1 if its argument is true and 0 otherwise,
to test whether the labels yt−1 and yt match particular roles.
Features sometimes include a function g(t,X), which could,
for example, compute the distance between two robots at
time t. Common feature prototypes are:

fi(t, yt−1, yt, X) = I(yt = role) (5)
fj(t, yt−1, yt, X) = I(yt−1 = role1)I(yt = role2) (6)
fk(t, yt−1, yt, X) = I(yt = role)g(t,X) (7)

Equation 5 tests whether yt takes on a particular value. After
training, its weight will be proportional to the log-likelihood
of yt = role. Similarly, equation 6 captures first-order
Markov transition dynamics and, after training, its weight
is proportional to the log-likelihood of the transition. Equa-
tion 7 adds information from the observation sequence in
the form of an arbitrary, real valued function g(t,X). Such
features can be viewed as compatibility functions that, with
their associated weights, link the likelihood of being in par-
ticular states yt to information in the observation sequence.

CRFs for Activity Recognition
Conditional random fields are well suited to activity recogni-
tion because they can incorporate complex, non-independent
features of the entire observation sequence. In general, dis-
criminatively trained models, such as CRFs, are more ac-
curate than equivalent generative models, such as hidden
Markov models (Ng & Jordan 2002). In the particular set-
ting of robot activity recognition, we have found that CRFs
are indeed more accurate than HMMs (Vail, Veloso, & Laf-
ferty 2007), which is why we chose CRFs over hidden
Markov models, even though HMMs have previously been
used for activity recognition in robot soccer (Han & Veloso
2000).

Robot soccer is a multi-robot activity recognition prob-
lem; dependencies exist between the roles of the differ-
ent robots. However, exact inference is NP-hard if we di-
rectly model dependencies with links between separate label
chains, e.g. using a dynamic conditional random field (Sut-
ton, McCallum, & Rohanimanesh 2007). Approximate in-
ference techniques, such as loopy belief propagation are
applicable (Murphy, Weiss, & Jordan 1999), but they are
slower than exact inference in models that treat the labels as
independent, linear chains.

As a compromise between NP-hard exact inference and
ignoring dependencies between robots, we can create fea-
tures that provide information about the roles of the other
robots. Such features could incorporate actual predictions

of the other robot roles, e.g.,

fi(t, yt−1, yt, X) = I(yt = r1’s role)
I(gr2(t,X) = r2’s role) (8)

where the CRF is predicting the role of robot 1 and gr2 is a
classifier that predicts the role of robot 2 based on the obser-
vations, but not on the role of robot 1. Alternately, we can
use relational features to capture information about the roles
of the other robots.

We define relational features in terms of relationships be-
tween objects in the environment. For example, to deter-
mine which team has possession of the ball in robot soccer,
we compute the distance between the ball and the robot on
each team that is closest to the ball. We use the relationship
closest to, defined with respect to an object (the ball), to dy-
namically choose an object (one robot) from a set of candi-
date objects (a team of robots). Relational features compute
quantities, e.g. distances, using information from the obser-
vations to dynamically select objects in the environment.

Relational features provide a succinct means for speci-
fying features in terms of the relationships between differ-
ent robots in multi-robot domains. They also provide a way
of incorporating information about the roles of other robots
into the classifier. For example, in robot soccer, the robot
that is closest to the ball is usually in the attacker role. We
can define a function h(t,X) as the distance between the
ball and the subject of the classification’s teammate (not in-
cluding the subject) that is closest to the ball. We then create

fi(t, yt−1, yt, X) = I(yt = attacker)h(t,X) (9)

that helps the CRF predict the subject’s role; when another
teammate is close to the ball, it is unlikely that the subject is
the attacker. These sorts of features that provide information
about the roles of other robots offer a compromise between
NP-hard exact inference if we include links directly between
label chains and the extra error that results from not includ-
ing any information about the roles of others.

Feature Selection
We compare two embedded feature selection algorithms,
grafting (Perkins, Lacker, & Theiler 2003) and `1 regulariza-
tion (Hastie, Tibshirani, & Friedman 2001). Embedded al-
gorithms combine feature selection with the process of train-
ing the model (Blum & Langley 1997). The algorithms that
we compare produce a series of candidate models, where
each candidate generally contains more features than the
preceding candidate model. After generating many candi-
date models, we use held out data to choose among them.

Grafting
Grafting is an embedded feature selection method that uses
a greedy forward selection strategy to choose features while
training the model (Perkins, Lacker, & Theiler 2003). Graft-
ing begins with no features and adds one feature per itera-
tion. We retrain the model after adding a new feature using
the weights from the previous iteration, which contained one
fewer feature, as a starting point. Starting with the weights
from the previous iteration greatly speeds training. Grafting



chooses which feature to add based on the gradient of the ob-
jective function (the conditional log-likelihood) with respect
to the weights. Grafting selects the feature whose weight
makes the largest absolute contribution to the gradient.

`1 Regularization
Training a model under an `1 penalty results in a sparse
model where many of the weights are exactly zero (Hastie,
Tibshirani, & Friedman 2001) and `1 training is an effec-
tive method for feature selection in CRFs (Vail, Lafferty, &
Veloso 2007). To train a CRF with an `1 penalty, we find w∗
that maximizes:

w∗λ = argmax
w

`(Y |X)− λ
∑
i

|wi|, (10)

The penalty term in 10 is all that differs from the stan-
dard objective function. λ is a positive scalar value that
controls the degree of smoothing and the sparsity of the
final model. High values of λ result in sparser models.
The penalty term is not differentiable at zero and special
care must be taken during training to address this. Koh et
al. and Andrew & Gao describe training in logistic regres-
sion, which is an equivalent task (Koh, Kim, & Boyd 2006;
Andrew & Gao 2007). In our experiments, we used the
orthant-wise projected L-BFGS method of Andrew and Gao.
To select features via `1 regularization, we vary the smooth-
ing parameter λ and use a hold out set to select among the
resulting models. We begin with λ0 chosen such that w∗ =
0 and decay it according to λk+1 = .95 · λk. We initialize
each succeeding round using the weights from the previous
round of training, which greatly speeds the convergence of
each iteration.

Other Feature Selection Methods
Other methods for feature selection in conditional random
fields include a greedy forward selection algorithm that uses
a fast heuristic to induce features for named entity recogni-
tion and noun phrase chunking tasks in text data due to Mc-
Callum (McCallum 2003). McCallum’s algorithm selects
features to add by training a relaxed version of the model
with each candidate feature and computing the gain in the
relaxed model. In a more closely related domain, Liao et al.
chose features by removing links in the model between time
steps and introduced a modification of Boosting (Freund &
Schapire 1996) that takes virtual evidence into account to
select features for activity recognition (Liao et al. 2007).

Experiments
We used data recorded by the CMDragons’07 small size
team to compare grafting and `1 regularization for feature
selection in conditional random fields. We used data from
the final match as a test set and data from a semi-final,
quarter-final, and one round robin game as the training and
hold out sets. The hold out set was used to choose parame-
ters such as λ and to choose among the models produced by
grafting. The CMDragons system operates at a frame rate of
60 hz. To reduce the amount of data, we subsampled from
the full data sets at a rate of 2 hz.

Figure 2: Error rate on test data versus model size is shown
for the successive models proposed by grafting and `1 reg-
ularization. Grafting quickly converges to a minimum and
then shows evidence of over-fitting. `1 regularization pro-
duces larger models, but achieves a lower error rate overall.

Features
We created feature prototypes, like those shown in 7, and
instantiated them to create a large number (92,310) of can-
didate features. Typical prototypes took the form

fi(t, yt−1, yt, X) = I(yt = role)g(t,X) (11)

where g(t,X) was chosen to capture key properties of the
robot soccer domain such as:

g(t,X) = distance(select-closest(teammates, (12)
ball), ball)

We refer to 12 as a relational feature because it is defined
in terms of relationships between objects in the environment
that are detected online. The function g(t,X) selects the
robot that is closest to the ball from the set teammates, which
includes all of the other robots on the same team as the robot
whose role is being classified, and computes the distance be-
tween that closest robot and the ball. The feature is relational
because the robot is specified dynamically rather than stati-
cally by specifying a robot id.

We defined approximately thirty relational feature proto-
types, by instantiating them with different combinations of
roles and robot ids, generated 92,310 candidate features. We
considered distances between the robots, the ball, the two
goals, and the center of the field. We included raw distances
as a feature as well as binary features testing if distances
were above or below a threshold for a wide range of thresh-
olds. We also included binary features testing if one robot
or object was closer to another versus a third object.

Results
In feature selection, there is a trade-off between the size of
the model and the accuracy of the model. Up to a point,
adding features will decrease the error rate of the model.



Figure 3: Error rate on test data versus the smoothing pa-
rameter λ is shown for retraining models that contain only
the features selected by grafting and `1 regularization using
`2 regularization for smoothing. On average, grafting se-
lected 220 features and `1 regularization selected 1823. For
comparison, we also show the `2 regularization path for the
no feature selection case that included all 92,310 features.
Grafting, which uses the fewest features shows the highest
error rate. `1 regularization, with an intermediate number
of features performs almost identically to the CRF with all
92,310 features.

Past a certain point, additional features increase the error
rate of the model due to over-fitting. Figure 2 shows er-
ror rate versus model size for grafting and `1 regularization.
Grafting, the purely greedy algorithm, shows a more rapid
decrease in the error rate as features are added. `1 regulariza-
tion shows a less steep decline in the error rate, but achieves,
on average, a lower error rate than grafting because it is less
greedy and able to remove or swap out one feature for an-
other during the course of training. The results in figure 2
are from three trials where a round-robin, quarter-final, and
semi-final game were each used in turn as the hold out set
and the other two were used for training. The final was al-
ways used as the test set. The results for grafting, which
predictably adds a single feature per iteration are shown as
an average over the three trials. The results for `1 regulariza-
tion are plotted as independent points for each trial because
the model size changed unpredictably between iterations.

Grafting does not explicitly smooth the final model. We
explored using `2 regularization to smooth models contain-
ing only the selected features to see if it would lower the
error rate further. As a comparison, we also applied `2 reg-
ularization to smooth the full model that contained 92,310
features. Figure 3 shows the average error rate on test data as
the smoothing parameter λ varies during `2 penalized train-
ing. Briefly, an `2 penalty is analogous to an `1 penalty, ex-
cept the model is penalized bywTw rather than by |w|. With
smoothing, grafting shows a higher error rate than either `1
regularization or the full model (both also with smoothing),
possibly because grafting omits relevant features by being

Training Error Rate Model Size Time (hours)
ML 15.7% 92,310 3.1
ML / `2 10.5% 92,310 11.2
`1 10.3% 1,823 6.9
`1 / `2 10.7% 1,823 1.7 (8.6)
Grafting 12.3% 220 1.9
Grafting / `2 12.0% 220 .6 (2.5)

Table 2: While training on data from three earlier games
and testing with data from the final, we compared maximum
likelihood training with no smoothing; maximum likelihood
training with `2 smoothing; `1 regularization for feature se-
lection / smoothing; `1 regularization for feature selection
followed by `2 smoothing; grafting for feature selection; and
grafting for feature selection followed by `2 smoothing. We
show average error rates on test data for the chosen subset
of features, the size of the final model, and the training time
required to discover the final model. When feature selec-
tion was followed by smoothing, we show the time required
for smoothing followed by the cumulative time for feature
selection and smoothing in parentheses.

too greedy during the feature selection process. The features
selected by `1 regularization achieve an error rate that is vir-
tually identical to the full model even though the former is a
small subset of the features present in the full model.

Table 2 gives the error rates for the models selected us-
ing the hold out set on the test data. Both the regular and `2
smoothed models produced via `1 regularization perform al-
most identically to the full model with `2 smoothing. Some
sort of smoothing, either by selecting a small subset of the
available features or by applying an `2 penalty is neces-
sary to achieve low error rates as the full model without `2
smoothing has the highest error rate. Grafting falls in the
middle between the most accurate training methods and the
unsmoothed full model. However, if we use the size of the
final model or the training time required to discover the final
model as a metric, then grafting comes out ahead. On av-
erage, grafting discovers smaller models more quickly than
`1 regularization. And both feature selection algorithms dis-
cover the final model in less time than it takes to train the full
model with `2 smoothing, which provides strong motivation
for using feature selection.

Table 2 shows that we can accurately predict the roles of
a single team against different opponents. Table 3 provides
similar results for the case where we train the model using
data from the first half of a game (the final) and test against
data from the second half of the same game. The motivation
for this experiment is to show that we can, in principle, use
only data gathered during the first half of a game to perform
accurate activity recognition during the second half. In real-
ity, there is not enough time between halves of a robot soc-
cer game to label training data and train a model. However,
these results show that in general, conditional random fields
trained by grafting or `1 regularization can achieve high ac-
curacies for activity recognition from a limited amount of
training data.



Training Error Rate Model Size
ML 18.6% 92310
`1 8.0% 1449
Grafting 10.9% 137
Grafting / `2 10.6% 137

Table 3: We tested generalization across different portions of
the same game (the final) by training on date from the first
half of the final and testing on data from the second half.

Conclusion
Conditional random fields are well suited to activity recog-
nition in multi-robot domains because they robustly incor-
porate large numbers of complex, non-independent features.
Feature selection can dramatically reduce the number of fea-
tures required by CRFs to achieve error rates that are close
to, in the case of grafting, or identical to, with `1 regulariza-
tion, the error rate achieved by the model with its full com-
pliment of features. Reducing the number of features dra-
matically speeds up online classification. Surprisingly, fea-
ture selection also speeds training, even though additional
work is being performed to select the best features for the
final model; both feature selection algorithms that we com-
pared required less training time than the full model with `2
smoothing. As some form of smoothing, be it via feature
selection or `2 regularization, is required to achieve the low-
est error rates, there is a strong case for performing feature
selection when using CRFs for activity recognition. Our em-
pirical comparison of grafting and `1 regularization showed
that grafting produced smaller models, but with a penalty to
the accuracy of the models. In contrast, `1 regularization
chose more features than grafting, but performed as well as
the full model with `2 smoothing.
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