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Abstract— Coordinating the actions of heterogeneous
robot teams is a challenging problem, especially when
operating in complex domains. In this paper, we develop
a framework for coordinating team actions through dis-
tributed team programs, that we call plays. To be portable
our framework aims to be platform and task independent,
yet support a rich representation so different tasks can be
performed by different robot systems. We present an im-
plementation that achieves these goals by fusing a modern
programing language with a play selection and distributed
execution management system. We also introduce a gen-
eral message passing framework for synchronizing actions
between teammates. We validate our approach on three
different tasks using two different robot platforms, Segway
RMPs and Pioneer robots, each with different control
architectures. Our results show that the same framework
can coordinate the teams despite the differences, simply
by changing the team programs used.

I. INTRODUCTION

Heterogeneous robot teams are becoming increas-
ingly popular as researchers recognize the effectiveness
of combining specialized mobile robots to create a well
equipped team. This trend suggests the development
of a robot-independent framework for coordinating the
actions of such a heterogeneous robot team. To be
widely useful, such a framework also needs to be easily
reconfigured for different tasks, and different team
strategies. Clearly this is a large problem that requires
the challenges of task decomposition, role assignment,
team formation, plan selection and execution, learning,
and behavior recognition to be addressed. While there
has been significant work on many of these areas
(e.g. for role assignment [1], [2]), we instead focus on
the problem of developing a portable framework for
coordinating the actions of robots in a team. That is,
like [3], [4] we focus on how to select and coordinate
the sequence of actions each team member performs.

We start with the idea of a distributed team program,
which is a recipe of action for each team member for
achieving some specific goal. We call these team pro-
grams, plays1, in deference to their similarity to sport-
ing plays and earlier work [5]. Typically, the program
or play is only applicable in some situations so team
strategy consists of a number of different plays (i.e.

1We will use the terms play and team program interchangeably.

a playbook). Coordination then consists of repeatedly
selecting and executing plays.

We present three contributions in this paper. First, we
introduce a rich team program representation by using
a modern programming language, in this case Python2.
The resulting plays support the usual control flow
primitives, variables, functions, etc. Second, we de-
velop a framework for selecting and executing plays in
a distributed team that is robot and task independent.
The same coordination module can be used in different
domains with different robots simply by changing the
playbook. In practice, writing plays is much easier
than modifying the coordination framework, leading
to significant gains. Our third contribution focuses on
including a general message passing system between
teammates using peer-to-peer communications. In this
paper, we focus on synchronizing execution of different
team members using this framework.

In the following section, we introduce the concept
for team programs that forms the main contribution of
this paper. We then focus on the implementation details
in Section III. Section IV presents three tasks using two
different classes of robot platforms used to validate our
approach. Section VI concludes the paper.

II. COORDINATION USING DISTRIBUTED
TEAM PROGRAMS

We now define plays, or team programs, and how
they are used for platform-independent distributed co-
ordination in a heterogeneous robot team. As we do so,
we will endeavor to explicitly define the assumptions
our approach relies on and our decision reasoning.
We will begin by defining the play language, and the
primitives available to a developer for expressing a
team program. We will then illustrate how we collect
these together to define the overall team behavior.

To help elucidate the discussion, we will begin by
describing a simple example – a site visit problem –
that we will use throughout this section. Our simple
task requires a team of two robots that must visit two
sites A and B, where a visit to B is required before
returning home. In contrast, a visit to A is desired but is

2http://www.python.org



non-essential. Fig. 1 shows the problem, and indicates
the desired behavior of the robot team members.

Fig. 1. The figure shows two robots executing a team program for the
site visit problem where site A=window and B=door, for example.

TABLE I
TWO-AGENT PLAY FOR THE SITE VISIT PROBLEM

PLAYName()
return "SimpleSiteVisit"

PLAYTask()
return "visit"

PLAYTimeout()
return 120

Role0Capabilities()
return "camera"

Role0Needed()
return true

Role0(A,B,timeout=30)
act("goto", A)
if(!recvMsg(1,100,timeout))
act("goto", B)
act("go","home")

return true

Role1Capabilities()
return "laser"

Role1Needed()
return true

Role1(A,B,timeout=30)
act("goto", B)
sendMsg(0,100)
act("go", "home")
return true

A. Play Language
For our discussion, team strategy consists of a set

of plays. Each play defines a team program for some
flexible team size. This means, that it defines a program
of action for each team member as well as additional
information required to ensure the play executes ro-
bustly and correctly. Table I shows pseudo code for a
play to solve the example problem given in figure 1.
Note, in the implementation presented later in this
paper, this play would more correctly be written in
Python, however for brevity and clarity we will focus
on pseudo code representations.

1) Definition of a Play: Each play defines, using meth-
ods which can be extended in complexity:

• PLAYName: A name for the play
• PLAYTask: An optional applicability condition

• PLAYTimeout: An optional timeout
• A variable number of roles

A play can only be selected if it is applicable, meaning
that it is appropriate to run given the current task. The
PLAYTask method defines the set of applicable tasks
by returning an array of task names. By evaluating
whether the current task is in the PLAYTask set, we
can determine whether or not the play is applicable.
In this way, we can encode a play for a specific, or
general, situation as desired. Moreover, we can define
multiple plays for the same, or overlapping situations.
In addition to applicability, the timeout defines the
maximum time expected for the play to execute. If this
timeout is exceeded, then the play is considered to have
failed, providing a robustness check on the system.

2) Definition of a Role: The core part of the play,
is then encoded in each of the roles. Each role is a
program of execution for a member in the team. We
assume that roles must be assigned to unique robots,
although we enable optional roles that may or may
not be used. Role assignment is not a focus of this
paper and we will assume the existence of a role
assignment mechanism. That is, given the play with
M necessary roles and K optional roles, and a team
of N ≥ M robots, we assume that there exists an
algorithm available to assign robots to the roles in some
near optimal and efficient way.

A role (e.g. role Q) consists of the following methods:
• RoleQCapabilities: A set of strings defining the ca-

pabilities of the robot
• RoleQNeeded: Returns true if this is a necessary role,

false if it is not
• RoleQ: The program of actions for the role

The capabilities and needed methods are used to aid
in role assignment. Each robot is tested to see if it has
the necessary capabilities. If so, it can be considered
as a candidate for the specified role. Needed defines
whether the role must be assigned for the play to be
able to execute. Hence, the needed method enables the
same role to execute for variable team sizes.

The heart of the role is the RoleQ method that defines
the program of actions for the assigned robot. As we
derive the play language from a modern programming
language, all the usual features of conditional branches,
loops, functions, and variables are available to the
developer. As a result, it is relatively easy to create a
rich, complex program of execution.

3) Role Actions: The role program consists of robot
action primitives and play action primitives. Robot
actions are the mechanism used by a role to command
the robot to perform actions. Each robot action has a
unique name, and a variable set of parameters, and
returns either true or false depending upon the out-
come of the action. We can divide actions into active
and passive actions. Active actions are ones where the
action can determine intrinsically the success or failure



of the action. For example, driving to a point, is an
active action. In contrast, passive actions are ones that
are dependent upon some external event happening
that is outside of the robot’s control. More specifically:

• act(name,parameters): defines an action that can de-
termine intrinsically when it is done. It returns
success or failure of the action when completed.

• passive(name,parameters,roleID,msgID,timeout): de-
fines a passive action that executes until the ex-
ternal event, which is the reception of a message
from role roleID, with message content msgID, or
the timeout has expired.

4) Play Actions: Play actions differ in that they affect
the execution of this or another role within the play.
The set of play actions include:

• wait(dt): waits for dt seconds before continuing.
Robot halts during this time.

• sendMsg(roleID,msgID): sends a unique message
containing msgID to the robot executing role roleID.

• recvMsg(roleID,msgID,timeout): waits for up to the
specified timeout to receive a message sent by role
roleID with message content msgID. If it receives
the message in time it will return true, otherwise
it returns false.

The message passing primitives provide communica-
tion between agents executing different roles to en-
able coordinated team behavior. Messages are passed
between individual roles using the sendMsg and
recvMsg messages. The content of the message is an
integer value chosen by the caller. Message passing
primitives make use of peer-to-peer network com-
munications between roles. The peer-to-peer model
minimizes the number of agents involved in a single
communication by providing direct links between only
those agents specified in the primitive and involved
in the particular part of the play, rather than routing
communication through a central server. In this paper
we will focus on message passing as a general method
to help solve the synchronization problem. Fig. 2 illus-
trates the use of message passing in a state diagram of
the SimpleSiteVisit play given in Table I.

Fig. 2. State diagram of a two role play with synchronization
described in Table I and diagrammed in Fig. 1.

5) Playbook: We conclude the definition of plays
with the playbook. The playbook is nothing more than
a collection of different plays. With a combination of
plays for different situations, a playbook becomes a rich
resource for generating a wide range of behavior and
results in the complex behavior of the whole team.

III. IMPLEMENTATION
This section describes the components of our current

implementation, discussing how each contributes to
effective team coordination, and illustrates play execu-
tion and role assignment.

A. OVERVIEW OF COMPONENTS
The PlayManager and RoleExecutor are the high level

managerial and execution engines for our coordination
architecture. Fig. 3 diagrams the main components of
the architecture for a team of N agents.

1) PlayManager: The PlayManager oversees execution
of a play and enables communications between an
external role assignment mechanism (not shown in
Fig. 3) and the RoleExecutors. The PlayManager is the
highest level in the hierarchy that directly or indirectly
manages the entire system, first by selecting a play, then
by monitoring play execution. Each agent on a team
employs a PlayManager, though there is only a single
active PlayManager per play.

2) RoleExecutor: A RoleExecutor runs on each robot
and is responsible for initiating and monitoring role
execution and providing status reports to the Play-
Manager. From the PlayManager, a RoleExecutor receives
a play and a list of role assignments, then initiates
execution of the role to which it has been assigned.
To interpret role actions we employ an Interpreter.

3) Interpreter: Since plays are programs designed
using a modern programming language (Python), an
interpreter is used to transform the play language into
executable methods. We utilize methods from the com-
mercially available Python/C interpreter and create a
standard Python Interpreter for C programs.

4) Callbacks: Callbacks include a set of methods called
from within a role to trigger a coordination or action
related event. Because a role is a program for execution,
rather than a sequential list of actions, Callbacks are

Fig. 3. The figure illustrates the coordination architecture employed
for a team of N agents showing the abstraction of coordination from
any specific robot control.



Fig. 4. The figure shows how the RoleExecutor interprets a role and
communicates with a robot through Callbacks.

used to extract information from the program, package
it as a message, and send it directly to its robot for
execution or to another RoleExecutor for peer-to-peer
coordination. Callbacks provide the direct interface be-
tween the robot and the entire coordination module. In
this way, roles can contain a variety of methods includ-
ing action and message passing primitives requiring
varying levels of participation from the agent and the
coordination module.

B. Life Cycle of a Play

Before play execution, team members must be out-
fitted with tools for communication. Each robot on the
team runs a RoleExecutor to open networked commu-
nications to the PlayManager. PlayManagers also run on
each robot such that any agent can temporarily assume
command for a single play execution. The method
for determining the active PlayManager at any given
time depends on the role and subteam assignment
mechanism employed for the particular domain. With
a market-based assignment mechanism for example,
the agent proposing the lowest bid wins the task and
temporarily becomes the active PlayManager for that
particular play.

Using an Interpreter, the PlayManager evaluates con-
ditions for all plays in the playbook to determine
applicability. The PlayManager then selects a play to
match a given task or state of the team. The play is then
passed to a role assignment mechanism which selects a
subteam and role assignment combination and returns
assignments to the PlayManager. The PlayManager con-
tacts RoleExecutors running on each of the individual
agents to begin execution of the play. Each RoleExecutor
executes its assigned role by interpreting the program
and calling Callbacks to send actions to its robot and
coordinate synchronized multi-robot actions with other
RoleExecutors. Fig. 5 diagrams the life cycle of a play
with two assigned roles.

C. Subteam Formation and Role Assignment

Subteam and role assignment are an integral part of
any play-based model as the active PlayManager must
know which team members to contact to execute each

Fig. 5. The figure illustrates the life cycle of a play chosen for a
visit task from its beginnings within the playbook to execution on
individual agents.

role. Because subteam and role assignment are external
to the PlayManager and can be completed using any
accessible method, the PlayManager sends a message
containing play and role requirements to the assign-
ment mechanism through a networked connection.

One method of assignment, TraderBots, developed
by Dias and Stentz [1] is an example of a market-based
assignment approach that we have tested with the Play-
Manager. For details on combining this approach with
the PlayManager to enable dynamic subteam formation,
we refer to our earlier work in [6].

IV. VALIDATION

We have tested our model to coordinate teams of
autonomous Segway RMPs (Robotic Mobility Platform)
developed by Segway LLC [7], Pioneer robots, and
human team members, in three very different domains
including Segway Soccer, Synchronous Site Patrol, and
Treasure Hunt domains.

We show effective coordination of real heterogeneous
robots through video demonstrations. 3

A. Segway Soccer Passing
In the Segway Soccer domain, teams of Segway

RMPs and humans riding Segway Human Transporters
play a game of soccer. In this dynamic and adversarial
environment, it is important to maintain possession of
the ball whenever possible to deny the opposing team
a chance to score. By synchronizing actions, a passer

3The accompanying video illustrates the soccer and patrol
plays. All videos are available at: http://www.cs.cmu.edu/∼coral-
downloads/segway/movies/06-12-plays/



TABLE II
TWO-ROBOT PASS AND SHOOT PLAY

...
Role0(timeout=30)
act("grab","ball")
if(act("search", "teammate"))
sendMsg(1,100)
recvMsg(1,200,timeout)
act("kickto","teammate")

else act("kickto", "goal")
return true

...
Role1(timeout=30)
act("grab", "ball")
recvMsg(0,100,timeout)
if(act("search", "teammate"))
sendMsg(0,200)
act("catchkickto", "goal")

else act("goto", "goal")
return true

can inform a receiver prior to the pass to ensure the
receiver is ready to receive, minimizing the chance for
a free ball and overturned possession. A play can easily
be designed to implement this coordination strategy
using message passing and action primitives. Table III
illustrates the play program designed for two agents,
and the corresponding video shows two Segway RMPs
executing the play.

B. Synchronous Site Patrol
The Synchronous Site Patrol task involves two agents

consecutively and continuously patrolling three tar-
get sites. We can easily design a play for this task
to sequence site visits by synchronizing role events
such that each team member sequentially visits each
site in turn. Using message passing primitives, we
can ensure that no two team members will visit the
same site at the same time. Table III illustrates the
play program designed for two agents performing a
continuous set of actions until a PLAY TIMEOUT and
sequencing actions using message passing primitives.
This program enables continuous action through the
use of loops and sequenced coordination through peer-
to-peer message passing. The play is performed by
two Segway RMPs equipped with cameras for visual
identification of targets, marked by pioneer robots.

C. Treasure Hunt with Dynamic Heterogeneous Subteams
The aim of the Treasure Hunt Domain is to build

a single heterogeneous human-robot team capable of
effectively locating objects of interest (treasure) spread
over a complex, previously unknown environment [6].
This domain involves teammates combining individ-
ual resources to achieve a task that no single team
member is able to accomplish alone. The team is
composed of a human team member and two robot
platforms, including modified versions of the Pioneer
robot and Segway RMP. The two robot platforms run
very different processes to control the functions of

TABLE III
TWO-ROBOT SYNCHRONOUS PATROL PLAY

...
Role0( A,B,timeout=30 )

while(PLAY TIMEOUT)
act("goto", A)
act("search", B)
sendMsg(1,200)
act("goto", B)
act("go", "home")
sendMsg(1,300)
recvMsg(1,400,timeout)

return true
...
Role1( A, B, timeout=30 )

while(PLAY TIMEOUT)
recvMsg(0,200,timeout)
act("goto", A)
act("search", B)
sendMsg(0,400)
recvMsg(0,300,timeout)
act("goto",B)
act("go", "home")

return true

the specific platforms; however they are both able to
interpret the generalized action messages used in the
play. Additionally, there are three different research
groups collaborating to create this heterogeneous team.
The PlayManager proved to be an effective tool for
communication amongst different platforms and for
reasonably quick formation of these teams including
robots developed by different research groups.

The video illustrates a sequence of three team tasks
including an area exploration, treasure search, and
treasure retrieval. The first task is the exploration of
a specified area directed by the human and performed
by two pioneers. Each pioneer executes an independent
exploration play with a single role. The second task is
the organization of a search subteam including multiple
robots with different capabilities (e.g. Segway with
camera and Pioneer with local area map data) to search
for treasure. As discussed in Section III-C, the Trader-
Bots provide the mechanism for team and role assign-
ment and combined with the PlayManager allow for
the dynamic formation of this two-robot subteam. The
executed play involves two roles, one which maps a
set area and is performed by the Pioneer, and the other
which follows the Pioneer searching for treasure, and
is performed by the Segway. Following coordination
for this play is done at the behavior level, illustrating
that our architecture does not preclude execution of
behaviors involving embedded coordination. Once a
treasure is found, the subteam generates a retrieve
task won by the available Pioneer. Finally, the Pioneer
executing a retrieve play leads a human to obtain the
identified treasure and return it to the home base.

V. RELATED WORK
The work we have described in this paper is related

to the notion of of team plans [3], [4], or similar ap-



proaches of [8], where we have extended this concept to
a much richer programming representation and incor-
porated the message passing primitives. Additionally,
our approach is aimed at being platform-independent
by making as few as possible assumptions about the
nature of the underlying robot control architectures.

Our work clearly builds on previous play-based co-
ordination approaches [5], [9], but differs significantly
in that (a) the coordination mechanism is robot and task
independent, (b) a much richer play language is used,
(c) message passing is used as a general synchroniza-
tion mechanism. Earlier play-based approaches used
a centralized system [5]. McMillen and Veloso [9] ex-
tended this approach to a distributed selection mech-
anism. Our work differs in that the team executes
the play in a distributed fashion, but play selection,
instantiation, and monitoring are all performed by a
single agent – the play manager.

Much of multi-robot literature focuses on the prob-
lem of task or role assignment. In our approach, role
assignment is a key part of play execution, but the
mechanism used to assign the roles is interchangeable.
Indeed, our earlier work [6] made use of a market-
based approach [1] for role assignment. Finally, our
approach does not preclude the use of tight coor-
dination mechanisms (e.g. [10], [11]), provided these
mechanisms can be suitably described by an action
string with associated parameters.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we introduce a concept for heteroge-
neous team coordination using distributed team pro-
grams. We illustrate three main contributions, namely
(a) a rich team program representation using a mod-
ern programming language (b) a task and robot-
independent coordination framework enabling the
same coordination module to be effective across many
robots in different domains and (c) a message passing
peer-to-peer communication model employed to enable
synchronized team actions.

We show video results in three different domains
using two different robot platforms and a human
team member. Future work will include improving
robustness and reliability, expanding our play language
primitives to include a robot’s perceived information,
evaluating the model within other domains, and de-
signing an interface to integrate humans as proper
peers.
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