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Abstract— Temporal classification, such as activity recogni-
tion, is a key component for creating intelligent robot systems.
In the case of robots, classification algorithms must robustly
incorporate complex, non-independent features extracted from
streams of sensor data. Conditional random fields are dis-
criminatively trained temporal models that can easily incor-
porate such features. However, robots have few computational
resources to spare for computing a large number of features
from high bandwidth sensor data, which creates opportunities
for feature selection. Creating models that contain only the most
relevant features reduces the computational burden of temporal
classification. In this paper, we show that ¢, regularization is an
effective technique for feature selection in conditional random
fields. We present results from a multi-robot tag domain with
data from both real and simulated robots that compare the
classification accuracy of models trained with ¢; regularization,
which simultaneously smoothes the model and selects features;
{2 regularization, which smoothes to avoid over-fitting, but
performs no feature selection; and models trained with no
smoothing.

I. INTRODUCTION

Temporal classification, such as activity recognition, is a
key component for creating intelligent systems that perceive
and respond appropriately to their environments. In the case
of robot systems, temporal classification is challenging for
two reasons. First, robots must process sensor informa-
tion and react in real time, which leaves little time for
computation. The second challenge is that robot sensors
provide vast amounts of data that must be sifted through in
order to extract useful information; sensors, such as color
cameras, accelerometers, joint encoders, and laser range
finders produce an enormous amount of data. The individual
pieces of data, e.g. the color of a single pixel, contain little
information, but the data taken as a whole, e.g. an entire
image, contains rich information about the environment.

Classifiers address the challenge of extracting information
from raw sensor data through the use of features. They oper-
ate on functions of the sensor data, e.g. the output of a color
blob tracker in a vision system, rather than the raw data itself.
Of course, computing features from sensor data requires time
and computational resources, which are limited on robot
platforms. Therefore, to perform temporal classification in
a robot system, we require two things: models capable of
robustly incorporating many non-independent features of the
sensor data and a means of performing feature selection so
that only the most relevant features are incorporated into
those models. In this paper, we demonstrate that conditional
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random fields [9], trained with ¢; regularization, meet these
requirements.

Conditional random fields (CRFs) are discriminatively
trained graphical models for labeling sequential data. Their
key property, in our context, is that they can directly incorpo-
rate many non-independent features of their observations, i.e.
features of the sensor data, without violating independence
assumptions in the model. This is because CRFs condition-
ally model the probability of a label sequence given the
observations. In part due to this property, conditional random
fields are increasingly being applied to tasks that are relevant
to robots, such as image classification [8], gesture recogni-
tion [17], motion tracking [15], and activity recognition [11],
[18]. This last domain, activity recognition, is where we
consider feature selection in CRFs via ¢; regularization using
robots from the Small Size league of RoboCup [6].

II. ROBOT TAG DOMAIN

We consider the problem of feature selection in CRFs
using a domain inspired by the children’s game of Tag and
implemented using the robots of the CMDragons’06 robot
soccer team [2]. In this domain, three holonomic robots move
on a playing field. Two of the robots take on passive roles
where they navigate to a series of randomly chosen points
on the field. The third robot takes an active role, which we
call being the seeker. The seeker attempts to tag its closest
neighbor and thereby transfer the seeker role to the tagged
robot. In our domain, tag simply means approach to within
a threshold distance of the target robot.

The two non-seeker robots are passive in the sense that
once they choose a target in the playing area, they navigate
to that target without actively avoiding the seeker. Once
they reach the target, they sample a new target, drawn
uniformly, but with rejection, from within the playing area.
The non-seeker robots reject candidate target points that lie
within 1 meter of the seeker, so there is bias away from
the seeker when choosing a target point, but the robots do
not avoid the seeker once they start moving to the target.
To provide a sense of scale, the playing area is 3.5 by 4
meters in size, the robots are 20 cm in diameter, and the
seeker must approach within 4 cm of another robot in order
to tag it. When a robot is first tagged, it pauses in place
for 5 seconds in order to avoid chasing and immediately
re-tagging the previous seeker. This tag domain provides a
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Fig. 1. The graphical structure of a conditional random field. The
variables y; represent the labels at each time step ¢. The entire sequence of
observations {z1,x2, ..., x¢} is represented by the single node X.

useful benchmark problem for testing classifiers for activity
recognition in a real robot system.

The system as a whole operates at a frame rate of 60 hz. At
the beginning of each frame, two overhead cameras capture
images of the field. A color vision system [3] uses colored
markers on the tops of the robots to extract their position and
orientation from the camera images. An extended Kalman
filter tracks the robots over time and this information is used
for real time path planning and by the behaviors that control
the individual robots. The tracked robot positions also serve
as the input for activity recognition.

In our benchmark problem, the roles of each robot are, of
course, known with certainty. However, e.g. in the case of
robot soccer, activity recognition can provide useful informa-
tion about opponent robots. For example, it would be useful
for soccer behaviors to adapt their strategy when activity
recognition detects that an opponent defender is marking a
particular offensive player. The classification task is then to
map from a series of observations that arrive at 60 hz to a
series of labels that specify useful state information. In the
robot tag domain, the label at each time step identifies the
robot currently executing the seeker role and the observations
are the locations of the three robots in the playing area.

III. CONDITIONAL RANDOM FIELDS

Conditional random fields are undirected graphical models
that compactly represent the conditional probability of a
label sequence, Y = {y1,y2,...,yr}, given a sequence of
observations, X = {x1,2a,...,x7}. CRFs represent this
conditional probability, P(Y | X), as the product of potential
functions that are computed over each clique in the graph.
In turn, these potential functions are computed in terms of
feature functions of the observations and adjacent pairs of
labels. To make this concrete, consider the case of our robot
tag activity recognizer.

The activity recognizer must identify which of the three
robots is seeker sixty times per second given the positions of
the three robots as input. Intuitively, the label at each time
step, Y, takes its value from the set {1, 2,3}, corresponding
to the statement: the robot with ID y; was seeker at time
t. The observation at each time step, ¢, is a six-tuple that
specifies the Cartesian coordinates of the three robots in the
playing area.

The graphical structure shown in figure 1 illustrates the
independence assumptions made by a CRF. We see that
adjacent pairs of labels, (y:—1,y:), are linked by undirected
edges, which corresponds to a first-order Markov assumption

over labels given the observations; past labels are condi-
tionally independent of future labels given the present label
and observations. As conditional models CRFs make no
independence assumptions between the observations. This
means that the model is free to use the entire observation
sequence, X, when computing clique potentials over adjacent
pairs of labels. This stands in contrast to directed models,
such as hidden Markov models [14], which assume the
observations from any single time step, x;, are independent
of all other observations given the label y;.

A. Clique Potentials and Features

CRFs represent the conditional P(Y | X)) as the product of
potential functions. These potential functions are computed
over each clique of the graph and they are built from feature
functions. In the graphical structure of a CRF, shown in
figure 1, the cliques consist of adjacent pairs of labels and
the entire observation sequence, so the clique potentials take
the form: ¢(¢,y:—1,y+, X), where y;—1 and y; represent
label assignments at a pair of adjacent nodes, X represents
the entire observation sequence, and ¢ is an index into the
sequence identifying where the edge (y;—1,y:) falls in the
sequence. Because CRFs are log-linear models, the poten-
tial functions take the specific form: (¢, yi—1,ys, X) =
exp(w? f(t,y:—1,y:, X)), where w represents a vector of
weights and f is a vector of feature functions. The weight
vector contains the parameters of the model and is estimated
during training. The feature functions that make up f identify
relevant configurations of (t,y:—1,y:, X ). As stated above,
the conditional probability of the label sequence is repre-
sented as the product of all of the clique potentials:
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where Z is a normalizing constant.

B. Training CRFs

Conditional random fields are commonly trained by max-
imizing the conditional likelihood of a labeled training set
to estimate the weight vector w. As is usually the case
with maximum likelihood training, it is more convenient to
maximize the log likelihood, which, along with its gradient,
is:
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This yields a convex objective function and its first deriva-
tive. Standard optimization techniques, such as conjugate



gradient and limited memory BFGS [12] are easily applied
and, indeed, among the fastest known methods for training
CRFs [16], [19].

Often, classification accuracy can be improved by adding
a regularization or smoothing term to the objective function
to reduce over-fitting during training. This is justified by
the usual argument that models with fewer parameters or
smaller parameters are more parsimonious. We examine two
smoothing techniques, namely ¢; and /5 regularization. We
begin by describing the later.

C. {5 Regularization

A common penalty function used to regularize CRFs
during training is the ¢ norm. Rather than maximizing the
conditional likelihood alone, penalty terms for each weight,
proportional to w2, are subtracted from the likelihood:

max /(Y | X;w) — dwTw ®)

The parameter A controls the degree of smoothing that
is applied to the model. High values of A correspond a
large amount of smoothing and a A of zero results in no
smoothing. The penalized objective function remains convex
and differentiable and therefore training a CRF with an
{5 penalty requires about the same computational effort as
training a CRF without regularization. The only difficulty
lies in choosing a good value for A\, which can be done,
for example, by evaluating different settings of A\ through
cross-validation or by making use of a hold out set.

D. {1 Regularization

Another common penalty function for regularizing models
is the /1 norm. Rather than penalizing the objective function
by w?, as in the ¢ norm, the ¢; norm applies penalties that
are proportional to | w; |, which, in the case of a CRF, results
in the penalized objective function:

max LY | X;w) =AY |wil, ©6)
7
where A is again a parameter that controls the degree of
smoothing during training. While the penalized objective
function 6 remains convex, adding the ¢; penalty means that
it is no longer differentiable.

Regularizing with an ¢; penalty complicates training,
but has the advantage of producing sparse models [5]; ¢4
regularization produces smoothed models where some of
the weights are exactly equal to zero. This is equivalent to
feature selection because features with zero weights can be
eliminated from the model. For intuition, consider the weight
w; = 0. Under an {2 penalty, the partial derivative of the
penalty is 2 \w;. To a first order approximation, the change
in the penalty is zero for moving w; away from zero. With
an ¢, penalty, the relevant partial is +), so the change in
the penalty is proportional to A. Under an /5 penalty, a small
non-zero derivative in the unpenalized objective function will
move w; away from zero. In the ¢; case, A\ serves as a
threshold and prevents w; from becoming non-zero to buy
small improvements in the unpenalized objective function.

Robot Data: L1 Regularization Path in the Tag Domain
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Fig. 2. A portion of the ¢1 regularization path for a CRF trained for
activity recognition in the robot tag domain. Each line in the plot represents
the weight associated with a feature in the CRFE. For high values of the
regularization parameter A\ (left side), all features have weights of zero
and the model contains no features. As A is decreased, features enter the
model by taking on non-zero weights. The horizontal axis corresponds to
|wx|1/|wx=0l1, that is, the £1 norm of the weights for each value of A
normalized by the ¢; norm of the weights that result when the model is
trained without regularization.

Recent work in the machine learning community has
shown that ¢; regularization is viable in generalized linear
models, the family of models that includes both CRFs and
logistic regression. In [13], Park and Hastie consider the
entire family of generalized linear models and introduce
a predictor-corrector method that recovers the entire regu-
larization path of a model, although potentially at a high
computational cost. In [10], Lee et al. consider the case of
logistic regression. They exploit the existence of efficient
algorithms for performing ¢; regularized linear regression
for efficiently training in the logistic regression case. Koh et
al. also consider logistic regression in [7], where they use an
interior point method to approximate the regularization path
of the model; they do not recover the exact positions where
features enter and exit the model, but they show that their
method can efficiently recover many points along the path,
which is sufficient for feature selection in most settings.

The work of Koh et al. [7] is the most similar to our
contribution. In our work, we consider conditional random
fields rather than logistic regression. Both are log-linear
models, but CRFs include the notion of time and require a
dynamic programming step to compute the partition function.
We investigated the interior point method of Koh et al., but
we met with more success using projected conjugate gradi-
ent, as described in the next section, for training. Following
Koh et al.,, we use a warm start technique to recover the
regularization path of a CRF. We use the regularization path,
along with a held out portion of the data set for feature
selection in the CRF. A portion of such a regularization path
is shown in figure 2.



E. Training with an {1 Penalty

When training a CRF with an ¢; penalty, the objective
function 6 has an unconstrained domain and it is not differ-
entiable. Rather than maximizing 6 directly, we optimize a
different objective function over a constrained domain. This
new objective function 8, has a well defined first derivative.
We generate the new objective function by reparameterizing
the original function in terms of two vectors, w* and w™,
that are related to w from equation 6 by w = w* — w™.
We constraint the entries of wT and w™ to be non-negative,
yielding the new optimization problem:
max K(Y\X;w)f)\Zw;"f)\Zwi_, (7
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We solve this constrained optimization problem using
projected conjugate gradient. Briefly, algorithms such as
conjugate gradient optimize through a series of minimiza-
tions along a line. Each minimization begins with an initial
point zy and a search direction d. The objective function is
evaluated and candidate points z, where x = zo+ad, a > 0,
and a line search algorithm is used to choose the optimal
value of a. The key idea of projected conjugate gradient is
that candidate points x are projected back into the feasible
region before being evaluated. In our case, that amounts
to computing x,, such that z, = maxz(0,z). This type of
projected optimization algorithm has long been used to solve
constrained optimization problems with simple inequality
constraints [1] and is an efficient method for training CRFs
with an ¢; penalty for a specific value of \.

Of course, to produce the regularization path, many values
of A must be considered. For the case of ¢; regularized
linear regression, an efficient algorithm to compute the full
regularization path is known [4]. No such algorithm is known
for the case of generalized linear models [13], however, Koh
et al. [7] noted that an approximation to the regularization
path, which does not produce the exact values of A where
features enter and exit the model, can be computed efficiently
via a warm start technique. That is, the model is first trained
with the largest value of A and then the process is repeated
for the next smaller value of )\, initializing the optimization
with the weights from the previous step, which dramatically
reduces the computational requirements at each step.

IV. EXPERIMENTS

To explore the effectiveness of ¢; regularization for both
smoothing and feature selection, we created a CRF to iden-
tify which robot was seeker in the robot tag domain. We
trained this CRF with either no regularization, ¢; regulariza-
tion, or {5 regularization. The motivation for this last form
of training is to compare smoothing techniques that do not
simultaneously perform feature selection to ¢; regularization,
which does both simultaneously.

We generated datasets using both actual robots and a
robot simulator to test how well models trained on simulated
data generalized to data from real robots. In both cases, the

training, hold out, and test sets each contained ten minutes
of data, or since the system operates at 60 hz, 36,000 time
steps. We trained the models with the same implementation
of conjugate gradient and used the same termination criteria,
except in the case of the ¢; regularization, where the op-
timization algorithm was modified to project back into the
feasible region of the search space.

The experiments with regularization required testing many
different values of the regularization parameter \. In the case
of training with an ¢; penalty, there is a clear notion of a
regularization path starting with a A set high enough that
all features have zero weights and extending through lower
values of A\ until most or all weights in the model have non-
zero weights. To generate such a path, we chose an initial
value )\g large enough that no features were present in the
model and then set A\ 1 = .9\ for each succeeding trial. In
the case of /5 regularization, there is not such a clear notion
of a regularization path, so we reused the same \ values that
were used in the ¢; trials.

A. Features in the CRF

The CRF included the same features, described below,
in all experiments. There were a total of 1174 features in
the model, all of which were designed to be relevant to the
classification task. In all feature descriptions, I(condition)
represents the identity function and evaluates to 1 if the
condition evaluates to true and O otherwise. For example,
I(y; = 1) tests if the label at time ¢ identifies robot ¢ as the
seeker. We use pos(i) to denote the position vector for robot
i and vel(7) to denote the velocity of robot 4, as estimated
from the difference of two adjacent position observations.

1) Intercept and Transition Features: [ = I(y; = 1)
and f = I(y.—1 = 9)I(ys = j). These features allow
the model to encode prior probabilities P(y;) and transition
probabilities P(y; | yi—1).

2) Raw Observations: f = I(y, = i)z [k] and f =
I(y; = i)x¢[k]?. These features allow the model to estimate
sufficient statistics corresponding to modeling each compo-
nent of the observation z; as a one dimensional normal
distribution.

3) Robot Velocities: f = I(y, = i)vel(j) Velocities are of
interest because the seeker robot pauses in place after being
tagged.

4) Chasing Features: f = I(yy = 1)(pos(j) —
pos(k))Tvel(k). As an example of a more complex feature,
the chasing features attempt to capture whether or not robot
k appears to be chasing the closest other robot j. It computes
the direction from robot k to robot j and then projects the
velocity of robot k£ onto this direction to determine if robot
k is moving towards robot j.

5) Velocity Correlations: f = I(y; = i)vel(j)Tvel(k)
We included features to capture the correlation between the
velocities of robot j and robot k by considering the inner
product of their velocities.

6) Velocity Thresholds: f = I(y. = i)I(vel(j) < k)
These features test whether the velocity of robot j falls below



TABLE I
ERROR RATES WITH DIFFERENT REGULARIZERS

TABLE III
RETRAINING THE CRF WITH ONLY THE SELECTED FEATURES

Simulation Real Robots
Regularizer None J2 o None I I2)
Num. Features 1156 58 1156 1174 82 1174
Error Rate (%) 27.9 1.15 1.15 30.7 6.27 7.42

TABLE I
GENERALIZATION BETWEEN SIMULATED AND REAL ROBOT DATA

Training Test Set Error Rate (%)
Data Source | Data Source
Real Robots | Real Robots 6.27
Real Robots Simulation 1.10
Simulation Simulation 1.15
Simulation Real Robots 6.36

a threshold k. The thresholds k£ were chosen to range from
5 to 100 mm/sec in steps of 5 mm/sec.

7) Distance Thresholds: f = I(y—1 = )I(yy =
I ((pos(a) — pos(b))T (pos(a) — pos(b)) < k?) Distance
thresholds k& where chosen from 200 mm to 1000 mm in
steps of 50 mm. Recall that the robots have radii of 100 mm;
distance thresholds ranged from robots touching to almost a
meter apart. We also include equivalent features to indicate
when the distance was greater than the same thresholds.

B. Error Rates with Different Regularizers

The results in table I show the classification error rates on
the robot tag data when no regularization is used and when
the CRF is trained under either an ¢; or /> penalty. The
results show that some form of regularization is necessary
to achieve high classification accuracy; models containing
hundreds or thousands of features suffer from over-fitting in
the absence of smoothing. Also of note is the number of
features in the final model under each of the three schemes.
Both the no regularization and /5 penalty cases include all, in
the case of the real robot data, or nearly all, with the noise-
less simulated data, of the 1174 features. This is expected
as neither of those techniques is known for producing sparse
models. When ¢; regularization is used, the CRF achieves
comparable accuracy to the larger models, but only using 7
and 5 percent of the total features in the real robot data and
simulated data cases respectively.

C. Generalization between Simulated and Real Robot Data

Table II shows the error rates on test data when the features
selected by ¢; regularization and the corresponding weights
are applied to different data sets. It is encouraging to note
that the features and weights learned when the CRF was
trained on data from real robots perform well on data from
the simulated robots and vice versa. It is typically much
easier to generate large data sets, which may be required for
more complex activity recognition tasks, from simulations
and these results suggest that features discovered on such
large simulated data sets may carry over to real robots.

D. Retraining a CRF with Only the Selected Features

Training models under an ¢; penalty produces both an
active subset of the features as well as a set of weights

Feature Selection Retraining Regularizer Error Rate (%)

Data Source Data Source | for Retraining

Real Robots Real Robots None 9.55
Real Robots Real Robots lo 6.88
Simulation Real Robots None 10.8
Simulation Real Robots 0o 5.83
Simulation Simulation None 5.15
Simulation Simulation 12 1.21
Real Robots Simulation None 4.17
Real Robots Simulation 12 1.27

for those features. The set of experiments summarized by
table III considers the question of whether or not the weights
from ¢; training should be used directly or if a new model,
containing only the selected features, should be retrained,
possibly with regularization; the role of regularization during
this second iteration of training would be smoothing only,
so we examined ¢, regularization rather than ¢; because the
former translates into an unconstrained optimization problem
and generally requires less computation to solve. Also of note
is that this second round of optimization may be much less
computationally expensive than the first round where features
were selected; many fewer features are present in the second
model and the reduced amount of data may make caching
strategies much more effective.

The results in table I show that error rates of 6 or 7
percent are expected on the real robot data and error rates of
approximately 1 percent are expected on the simulated data
when the full compliment of features is used and the CRF
is smoothed during training. The results in table III show
that retraining the CRF with only the selected features to
optimize the level of smoothing is not necessary. Addition-
ally, experiments where features selected with one data set
are used in a CRF trained on the other data set support the
results in table II that show good generalization between real
and simulated data.

E. Feature Selection Results

The results in figure 3 show the error rate on the hold
out set and the number of features with non-zero weights
in the model as the regularization parameter A is varied.
In both the real and simulated data cases, the error rate
drops off suddenly as informative features enter into the
model. This drop off to low error rates is then followed by a
gradual increase in the error as additional features increase
the amount of over-fitting. The key observation is that the
error rate approaches a minimum value when the number
of active features in the model remains modest. Feature
selection is yielding both improved accuracy and a reduced
computational cost (by reducing the number of features) in
the final model.

V. CONCLUSION

We have shown that ¢; regularization is an effective
method for smoothing and feature selection in conditional
random fields. Feature selection is particularly important in
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The error rate on the hold out set and number of features in the tag domain for CRFs trained on simulated data (left) and on data from real

robots (right). On the right side of each plot, the regularization parameter, A, is assigned a high value and no features are included in the model. As A is
decreased, the number of features with non-zero weights (solid line, scale on left axis) increases. At the same time, the error rate of the classifier trained
with the corresponding A (dashed line, scale on right axis) decreases. In both domains, the error rate declines sharply while the number of features in each
model is relatively low. The error rate increases again for low values of A as the model includes less relevant features and over-fits on the training data.
The dotted vertical lines indicate the setting of A with the lowest error rate on the hold out set.

robot domains, where classifiers depend on complex features
to extract information from their sensor readings, because
robots have a limited amount of processing power that must
be shared by many systems. Results in an activity recognition
domain using data from both real and simulated robots show
that ¢; regularization can produce error rates comparable
to those produced by other smoothing algorithms while at
the same time eliminating more than 90% of the candidate
features in the model.

We have also shown that reparameterization coupled with
projected conjugate gradient is an effective method to recover
the ¢, regularization path. This serves as a simple alternative
to, e.g. interior point methods such as the one in [7], which
have been applied to logistic regression.
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