Oracular Partially Observable Markov Decision Processes: A Very
Special Case

Nicholas Armstrong-Crews and Manuela Veloso
Robotics Institute, Carnegie Mellon University

{narmstro, veloso}@cs .cmu.edu

Abstract— We introduce the Oracular Partially Observable
Markov Decision Process (OPOMDP), a type of POMDP in
which the world produces no observations; instead there is an
“oracle,” available in any state, that tells the agent its exact state
for a fixed cost. The oracle may be a human or a highly accurate
sensor. At each timestep the agent must choose whether to take a
domain-level action or consult the oracle. This formulation com-
prises a factorization between information-gathering actions
and domain-level actions, allowing us to characterize the value
of information and to examine the problem of planning under
uncertainty from a novel perspective. We propose an algorithm
to capitalize on this factorization and the special structure of
the OPOMDP, and we test the algorithm’s performance on a
new sample domain. On this new domain, we are able to solve a
problem with hundreds of thousands of action-states and vastly
outperform a previous state-of-the-art approximate technique.

I. INTRODUCTION

The Oracular POMDP is like a traditional POMDP except
there is an oracle that takes the place of observations. The
oracle is an information source with full knowledge that
is equally accessible regardless of belief or state; however,
there is a cost to invoke the oracle. Despite having no
observations, the system is still “partially observable” in that
actions produce non-deterministic transitions between states
and thus the agent is afflicted by uncertainty.

The presence of an oracle corresponds to many real-world
situations, such as humans or robot sensors of high precision.
Although we are studying environments with both observa-
tions and an oracle, in this paper we focus on OPOMDPs
with only the oracle.

POMDPs provide an elegant and general framework for
many realistic problems, but unfortunately are computation-
ally intractable, in general [1] [2]. MDPs can be solved
much more efficiently, but do not provide as rich or realistic
a framework. Therefore, it is of practical significance to
investigate frameworks “between” these extremes on the
spectrum of observability, to achieve richly representative
and efficient solution techniques. Some examples of such
frameworks between POMDPs and MDPs are unobservable
MDPs [3], which are POMDPs which produce no observa-
tions; Zubek and Dietterich’s even-odd POMDPs [4], which
acquire perfect state information at every other timestep;
and Hansen’s POMDP variant, which has no observations
but acquires perfect information at finite intervals [5]. While
covering much the same scenario, [5] does not analyze the
special case in detail, proposes an algorithm with no better
computational guarantees than standard POMDP algorithms,

and indeed applies that algorithm to general POMDPs.
Finally, Jaulmes et al. use the concept of an oracle in [6],
though only for learning POMDP models and not at all in
solving them.!

The OPOMDRP is our contribution to this set of frame-
works. It is a particularly useful one, insofar as it affords
several advantages over general POMDP techniques. Most
work on general POMDPs concentrates on finding vectors
to represent the value function in continuous belief space
[7] [8] [9] [10]; OPOMDPs open up the ability to consider
the value function as a non-stationary function over discrete
state space, a much more compact representation. Further-
more, the lack of observations in the OPOMDP allows
for complete factorization of information-gathering actions
and state-altering (or domain-level) actions. We present an
approximate algorithm, called JIV or JMPP Information
Value, that takes advantage of these characteristics and runs
in polynomial time. JIV can be viewed as an extreme of
“belief-points” approaches, such as PBVI [11], HSVI2 [12],
and PERSEUS [13]; it partially relies on QPP [14], but does
not suffer its shortcomings (i.e., JIV will choose information-
gathering actions when necessary). As no domain exists in
the literature that fits the OPOMDP framework, we introduce
a new domain and show that JIV solves it quickly and
effectively. We also scale up this new domain and show that
JIV scales quite well, outperforming HSVI2 by several orders
of magnitude on the largest instance.

II. THE OPOMDP, FORMALLY

We define OPOMDPs following the same formalism as
MDPs and POMDPs, which we now review.

A. MDPs and POMDPs

The Markov Decision Process, or MDP, is a framework
for modeling an agent moving stochastically among a finite
set of states via probabilistic transitions influenced by the
agent’s choice of actions. The agent’s next state is only
dependent upon its previous state and its current choice of
action. The agent receives a reward signal at each timestep,
associated with the current state and action. In this paper, we
consider the case of discounted reward and infinite horizon.
The tuple (v, so,S,.A,7,R) specifies the MDP: ~ is the
scalar discount factor; sg is the initial state; S is the set of

'We developed both the concept and the term “oracle” independently
from Jaulmes et al. — suggesting the term is descriptive and the concept
useful.

all states in the world; A is the set of all possible actions;
7T :S8 x A~ TII(S) is the state transition function, written
7 (s,a,s") for the transition s to s’; and R : S x A— R is
the (immediate) reward function.

The objective of the agent is to maximize long-term
expected reward E[> " ~'ry], where 7, is the immediate
reward at time ¢ associated with the state s; and action a; at
time ¢. The agent maximizes this expectation by determining
a policy # : § — A, which completely determines the
agent’s behavior. The optimal policy can be generated by,
for each state s, greedily choosing the action that maximizes
J(s), the long-term expected reward for s assuming the
agent acts optimally (also called the value function and often
denoted V). J(s) is given by Bellman’s Equation (1), and can
be solved by a variety of techniques (e.g., value iteration).

J(s) = max (R(s, a) + ZT(S, a, s')J(s’)) (1)
a o

The Partially Observable Markov Decision Process, or
POMDP, extends the MDP framework to allow for incom-
plete knowledge of state. The agent now receives observa-
tions that are generated stochastically from a set of possible
observations at each state. Rather than true state, the agent
maintains in memory a belief state, which consists of a
discrete probability distribution over states. The POMDP
is then Markovian in belief state, since all the agent re-
quires to model the transition to next belief state is its
current belief state and its action. The tuple for a POMDP,
(7,b0,S, A, 7T, R,Q,O), contains the same elements as an
MDP (except for initial state), plus: by, the initial belief; €2,
the set of all possible observations; and O : S x A — II(12),
the observation function.

The optimal solution for a POMDP can be found by
considering the problem as a continuous MDP in belief state.
Unfortunately, this technique has been proven to be PSPACE-
hard in computation time [1], and most realistic domains
are intractable to solve. A variety of optimal and heuristic
techniques have been proposed (far too many to list here),
but computation time remains the primary limiting factor in
applying POMDPs to real systems.

B. OPOMDPs

The Oracular POMDP, or OPOMDP, replaces observations
with an additional action, o, that provides the agent with full
state knowledge; of course, as the agent continues to act in
subsequent timesteps, its knowledge again becomes fuzzy.
The action o is associated with consulting an oracle and is
available in every state; however, the oracle requires a flat
fee for each consultation. The policy’s output is now from
the expanded action space of domain-level actions and the
oracle action.

The OPOMDP is a special case of a POMDP; specifically,
any POMDP with an action producing an observation that
is unique to the current state while all other actions produce
a single (NULL) observation in all states, is an OPOMDP.
In addition, an MDP is a special case of an OPOMDP;
it is an OPOMDP with oracle cost O that performs a

domain-level action followed immediately by an oracular
consultation. Hence, we can see that OPOMDPs are strictly
“between” POMDPs and MDPs, both in terms of generality
and observability.

We will now formulate the OPOMDP, not in the typical
POMDP fashion, but instead in terms of belief state b
(as in the belief state MDP [8]). The OPOMDP tuple is
(v, A, bo, S, A, T, p), with: -y, the scalar discount factor; A, the
oracle cost; by, the initial belief; S, the set of all states in the
world; A, the set of actions, including domain-level actions
and the oracle action; 7 : B x A +— B, the belief transition
function (a.k.a. state estimator); and p : B x A — R, the
(immediate) expected reward function. Note that the set of
possible beliefs B, which contains elements b, is a discrete
probability distribution over states. It is induced from S, so
is not necessary for specifying the OPOMDP and need not
appear in the tuple.

The belief transition function 7 takes as input an action a
and a belief b, where b is a discrete probability distribution
over states: b(s) = Pr(s|history). The output of 7 is the
updated belief state after taking action a, and thus is also
a discrete probability distribution over states. Hence, we
write: b’ = 7(b,a). It is also sometimes convenient to write
7(b,a)|s, which indicates b'(s’) = Pr(s’|b, a).

The elements of the OPOMDP tuple can be induced from
those of the MDP tuple:

S = sMPP (2)
A=A J{o} 3)
7(b,a)le =Y b(s)T™(s,a,5") Vaec AP 4

MDP MDP

o(b,a) = {Zs b(s)RMDP(s,a) a€eA 5)
> b(s)RMPF(s,NOOP) a=o0
Note that the NO_OP domain-level action is assumed to
occur simultaneously with the oracle action. NO_OP often
refers to staying in the same state, or simply letting the
system proceed naturally. If the agent lacks a NO_OP action,
then we simply set p(b,0) = 0.

III. THE JIV APPROXIMATION

Since an OPOMDP can be viewed as a POMDP, we could
use the same techniques to solve it; however, we present an
approximate algorithm that provides high-quality solutions
at reduced computational complexity. First, however, we
analyze the distinctive characteristics of the OPOMDP that
the algorithm exploits, which also afford some illuminating
insights into the nature of rewards under uncertainty and the
value of information.

A. Insights

One important characteristic of the OPOMDP framework
is the absence of observations. This fact makes the transitions
between belief states totally deterministic and the agent can
foresee to an arbitrary horizon the exact effect on its belief
state of performing a sequence of domain-level actions. This

fact holds true until it consults an oracle, introducing non-
determinism in the belief state transition. Furthermore, the
lack of observations means that the only way the agent can
attain information is through the oracle, not by any of its
domain-level actions. In contrast, regular POMDPs make no
distinction between domain-level and information-gathering
actions [8].

Our factorization is not perfect; consider a robot (with no
sensors) driving down a hallway. It might not know where
it is in the hallway, but if it keeps driving straight for long
enough it will certainly finish at the end of the hallway. In
other words, uncertainty can be reduced somewhat just by
choice of action. However, in practice these situations are
rare and policies that rely on them are typically not very
good.

If we assume the factorization is perfect, however, we
know that a greedy decision to consult the oracle is a good
one. Intuitively, if at some timestep the agent is confused
and doesn’t know what to do next, it should ask the oracle
immediately rather than waiting, since, according to our
assumption, any other action would only confuse it further.

Using our explicit factorization of the OPOMDP action set
into strictly information-gathering actions and strictly state-
altering actions, we can discuss the value of information.
In an OPOMDP, the only type of “information” available
is the oracle, resulting in perfect state knowledge. Hence,
“information value” is essentially defined for us: the value
of one of the perfectly informed beliefs. However, since we
do not know beforehand what response the oracle will give,
we must take the expectation over states using our prior
belief. Note that in regular POMDPs, one could also define
information value in this way, but there’s no guarantee of
ever being able to reach a perfectly informed belief and
many ways to get information without ending up perfectly
informed; so such a definition would be rather less useful.

Some previous attempts have been made to examine,
equivalently, the cost of uncertainty. The Expected Entropy
and Entropy Value techniques of Cassandra et al. [14]
compress the uncertainty parameters into a single number,
entropy, but do not address the cost of that uncertainty by
examining it in connection with the value function over
state space. Information (lack of uncertainty) has no inherent
value; one can imagine a value function that is constant
everywhere, so knowing more precisely the state does not
help an agent accumulate greater reward. On the contrary,
the value of information is only defined with respect to some
value function over a specific state space. Similarly, the value
of information is tied to the available actions; in a situation
where the agent only observes and has no actions, it will
accumulate the same reward regardless of whether it knows
its state or not. Hence, in defining the value of information
for an OPOMDP, we must reference the states, actions, and
value function.

Similar to [14], we’d expect a close connection between
an OPOMDP’s value function over belief space and its
underlying MDP’s value function over state space (much
closer than that of a general POMDP, because we can

intermittently achieve perfect information via the oracle).
Rather than solving for the true value of information, which
is essentially as hard as solving the whole POMDP, we
will use the MDP’s value function as an approximation.
This approximation, along with the perfect factorization
assumption, is the basis of our solution algorithm.

B. The JIV Algorithm

We now present our algorithm for efficiently solving
an OPOMDP using a greedy approximation to the value
function. This approximation defines the value of information
using the JMPP value function, so we title the approximation
and algorithm JMPFP Information Value, or JIV.

The basic idea is to first solve the underlying MDP during
a pre-planning phase, then use the MDP solution at execution
time. During execution, at each timestep, the agent decides
whether to take the domain-level action that maximizes long-
term expected reward, or to consult the oracle to reduce
uncertainty and pay the immediate oracle cost. The former
option uses the QMP? approximation, just as in [9]; however,
the latter option addresses the major flaw of QPP (namely,
that it will never take information-gathering actions) by also
considering the single available information-gathering action:
consulting the oracle. Hence, we achieve essentially the same
alacrity as QMPP, while executing a sane policy that keeps
the agent well-informed.

The QMPP approximation is:

T QP (h) = max > b(s)QVPF (s, a) (6)

This is a weighted voting scheme, in which each state’s vote
for best action is weighted by the probability of being in that
state. This approximation would be exact if its assumption
were satisfied that the agent would acquire full knowledge
at the next timestep and retain full knowledge thereafter.
We define the information value (J'V) of a belief to be:

JV(b) = E[J*"(s)] = Z b(s)J<"(s) (7

S

Here, J"(s) represents the long-term expected reward of
being in state s with full instantaneous certainty and there-
after executing the optimal policy. The information value is
the expected value over the states the oracle might say the
agent occupies. Since the oracle tells the truth, this is an
expectation over the agent’s belief b. Upon consulting the
oracle, the agent knows the true state with no uncertainty.

How do we determine the values for J°"? We could start
with the approximation J¢"(s) = JMPP(s), then perform
value or policy iteration to convergence; but we’d need
to keep track of the value of every possible belief, an
uncountably infinite set. We could discretize belief space,
but the computation time would be prohibitive and would
degrade with finer discretizations.

In favor of performance and simplicity over optimality
(again, standard techniques could solve the problem as a
POMDP), we choose to simply approximate J°"(s) with
JMPP(5) " the value function of the underlying MDP, since

it requires negligible computation, can be performed at
execution time, and, as we shall soon see, produces an
effective policy. N

We define the JYPP information value (J V) of a belief

to be: R
TN ®B) =D b(s) VPP (s) (8)

Hence, we use J "V to calculate the value of invoking the
oracle and weigh this against the value of the best domain-
level action. The long-term expected reward of executing an
action a and thereafter executing the optimal policy is given
by:

p(b,a) +~J MPP(Y) ifa+£o

~ 9
p(b,0) = A +~vJ V() ifa=o0 ©

The two cases highlight the tradeoff between taking a
domain-level action and an information-gathering action.
With this definition of (), Bellman’s Equation is as usual:

J(b) = max Q" (b, a) (10)
The policy is then given by:
7(b) = arg max Q W (b,a) (11)

As previously mentioned, JIV should typically perform
better than QMDP, since it will sometimes chg\ose the
information-gathering action (oracle). Since both J ' and
J QMPP are upper bounds, JIV won’t necessarily choose to
consult the oracle at the optimal time nor with the optimal
frequency, nor is it guaranteed to achieve higher reward than
QMP? on all problems. But qualitatively, it does solve QMPP’s
major shortcoming; and we will soon see quantitatively that
JIV indeed performs quite well in comparison to QMP? and
to HSVI2.

Finally, note that JIV can be applied in POMDPs that
meet the requirement of an oracle but still have regular
observations as well. The only necessary change would be
to append a Bayesian update for observations to (4). JIV
should still outperform QMPP, since it doesn’t reason about
observations, either. R

The algorithm for execution using the J IV approximation,
the JIV algorithm, is listed as Algorithm 1. In this listing,
SOLVE_MDP is any algorithm that solves the MDP.

C. Computational efficiency

The benefits of performing some calculations at execution
time are not to be underestimated. “Reachable beliefs” ap-
proaches [13] [12] reduce the number of beliefs whose value
must be computed, with great success; the “execution time”
approach (as presented here) uses only the beliefs actually
reached during execution, the minimum possible number of
beliefs necessary for acting optimally.

In fact, the theoretical complexity of the algorithm is
reduced from that of solving a general POMDP; now all we
must do is: 1) solve the MDP beforehand, a polynomial-time
problem [15]; then 2) at execution time, examine |.A| actions,
each with a single expectation to compute over |S| states,

Algorithm 1 EXEC_JIV (, \, by, SMPP, AMDP TMDP MDP)
1: (QMPP_ JMPPY SOoLVE_MDP(y, SMPP, AMDP|
TMDP RMDP)

2: S« SMDP
3 A — AMPP ({0}
4: b bo

5: loop

6: (js,as) — CHOOSE_BEST_ACTION(b, ~, AMPF, JMPF)
7 Jo + p(b,0) _)‘+7JHV(b)

8: if j, > js then

9: b «— ground truth {consult oracle}
10: else
11: b — 7(b,as) {perform action as}

Algorithm 2 CHOOSE_BEST_ACTION(b, v, AMPP JMDP)

Ensure: Returns best domain-level action and its value
(using the QMPP approximation)

(Js,as) < (—oo, undefined)
: for all a € AMP? do
vV e7(ba)
j — p(b, a) + '7J QMDP(b/)
if j > j; then

(,js, aS) — (.]a a)

7: return (js,as)

A R o S s

which clearly takes time linear in both actions and states.
Hence, this algorithm is polynomial. Additionally, note that
the computation time per timestep is minimal, so there is
little concern of lagging decisions during execution.

Note that the worst-case complexity of optimally solving
an OPOMDRP is still intractable. Consider the case when the
oracle is too costly to ever make consultation worthwhile;
now we have an unobservable POMDP, whose difficulty is
still NP-complete [3]. It remains an open question whether
general OPOMDPs are PSPACE-hard.

IV. EXAMPLE DOMAIN

To illustrate the theoretic analysis above, we introduce
the following example domain, The Wizard’s Curse. It is
necessary to construct a new example domain, because no
POMDP instances in the literature satisfy the conditions of
an OPOMDP. However, in future work, we plan to present
a method that approximates a general POMDP with an
OPOMDP, at which point examinations of classical POMDP
instances with JIV will be feasible.

In a faraway kingdom, a princess is kidnapped by an evil
wizard and imprisoned in a remote tower. Clearly, the hero
must go rescue the princess. The wizard, knowing this, places
a curse on the hero that blinds him. The king’s hunting
grounds lie near the tower, and if the hero travels through
them he incurs a tax; however, he can’t tell when this happens
due to his blindness. The hero’s only tools are his precise
knowledge of the region (map) and a magic ring with which

he can consult the king’s oracle for exact knowledge of his
location; however, the king provides this service only at a
nominal fee per invocation.

A. Specification

The state space is a 6 x 6 grid, as pictured in Figure 1.
In each state, the hero (agent) can attempt to move in any
cardinal direction or stay in place, but the outcome is noisy —
see Table IV-A (if the hero ends up moving off the map, he’ll
be replaced on it at the closest cell). The oracle action does
not change the true state, so its effect on state is equivalent
to the STAY action. The oracle cost is A = .25 and the
discount factor is v = .75. The immediate reward is the
same across all actions and is only a function of state. The
reward associated with the princess’ location is +2; for the
hunting grounds it is -1; and for all other states it is 0.

e e =ty

*

Fig. 1. Wizard’s Curse problem
B. Experimental results

Figure 2 shows the contours of the JMPP values and the

hero’s path for an example execution. The red line represents
the true path the hero takes, while the blue line represents
the sequence of most-likely states (MLS) at each timestep.
An open circle indicates an oracle consultation, at which
point the blue line breaks and begins again on the true path.
Notably, the hero travels through the hunting grounds but
believes he avoids it; the oracle is not consulted at this
point because the hunting grounds penalty is not severe (-1)
and the hero is reasonably certain he won’t walk through
it (although, in this rare case, he does anyway). However,
the oracle is consulted twice near the princess, since in this
area the value function changes steeply and the value of
information is quite high. This example substantiates our
previous theoretical analysis.

We compare the JIV algorithm with two naive approaches
in order to support our claim of JIV “behaving reasonably.”
One naive approach, “Always Ask” (AA), acts timidly and
consults the oracle every other timestep, thereby always
having complete state information when choosing domain-
level actions (essentially enforcing the assumption of the
even-odd POMDP [4]). The other naive approach is “Never
Ask” (NA), which never consults the oracle and behaves
equivalently to QMPP would if the POMDP were unobserv-
able [3]. All of these algorithms, including JIV, utilize the
MDP solution determined offline. Additionally, we compare

e Start State
% Goal State
o Oracle Consultation
--- True Path
MLS Path
—— MLS=True Path L

Fig. 2. Contours of JMPP and agent path

JIV against HSVI2 [12], one of the most scalable general
POMDP solvers available (unfortunately, not all competitive
algorithms are available for comparison, and previous results
for these algorithms on typical non-oracular problems are not
particularly edifying).

Figure 3 compares the performance of these approaches by
accumulated reward as the agent progresses in time, averaged
over 500 runs. Overall, JIV far outstrips the naive algorithms,
while achieving statistically indistinguishable results from
HSVI2 (which is guaranteed to be within .001 of the optimal
value?). The dips in the plot correspond to when the agent
moves between the two eastern hunting grounds and tends
to lose reward. JIV dips lower than NA, since it pays
the immediate cost to the oracle for the benefit of state
information; but it is apparent that this behavior later pays
off. AA doesn’t produce a dip, since it successfully avoids the
hunting grounds as a result of its perpetual state certainty; but
its accumulated reward decreases drastically as it repeatedly
pays the oracle cost (until it reaches the princess, at which
point its accumulated reward begins to increase).

Figure 4a shows how JIV results in fewer oracle consul-
tations as the cost of the oracle is increased, up until some
point at which the oracle is never consulted. The number of
consultations is averaged over 100 runs. This decline also
satisfies intuitive expectations of reasonable agent behavior.

To examine scalability, we increased the size of the
original domain by subdividing the grid an integral number
of times in both the x and y dimensions. Figure 4b shows
the necessary computation time for solving the MDP as we
grew the domain.

A domain of 4,500 action-states was solved in 4.2 seconds
with JIV, taking over 2 hours to solve with HSVI2. The
largest domain solved consisted of over 300,000 action-
states and took 3h49m. The simulation was run using the
R software package on a Pentium IV 3.4 GHz machine

2Cassandra’s optimal solver software was unable to find a solution.

TABLE I
NOISY ACTION OUTCOMES

Action N S w E STAY
1 7 1]0 0 O|.1 0 OlO O .1[0 O O
Outcome | 0 .1 O o .1 o0 7 1 0|0 .1 710 1 O
o o0 o |.1 .7 1 1 0 0|0 O 1|10 O O

— Jv

--- Never Ask
Always Ask

——- HSVI2

0.4

0.2

mean accumulated reward
0.0
!

<
3
|
T T T T T T T T
0 5 10 15 20 25 30 35
timesteps
Fig. 3. Comparison of algorithms by accumulated reward

12000
I I I I I I

solve time (seconds)

mean number of consultations
3
|

0 2000 4000 6000 8000

T T T T T T T T T T T
00 01 02 03 04 05 06 0 50000 150000 250000

oracle cost number of action-states

Fig. 4. (a) Frequency of oracle consultation as a function of oracle cost
(b) Solve time (s) as a function of number of action-states

with 2 GB RAM. We used simple value iteration to solve
the MDP; faster techniques suggested by [15] would surely
improve JIV’s performance, as well as would a C/C++ imple-
mentation. While we’ve only compared JIV against a single
POMDP solver on a single domain, these initial empirical
results are encouraging and demonstrate the soundness of
our theoretical complexity results and of the JIV algorithm.

V. CONCLUSIONS AND FUTURE WORKS

The OPOMDP is a special case of the POMDP that
deserves special attention, as its unique characteristics afford
novel analytical techniques, tractable solution algorithms,
and insight into the value of information in an uncertain en-
vironment. Furthermore, OPOMDPs correspond to a number
of real-world cases and are therefore practically useful. This
paper is merely an introduction to OPOMDPs; much more
work remains to be done.

The JIV algorithm is perhaps the simplest of all algo-
rithms that approximate J°", and in the future we will

construct efficient, exact algorithms that draw on the special
structure of the OPOMDP (in particular, heuristic search
lookahead looks promising). Furthermore, in many cases, the
oracle does not in fact know the truth entirely and exactly;
hence, we plan to examine partial-knowledge oracles. These
should allow us to approximate general POMDPs by treating
observations as partial-knowledge oracles and thus make
OPOMDPs and their efficient solution techniques much more
universally applicable. This extension should also enable a
larger comparison of JIV against standard POMDP algo-
rithms on standard POMDP benchmark domains. Finally,
we plan to address distributed multi-agent systems (DEC-
POMDPs) with OPOMDP techniques by casting communi-
cating agents as partial-knowledge oracles.

VI. ACKNOWLEDGMENTS

Special thanks to Tony Cassandra and Trey Smith for
their open-source POMDP solvers; also to Reid Simmons
(and again Trey Smith) for many helpful discussions. This
research is partially supported by a DoD NDSEG fellow-
ship and under Grant No. NBCH-1040007. The views and
conclusions contained herein are those of the authors only.

REFERENCES

[1] C. Papadimitriou and J. Tsisiklis. The complexity of markov decision
processes. Mathematics of Operations Research, 12(3):441-450, 1987.

[2] O. Madani. Complexity Results for Infinite-Horizon Markov Decision
Processes. PhD thesis, University of Washington, 2000.

[3] O. Madani. Models for decision making in dynamic and uncertain
domains. Technical Report UW-CSE-98-12-01, 1998.

[4] V. Zubek and T. Dietterich. A POMDP approximation algorithm that
anticipates the need to observe. In Proceedings of PRICAI-00, 2000.

[5] E. Hansen. Markov decision processes with observation costs. Tech-
nical Report UM-CS-1997-001, 1997.

[6] R. Jaulmes, J. Pineau, and D. Precup. Active learning in POMDPs.
In Proceedings of ECML-05, 2005.

[7]1 E. Sondik. The Optimal Control of Partially Observable Markov
Processes. PhD thesis, Stanford University, 1971.

[8] L.P. Kaelbling, M. Littman, and A. Cassandra. Planning and acting in
partially observable stochastic domains. Artificial Intelligence Journal,
101(1-2):99-134, 1998.

[9] M. Littman, A. Cassandra, and L. P. Kaelbling. Learning policies
for partially observable environments: Scaling up. In Proceedings of
ICML-95, 1995.

[10] M. Hauskrecht. Value-function approximations for partially observable
markov decision processes. Journal of Artificial Intelligence Research,
13:33-94, 2000.

[11] J. Pineau, G. Gordon, and S. Thrun. Point-based value iteration: An
anytime algorithm for POMDPs. In Proceedings of 1JCAI-03, 2003.

[12] T. Smith and R. Simmons. Point-based POMDP algorithms: Improved
analysis and implementation. In Proceedings of UAI-05, 2005.

[13] M. Spaan and N. Vlassis. A point-based POMDP algorithm for robot
planning. In Proceedings of ICRA-04, 2004.

[14] A. Cassandra, L. P. Kaelbling, and J. Kurien. Acting under uncertainty:
Discrete bayesian models for mobile robot navigation. In Proceedings
of IEEE/RSJ-96, 1996.

[15] M. Littman, T. Dean, and L. P. Kaelbling. On the complexity of
solving markov decision problems. In Proceedings of UAI-95, 1995.

