
Modeling Privately Owned Information in the Incremental Mu ltiagent Agreement
Problem

126

Abstract

In this paper we define the Extended Incremental Multi-
agent Agreement Problem with Preferences (EIMAPP). In
EIMAPP, variables arise over time. For each variable some
set of distributed agents must agree on which option (from
a given set) to assign to the variable. Each of the agents
may have a different preference about which option to use.
EIMAPP is designed to reflect many real world multiagent
agreement problems, including multi-robot task allocation
and multiagent meeting scheduling. We show how EIMAPP
can be solved distributively through multiagent negotiation.
In order to negotiate most effectively, agents must reason
about each other. Our approach builds on the fact that agents
necessarilyrevealsome information about their own prefer-
ences and constraints as they negotiate agreements. We take
this limited, and noisy information, and use it to build proba-
bilistic models of other agents. We show how agents can use
these models to negotiate more efficiently.

Introduction
In Agreement problems multiple parties must reach agree-
ment on some issue. Agreement problems arise regularly in
people’s daily lives, and are generally solved via negotiation.
Some examples include: (i) the exchange of availability in-
formation to schedule meetings; (ii) negotiation about role
assignments when people work as a group; and (iii) group
decision making about how to solve problems. Some of
these negotiations, such as meeting scheduling, are largely
carried out electronically and are thus suitable for automa-
tion. Personal assistants agents, with the capability to nego-
tiate, could schedule meetings on behalf of their users and
conduct other regular negotiations, such as task assignments.

Agreement problems also arise in multi-robot domains.
Currently, when robots need to work together, it is often the
case that the robots have all been built by the same company,
or are owned by the same group of people. As such, they are
sometimes controlled centrally, or assumed to operate as a
team. In the future, as heterogeneous robots become widely
deployed in the workplace and the home, robots will need to
negotiate with each other to reach agreements in much the
same way that people do. In order to carry out some tasks,
robots with different owners, preferences, and capabilities,

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

may need to work together. To do this they need to agree
upon methods and role assignments. Given that robots have
their own preferences and capabilities, this process of reach-
ing agreement will require negotiation.

In this paper, we formalize agreement problems by defin-
ing the Extended Incremental Multiagent Agreement Prob-
lem with Preferences (EIMAPP). EIMAPP is a general-
ization of IMAP defined in (Modi & Veloso 2005). In
EIMAPPs, variables,v, arise over time. For each variable,
the set of decision makers,Dv, must agree upon an option,
o, from the set of all options,O, to assign tov. Each of the
agents has a privately owned preference function that speci-
fies the agents payoff for assigningv to each of the different
options.

EIMAPPs have some interesting properties. While each
agent has its own preference function, agents only receive
payoff when they reach agreements. As such, there is at least
somebuilt-in incentive to compromise. In certain domains
(e.g., time critical domains), efficiency may be of particular
importance to the agents. In these domains there is further
incentive to compromise.

In this paper, we show how EIMAPP can be solved via
distributed negotiation. We model negotiation in EIMAPP
as a series of rounds. In each round, each of the agents in
Dv offers a set of timesOvt

⊆ O. This offer is added to
the options the agent has offered previously. When there is
an intersection in the offers of all the agents, the negotiation
ends and the agreement is confirmed. Within this model,
agents are free to negotiate according to their own interests.

We show an agent can learn useful models of other
agents by observing negotiation histories. In order to
do this, the agent divides the options into a set of dis-
joint logical categorizes,C. Using domain knowledge, the
agent can hypothesize a conditional probability distribution,
Pr(α proposeso | o ∈ c) over c ∈ C. This distribution
gives the probability that another agent proposes an option,
given that the option falls into the logical categoryc. For
some other agentα, starting from some initial belief over
the disjoint categories for each option, the agent can make
a Bayesian update to its belief wheneverα makes an offer.
We show that this simple procedure can be very effective,
and use it to learn models that allow for more efficient ne-
gotiation (in terms of number of negotiation rounds to reach
agreement and the number of options offered).



Problem Definition
Definition 1: The Extended Incremental Multiagent Agree-
ment Problem (EIMAP)consists of the following elements:

• A set of agentsA.

• A set of values/optionsO.

• A set of variablesV . The set of variables is not provided
up-front. Rather, new variables arrive over time. A vari-
able that arrives at timet is denotedvt.

• For each variablev ∈ V , Dv ⊆ A is the set of agents that
decidev. To decide a variable,v, each of the agents inDv

must agree to assign a particular optiono ∈ O to v.

Restricted option usage
In our definition of EIMAP we made no restriction on the
variables an option could be assigned to. Two useful restric-
tions for modeling real-world problems are as follows:

• Assign-once options- in this restriction each optiono can
be assigned to at most one variable. Assign-once options
can be used to represent collective use-once resources.

• Assign-once per-agent options- in this restriction a vari-
ablev can be assigned an optiono only if ∀α ∈ Dv there
does not exist av′ ∈ V such thatα ∈ Dv′ andv′ is as-
signed too. Assign-once per-agent options can be used
to model problems like meeting scheduling, where each
agent can have at most one meeting (variable) assigned
to each time-slot (option) in its calendar. With this re-
striction, EIMAP corresponds to the Incremental Multia-
gent Agreement Problem (IMAP) defined by Modi et al.
(Modi & Veloso 2005) in order to abstract the multiagent
meeting scheduling problem.

Reassigning Variables in EIMAP
In some EIMAP domains it is possible to break the assign-
ment of an option to a variablev. This has been referred
to in the literature (Modi & Veloso 2005) asbumpingv.
Bumping has particular significance when we have assign-
once and assign-once per-agent options. For instance, in the
case of assign-once per-agent options it may be necessary to
reassign one or more existing variables in order to make the
assignment of a new more constrained variable possible.

Preferences in EIMAP
IMAP as defined by Modi et al. (Modi & Veloso 2005), does
not include a built-in notion of agent preferences. Nonethe-
less in many IMAP and EIMAP domains, the agents have
preferences about which options are assigned to variables.
For instance, in a multi-robot task domain, some options
for completing a task might be more expensive to a particu-
lar agent than others. In some cases, the preferences of the
agents actually correspond to the private preferences of com-
puter users. In the multiagent meeting scheduling domain,
users have preferences about the times when they have meet-
ings. For instance, some users might prefer morning meet-
ings, while others prefer afternoon meetings.
Definition 2: EIMAP with Preferences (EIMAPP)is an in-
stance of EIMAP where each agentα ∈ A has a function

prefα that assigns to eacho ∈ O a number which indicates
α’s preference for assigning optiono to a variablev. The
functionprefα is not necessarily simply a function ofo, but,
depending on the domain, might also be a function ofv, or
evenDv.

Privately Owned Information and Reaching
Agreements

In EIMAP domains there are typically a number of privacy
considerations. Certain types of information are privately
owned. In order to distributively reach agreements agents
reveal some of their privately owned information, but it is
important they retain control of what information is com-
municated.

Types of privately owned information
• Variable Ownership

Only the agentsDv must know about the existence ofv
in order for it to be assigned an option. In some domains
it can be undesirable for all the agents to know about all
the variables. For instance, in the meeting scheduling do-
main, many users would not like all the other users in the
system to know they are organizing an appointment with
their doctor.

• Assignment Ownership
Following from above, only the agentsDv need to know
which option,o, is assigned tov. In the case of assign-
once options, this means that any one agent may not have
complete knowledge about which options are available for
assignments. In the case of assign-once per-agent options,
it means that an agent only has very incomplete infor-
mation about which options each of the other agents has
available. An agentα only knows that an optiono is used
by agentβ if ∃ v s.t{α, β} ⊆ Dv andv is assigned too.

• Preferences Ownership
In the case where agents have preference functions these
functions are privately owned by the agents. Particularly
when these preferences represent the preferences of users,
it is important to allow for privacy considerations.

Reaching agreements through information sharing
Without some central control, in order to agree on an option
to assign to a variablev, the agents,Dv, must communicate
with each other about options. For instance, one agent might
propose thatv be assigned optiono. This reveals some in-
formation.For example, if we are in a assign-once per-agent
setting, an agent is likely to proposeo only if it haso avail-
able for assignment. Furthermore, self-interested agentsare
more likely to propose options they prefer than options they
dislike.

While some information sharing is necessary, it is impor-
tant that we take privacy considerations into account when
designing the procedure agents use to reach agreements.
Procedures which involve agentshaving to reveal all their
assignments and preferences might be efficient, but are un-
desirable from the privacy perspective. Rather, we consider
frameworks where agents have some control over what in-
formation they reveal.



Distributed Constraint Reasoning Approach
Modi et al. (Modi & Veloso 2005) use a Distributed Con-
traint Reasoning (DCR) style of approach to modeling mul-
tiagent agreement problems. In particular, they introduce
theIterative Agreement Protocolfor reaching agreements in
IMAP with assign-once per-agent options. In this protocol
one agent is designated as the initiator of the variablev. The
protocol operates in rounds as follows:

1. initiator proposes one option to all the agents in Dv

2. each agent in Dv, sends an accept/reject response
to the initiator

3. if all the agents have accepted, then there is an
agreement and the variable is assigned

4. else go to 1. and repeat

A key feature of the protocol is that an agentα accepts a
proposalwheneverit won’t violate the use-once per-agent
constraint, i.e, wheneverα currently has the option available
for assignment. If the option is assigned to another variable,
thenα must decide whether to bump the current assignment.
Modi et al., introduce a number of strategies an agent can use
to decide when to bump one variable in favour of another.

The approach proposed by Modi et al. (Modi & Veloso
2005), is most useful when agents do not have preferences.
Modi et al., suggest that preferences about options could
be expressed as additional constraints. For instance, a con-
straint that optiono should never be used. This works very
well for preferences that are easily modeled by “hard” con-
straints. However, the approach does not provide a ready
solution for handling preferences in general i.e., “soft con-
straints”.

Privately Owned Information in the DCR approach In
Modi et al.’s Iterative Agreement Protocol, described above,
the initiating agent has some control over what information
it reveals, since it chooses which options to propose. The
other agents however have much less control. They must
explicitly accept or reject each proposal. In the protocol a
rejection means that the agent has already assigned the op-
tion to another variable. An acceptance reveals less infor-
mation, since the agent might have the option free or simply
be willing to bump the variable currently assigned to the op-
tion. The key advantage of this approach, is that since agents
are required to accept a proposal whenever the assign-once
per-agent constraint is not violated, the process should set-
tle on a option fairly quickly, thereby keeping the number
of options the agents must accept/reject comparatively low.
The disadvantage is the lack of control the agents have over
what information they reveal.

Negotiation Approach
In this paper, we are particularly interested in domains where
preferences are dominant. As such,we model the agreement
process as a negotiation between self-interested agents.

Agent pay-offs for assigning variables For eachv the
agentsDv assign too, they each receive a payoff according
to their individual preference function,prefα(o, v). Since

the agents receive payoff for reaching agreements, it is in
their interests to coordinate.

Negotiation process We structure the negotiation process
as a series of rounds.

• while no intersection in proposed options:

– each agent proposes a set of options

• confirm the assignment of some option in the inter-
section to the variable, using a set confirmation pro-
tocol

This process can be conducted either through multi-cast or
an initiator agent that collects all the proposals. The ap-
proach allows for a wide variety of agent behaviour. Agents
are free to try and optimize their payoff. They can accept
any options offered to them, accept only options they pre-
fer, accept options they don’t prefer but only after a certain
number of rounds, etc. This flexibility is important since it
allows agent behaviour to reflect the wide range of behaviour
that users may desire.

Negotiation Cost In most domains it is important for the
agreement process to be efficient. As such, we make effi-
ciency in the self-interest of the agents, by penalizing the
payoff they receive according to the number of rounds re-
quired for negotiation.

Let thenegotiation costto agentα be cα(r), wherer is
the number of rounds. In order to try and optimize their pay-
offs agents must weigh the relative importance (according to
their own pay-off function) of getting an option they prefer
with negotiating efficiently. The negotiation cost is set ac-
cording the domain, and/or the preferences of any user/s the
agent represents.

Privately Owned Information in the Negotiation Ap-
proach The negotiation approach does not require the
agents to explicitly reveal any of their privately owned in-
formation. While agents will negotiate according to their
preferences, they are never required to explicitly state their
preference for an option or give their functioncα(r). Fur-
thermore, they are never required to directly accept/reject
a proposal when some condition (related to their privately
owned information) holds. The flexibility of the negotiation
approaches means that the agents have a large amount of
control over what information they reveal.

Modeling Other Agents
In the previous section we discussed an approach to reach-
ing agreements that involved negotiation amongst self-
interested agents. In negotiating variable assignments
agents necessarily reveal some information about them-
selves. Other agents can potentially use this information to
improve their pay-offs. However, this is not necessarily a
bad thing. The most obvious way for agents to use learned
information is to increase their pay-offs by improving the ef-
ficiency of negotiations - and this benefits everyone. For ex-
ample, consider the case where agentα has a set of strongly
preferred optionsOprefα

, and similarly agentβ has a set of
optionsOprefβ

. If there is ano ∈ Oprefα
thatα knows is

also inOprefβ
, thenα should offero first, sinceβ is likely



to be happy to agree to this option by proposing it in the next
round. This situation works out well for both agents.

In this section, we show how agents can learn models of
other agents from the very limited information the negotia-
tion process provides. In the next section we show that such
models can improve the efficiency of negotiation in a real-
world domain.

Relevant Agent Characteristics
An agent negotiates by selecting which options to propose
and when to propose them. When an agentα is deciding
which options to propose to another agentβ in the next
round, whatα really wants to know ishow likelyβ is to
agree to the options(if α proposes them) in the following
round, and in subsequent rounds. Consider the example in
Figure 1.

α needs to assign variablev with agentβ.

• α has two options available for assignment,o1 ando2,
such thatprefα(o1) = 9 andprefα(o2) = 6

• α’s cost per negotiation roundcα(r) = 2r.

• o1 is a very bad option forβ andβ’s negotiation strategy
stipulates thatβ will only agree to very bad options after
more than 3 negotiation rounds have passed.

• o2 on the other hand is a good option forβ andβ will
agree on it right away.

If α has this information aboutβ, α can compute the value
of offeringo1 versuso2.

• If α offerso2 in the first round,β will agree in round 2 by
also offeringo2. Soα will get a total payoff of6−2∗2 =
2.

• If α offerso1 only, β will not agree until the 4th round.
Soα will get a total payoff of9 − 4 ∗ 2 = 1.

Soα should offero2.

Figure 1: Negotiation Example

The example in Figure 1 illustratesthe factors that influ-
ence how likely an agent is to agree to an option. These
factors include:

1. option availability - when in a restricted option setting

2. the agent’s preferences- preferences for options as well
as the cost of negotiation length to the agent

3. the agent’s negotiation strategy- which is somewhat de-
termined by the preferences

A self-interested agent would like to learn all this informa-
tion, but negotiation reveals very little.

Training Data
Thetraining dataan agent can collect is very limited. If the
agents are negotiating by multi-cast then for each variable
negotiated, an agent can record the complete negotiation his-
tory. Let anegotiation historyfor a particular variablev, hv,
have the following form.

For each:α ∈ Dv,

hv(α) = [offerα(v, t1), offerα(v, t2), . . . , offerα(v, tfinal)]

, where offerα(v, ti) is the set of options proposed by agent
α for variablev in roundti of the negotiation.

From a small set of negotiation histories it is not possible
to separate completely the concepts of option availability,
preferences and strategy, in order to understand an agents
behaviour with certainty Consider the following situation.
Agentsα andβ have been negotiating for a couple of rounds.
Agentα offersok and in the next round agentβ offersok.
Agent β’s offer could have been made for many reasons.
Here are just a few: (i) agentβ prefersok and has it avail-
able, (ii) agentβ does not preferok but it is available, andβ
is compromising according to his strategy because a certain
number of rounds have passed, (iii)β is agreeing took be-
cause apart from the options he has already offered, he has
no other options available.

In real-world domains it may be the case that two agents
will negotiate with each other quite a small number of times.
For instance, in the meeting scheduling domain, 2 agents
would have to meet approximately twice a week in order for
them to have 100 negotiations in a year. As such, it is im-
portant for to explore methods that perform well with limited
training data.

Probabilistic Agent Model

Given the difficulty of learning precise models of what
drives another agent’s behaviour, we instead propose using
asimple probabilistic model.

In order to model the preferences and option constraints
of an agent,α, we use a set of belief vectorsBα. Let
bα(o) ∈ Bα be abelief vectorover a set of simple disjoint
categorizationsC for each optiono (one belief vector for
each option). In our experiments we focus on use-once per
agent options and hence use the following categorizations:

• (i) available and preferred;

• (ii) available but not preferred;

• (iii) not available.

Each belief vectorbα(o) represents the probability we
give too belonging to each of the disjoint categories given
the observed data.

Updating the Agent Model

In order to update the model, we need to make some as-
sumptions about how the options an agent proposes relate
to the option categories that we have defined in the belief
vector. One way to do this is to hypothesize aconditional
probability distributionwhich, for each category, gives the
probability that the agent proposes an option, given that the
option fits the category. If we letc ∈ C be a category
then this is the conditional probability distribution given by
Pr(α proposeso | o ∈ c).

Using the probability distribution, when the agent pro-
poses an optiono and this is observed by the learning agent,



the learning agent can use Bayes Rule to update its current
belief vector for that option,bt

α(o), as follows:

bt+1
α (o)[c] =

Pr(bt
α(o)[c])Pr(α proposeso|o ∈ c)∑

i∈C

Pr(bt
α(o)[i])Pr(α proposeso|o ∈ i)

Dealing with options that are never offered We can set
an initial belief vectorb0

α(o) for each optiono. If we only up-
date the belief vectors of options that we observeα propos-
ing, then for each optiono which α never proposes we will
always have belief vectorb0

α(o). Depending on the seman-
tics of our disjoint categorization we can handle this in a
number of ways. If we are using the categorization previ-
ously described, it may make sense to to initialize the belief
vectors such that “not available” has the highest probability,
followed by “available but no preferred” and then “available
and preferred”. In doing so we are building in the assump-
tion that options which are never offered are more likely
to be “unavailable” than “available” and if they are “avail-
able” are more likely to be not “preferred”. Alternatively we
could augment the update process. For instance we could
hypothesize various conditional probabilities e.g., the prob-
ability that optiono is in categoryc given that more thanr
rounds of negotiation have occurred ando has not been of-
fered. The approach taken largely depends on the degree of
domain knowledge available.

Using additional domain information In some cases
there may be additional domain information available that
can help the learner update the model. This is particularly
the case where there aresemantic relationships between the
different options. For instance, at some universities, a par-
ticular class is generally held Monday/Wednesday or Tues-
day/Thursday, at the same time on both days. As such, if the
learner believes that agentα is unavailable at 10am on Tues-
days, it may want to increase its belief thatα is unavailable
at 10am on Thursdays. Another example is, if the learner
knows agentα likes to meet before mid-day on Monday,
Tuesday and Wednesday, but not in the afternoons on those
days, the agent could use domain knowledge to reason that
the agent prefers morning meetings to afternoon meetings
and those adjust its beliefs for times on the other days.

Reasoning with the Learned Model
Exactly how the agent uses the models it has learned
depends a lot on properties of the domain. Given the
agents’ aim to satisfy their preferences and reach agreements
quickly, it is likely the disjoint categorizations will be chosen
in a way that distinguishes between available and unavail-
able, and preferred and not preferred. In other words, the
category an option falls into has implications for how likely
the agent is to agree to assign that option to a variable. As-
suming the disjoint categories are “preferred and available”,
“not preferred, but available” and “unavailable” as before,
we illustrate how an agent can reason using its beliefs.

An agent can use its beliefsBα about the categories op-
tions fall into for a particular agent,α, in order to reason
about which optionsα is most likely to agree to. In particu-
lar, if the following inequalities hold:

1) bα(o1)[preferred & available]

> bα(o1)[¬preferred but available]

2) bα(o1)[preferred & available] > bα(o1)[not available]

3) bα(o2)[¬preferred & available]

> bα(o2)[preferred & available]

4) bα(o2)[not preferred & available] > bα(o2)[not available]

then the agent can reason thatα is more likely to agree to
o1 thano2. Exactly how the agent uses this sort of ranking
information is dependant on the agent’s utility function and
strategy for negotiation. One possible way is to help the
agent to decide which options to offer when it is indifferent.
The learned model could also be used to evaluate whether or
not it is worth the agent ‘holding out’ for a preferred time.
For instance, if the agent believesα is unavailable for all of
its preferred times, then if the agent cares about negotiation
cost, it should probably compromise straight away.

Experimental Domain: Multiagent Meeting
Scheduling

Multiagent Meeting Scheduling is a real-world EIMAPP do-
main. We can represent it in the EIMAPP terminology as
follows:

• The set of agents,A, contains one agent to represent each
computer user that schedules meetings.

• The set of optionsO is a set of time slots.

• The variables are the meetings that arise over time.

• For each variable,v, the agentsDv are the meeting par-
ticipants.

• Options are assign-once per-agent.

• Preferences over options (times) and negotiation costs are
set according to each agent’s user’s preferences and these
preferences are privately owned by each agent/user.

Negotiation
In our experiments we use a parametrized negotiation strat-
egy, Offer-k. Agents using the strategy offer a set number,
k, of available times (they have not previously offered) every
negotiation round. Negotiation is done through an initiator
agent. An agent will agree to an offer it receives (by offering
the same time in the next round) if the time is available and
the agent’s preference for the time exceeds some acceptance
threshold. The agent will also agree to an offer according
to the paremater settings of the strategy. The strategy has
the following parameters that determine when an agent will
agree to an offer:

• number of rounds after which the agent will compro-
mise i.e., agree to a time that falls below some preference
threshold;

• number of different time proposals (made by the agent)
after which the agent will compromise;



• number of rounds after which the agent will agree to bump
a meeting;

• number of different time proposals after which the agent
will agree to bump a meeting.

These parameters can be set according to the user’s prefer-
ences.

Modeling Other Agents
In order to model other agents we use the simple disjoint
categorization of options described in the previous section,
namely we model times as:

• (i) available and preferred;

• (ii) available but not preferred;

• (iii) not available.

The model is not too fine grained. This is important, because
any two agents will schedule meetings with eachother rela-
tively infrequently meaning that we need to be able to learn
the model from a very limited amount of training data.

Evaluating Agent Performace
There are two main factors that determine an agent’s perfor-
mance. The quality of the schedules it negotiates for it’s user
and the cost it incurs in the negotiation.

The quality of the schedule is measured according to
user’s preference function over times. To derive a value fora
schedule we simply calculate the user’s preference for hav-
ing a meeting at each of occupied times in the schedule. Ne-
gotiation cost can be measured in terms of the number of
rounds. Negotiating for a small number of rounds might
be important to a user for a number of reasons. Firstly, the
fewer times offered, the less information the agent is reveal-
ing about user’s schedule. Secondly, a human, not a com-
puter agent, may be receiving the agent’s negotiation mes-
sages. Thirdly, it might be important to the user to compro-
mise after a certain amount of time, and so forth.

Exactly how schedule quality and negotiation costs are
weighed against eachother (note that it is easy to negotiation
quickly by simply accepting any time) is determined by the
user’s utility function.

Improving Performance Using Model Learning
As the agent negotiates with other agents, it is possible for
the agent to learn models of the other agents online and use
these models to negotiate more efficiently without sacrific-
ing schedule quality. In particular, if an agent has an accu-
rate learned model of the form we have described, it can,
where possible, offer times that it likesandthat other agents
also like and/or are available for.

Everytime the agent receives an offer it updates its beliefs
as described in the previous section. When the agent makes
its own time proposals it uses the learned models to help it
select the times. At each round, there is some set of times
the agent could propose according to the history and the pa-
rameters of negotiation strategy. In the case where the agent
does not have a learned model these times are ranked ac-
cording to the offers that have been received. Suppose our

agent is the initiator of a four person meeting. If timet1
has been proposed by two of the agents then it would have a
higher rank than a time proposed by only one of the agents.
In the case where there are learned models we have further
information we can use to produce a ranking of times. In our
experiments we added three points to a time’s score if one
agent had proposed it, two if it was categorized by the model
as preferred and available, and one if it was categorized as
available but not preferred. We then sorted the times accord-
ing to their scores, and selected the topk times to offer.

Experimental Results
In this section, we show some results from our simulations in
the Multiagent Meeting Scheduling domain. We have sim-
ulated meetings being scheduled amongst a group of agents
over a series of weeks. In each trial some times in each
agent’s calendar are selected at random to be blocked to
represent unavailability caused by commitments outside the
multiagent system. In each trial, a set of initial meetings
(these meetings range in size, from two person meetings, to
meetings involving all agents), are scheduled at randomly
selected time slots. These meetings are constant across tri-
als, but the slots in which they are scheduled change. We
refer to an agent’s blocked time slots, and initial meetingsas
the agent’s base calendar. In each trial the agents schedule
a set of new meetings. Each time a certain number of meet-
ings from the new set, e.g., 10, is scheduled, all the agents’
calendars are reset to their initial states (the base calendars)
before the agents continue. This resetting simulates the reg-
ular meetings that most people have, and the new meetings
that are scheduled each week.

We have used the same hypothesized con-
ditional probability distribution (needed to do
the belief updates) in all our experiments -
P (α proposest|t is preferred and available) = 0.9,
P (α proposest|t ∈ is preferred and not available) = 0.5
andP (α proposest|t ∈ is unavailable) = 0.1.

Learning the Model
Figures 2 and 3 demonstrate that using our approach agents
can learn models with a high degree of accuracy. In these
experiments, 5 agents scheduled 150 new meetings together
and we evaluated the average accuracy of one agent’s mod-
els. We ran 100 trials and the standard deviation was negli-
gible. Figures 2 and 3 show the average proportion of times
the learned model labeled correctly. A time is considered to
be labeled correctly if the category with highest belief in the
learned model corresponds to agent’s true preferences and
base calendar. For example, if a time is available inβ’s base
calendar and is preferred byβ, then it is correctly labelled
by the learned model if the highest belief is onpreferred
and available. Note that even if we have a perfectly accu-
rate model it will not always reflect the current status ofβ’s
calendar since base calendar meetings can be moved, and
new meetings are scheduled as the simulation runs.

The Figures 2 and 3 also show the average proportion of
times that areclose to correct. We define the belief to be
close to correct when it is incorrect, but has not mistaken a



preferred and available time for an unavailable time, or vice
versa. Figure 2 shows that when we start with a uniform
belief over the categorizations we get an average accuracy of
almost 80%. We can improve this results simply by biasing
the inital belief towards the categorizations that imply we
are less likely to recieve offers (unavailable, available but
not preferred). Figure 3 shows that with this bias we get an
average accuracy of 86%.

Misclassifications occur for a number of reasons. Firstly,
suppose two agents are negotiating. If there is some time
that both agents are available for, but neither prefers, it is
unlikely to be offered (unless the agents are very busy). As
such each agent might believe the other is unavailable for the
time. However in a case like this, since neither agent wants
to meet at this time, it is not particularly important these two
categories are confused. Secondly, suppose two agents are
negotiating and one agent is very busy. There may be some
times that the busy agent regularly offers that it is available
for but does not prefer (because the busy agent has no pre-
ferred and available times left for instance). It is likely that
the other agent will believe these are preferred and avail-
able times for the busy agent. This is a misclassification,
but since the busy agent is willing to schedule meetings at
these times, again, the misclassification is not particularly
harmful.

 0

 0.2

 0.4

 0.6

 0.8

 1

Not CloseClose To CorrectCorrectly Classified

A
ve

ra
ge

 P
ro

po
rt

io
n 

of
 T

im
es

Average Accuracy of Learnt Agent Models

Figure 2: The graph shows the average accuracy of the
learned models starting from an unbiased belief.

Improving Performance
Figure 4 shows the significant reduction achieved in the av-
erage number of negotiation rounds through learning. In this
experiment, we ran 100 trials and the agents both offered 1
timer per negotiation round. There were 5 agents in the sys-
tem, and the initial meetings involved all 5 agents, but all
the new meetings were only between two of the agents - the
agent we were evaluating and one other. These two agents
had a small overlap in preferences at midday. One agent
liked morning times, the other afternoon times, but both
liked midday. Despite the fact that the agents we were evalu-
ating learned online, there was a significant performance im-
provement from learning after only 20 meetings were sched-
uled. After 80 meetings were scheduled the average number

 0

 0.2

 0.4

 0.6

 0.8

 1

Not CloseClose To CorrectCorrectly Classified

A
ve

ra
ge

 P
ro

po
rt

io
n 

of
 T

im
es

Average Accuracy of Learnt Agent Models

Figure 3: The graph shows the average accuracy of the
learned models starting from an biased belief.

of negotiation rounds when both agents were learning was
almost half that of the average number for the no learning
case. Figure 4 shows that performance was slightly better
for the case where both the agents learned, than the case
where just one agent learned. The decrease in scheduling
cost achieved through learning comes at no cost to sched-
ule quality, so this reduction in cost represent and overall
improvement in performance.

 0

 1

 2

 3

 4

 5

Agent1 Learns(80)

Both Learn(80)

Agent1 Learns(40)

BothLearn(40)

Agent1 Learns(20)

Both Learn(20)

Neither Learn

A
ve

ra
ge

 N
um

be
r 

of
 N

eg
ot

ia
tio

n 
R

ou
nd

s

Average Number of Rounds To Reach Agreement

Figure 4: The graph shows the average number of rounds it
took to agree upon meeting times between 2 agents after 20,
40 and 80 meetings had been scheduled. The agents had a
small overlap in their preference functions.

We found that the improvements were less pronounced
for random preferences. Figure 5 shows a graph from an
experiment where the agents had randomly assigned pref-
erences, with a 20% probability of a time being preferred.
Nonetheless, the reduction in the average round count is al-
most 25%. In general, we found that the performance im-
provement was most pronounced when there were a lot of
potential options each agent could offer, but only a few op-
tions that were agreeable to all agents.



 0

 2

 4

 6

 8

 10

 12

Neither Agent LearningOnly Agent 1 LearningBoth Agents Learning

A
ve

ra
ge

 N
um

be
r 

of
 N

eg
ot

ia
tio

n 
R

ou
nd

s
Average Number of Rounds To Reach Agreement

Figure 5: The graph shows the average number of rounds it
took to agree upon meeting times between 2 agents after 20
meetings had been scheduled. The agents’ preferences were
randomly assigned.

Related Work
Bayesian methods have previously been applied to the prob-
lem of preference learning in negotiation. Bui et al., (Bui,
Kieronska, & Venkatesh 1996) apply Bayesian learning to
the problem of learning others’ preferences in a negotiation
setting and use meeting scheduling as their test domain. The
setting they explore is quite different to the one we focus
on this paper however. The agents are assumed to be co-
operative, and negotiate by truthfully revealing their pref-
erences for different negotiation outcomes. This gives the
Bayesian learning algorithm correctly labelled training data
to work with. In our setting the agents are self-interested
as opposed to cooperative, and there are no labelled training
examples. Buffett and Spencer (Buffett & Spencer 2005)
apply Bayesian preference learning to the related setting of
bilateral multi-issue negotiation. They utilise the assump-
tion that agents increasingly concede as time passes.

A variety of approaches to the multiagent meeting
scheduling problem have been proposed in the last 15
years, including negotiation based approaches (Sen & Dur-
fee 1998) (Garrido & Sycara 1995), Distributed Constraint
Reasoning approaches (Modi & Veloso 2005), and Market-
based approaches (Ephrati, Zlotkin, & Rosenschein 1994).
Most of the negotiation approaches assume the agents are
cooperative, but Crawford and Veloso (Crawford & Veloso
2007) look at negotiation from a more strategic perspective.
In particular, they apply experts style algorithms to the prob-
lem of learning to select negotiation strategies . They show
that an agent can learn online what negotiation strategies
work well with particular agents. An interesting direction
for future work would be to combine an approach that learns
to select strategies with a model-learning approach.

Conclusion
In this paper, we defined the Extended Incremental Multi-
agent Agreement Problem with Preferences. EIMAPPs re-
flect many real-world agreement problems including multi-
agent meeting and task scheduling. We showed how agents

can solve EIMAPPs through negotiation and learn models
of each other’s preferences and constraints online from very
limited information. We also showed that agents can use
these models to significantly reduce the number of rounds
required for negotiation, without having to compromise their
own preferences

References
Buffett, S., and Spencer, B. 2005. Learning oppo-
nents’ preferences in multi-object automated negotiation.
In ICEC ’05: Proceedings of the 7th international confer-
ence on Electronic commerce, 300–305. New York, NY,
USA: ACM Press.
Bui, H. H.; Kieronska, D.; and Venkatesh, S. 1996. Learn-
ing other agents’ preferences in multiagent negotiation. In
Shrobe, H., and Senator, T., eds.,Proceedings of the Thir-
teenth National Conference on Artificial Intelligence and
the Eighth Innovative Applications of Artificial Intelligence
Conference, Vol. 2, 114–119. Menlo Park, California:
AAAI Press.
Crawford, E., and Veloso, M. 2007. An experts approach
to strategy selection in multiagent meeting scheduling. In
To Appear, Journal of Autonomous Agents and Multiagent
Systems, Special Issue on Multiagent Learning.
Ephrati, E.; Zlotkin, G.; and Rosenschein, J. 1994. A non–
manipulable meeting scheduling system. InProc. Interna-
tional Workshop on Distributed Artificial Intelligence.
Garrido, L., and Sycara, K. 1995. Multi-agent meeting
scheduling: Preliminary experimental results. InProceed-
ings of the First International Conference on Multi-Agent
Systems.
Modi, P. J., and Veloso, M. 2005. Bumping strategies
for the multiagent agreement problem. InProceedings of
Autonomous Agents and Multi-Agent Systems, (AAMAS).
Sen, S., and Durfee, E. 1998. A formal study of dis-
tributed meeting scheduling.Group Decision and Nego-
tiation 7:265–289.


