Exploiting Factored Representations for Decentralized
Execution in Multi-agent Teams

*
Maayan Roth
Robotics Institute

Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA, USA

mroth@andrew.cmu.edu

ABSTRACT

In many cooperative multi-agent domains, there exist some
states in which the agents can act independently and oth-
ers in which they need to coordinate with their teammates.
In this paper, we explore how factored representations of
state can be used to generate factored policies that can,
with minimal communication, be executed distributedly by
a multi-agent team. The factored policies indicate those
portions of the state where no coordination is necessary, au-
tomatically alert the agents when they reach a state in which
they do need to coordinate, and determine what the agents
should communicate in order to achieve this coordination.
We evaluate the success of our approach experimentally by
comparing the amount of communication needed by a team
executing a factored policy to a team that needs to commu-
nicate in every timestep.

Categories and Subject Descriptors

1.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence— Multiagent systems

General Terms

Algorithms, Design, Performance

Keywords

decentralized execution, multi-agent MDP, communication

1. INTRODUCTION

The problem of coordinating teams of cooperative agents
operating under uncertainty is a difficult one that has re-
ceived a great deal of recent attention. This problem is a
challenging one because, while each agent observes only its

*The first author is a student.

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

AAMAS 07 May 14-18 2007, Honolulu, Hawai'i, USA.

Copyright 2007 IFAAMAS .

Reid Simmons
Robotics Institute
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA, USA

reids@cs.cmu.edu

Manuela Veloso
Computer Science
Department
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA, USA

veloso@cs.cmu.edu

own local point of view, the agents must reason about both
the states and actions of their teammates in order to act in
coordination. Several extensions of the Markov decision pro-
cess have been proposed to enable decision-theoretic model-
ing of multi-agent teams. Decentralized MDPs (Dec-MDP)
can be used to model teams that, like the ones addressed
in this paper, operate under collective observability [1]. In
a collectively observable domain, while each agent is unable
to independently identify the world state, the union of all
teammate observations at a given timestep renders the state
fully observable.

Although Dec-MDPs provide a comprehensive semantics
for modeling multi-agent teams in collectively observable do-
mains, their use in planning for such teams is limited by the
intractability of generating their policies. Even for teams of
as few as two agents, the problem of generating an optimal
policy for the Dec-MDP representing that team is NEXP-
complete [1]. One approach to overcoming the high complex-
ity of planning for Dec-MDPs has been the identification of
classes of domains that are easier to solve. One such class,
transition-independent Dec-MDPs are domains in which the
global state is partitionable into local states for each agent.
This local state depends only on the individual actions of a
single agent, rather than on the joint actions of the team.
However, because the team shares a joint reward that de-
pends on the joint state and action, a transition-independent
Dec-MDP cannot be solved as a set of independent MDPs.
Policy-generation for a transition-independent Dec-MDP is
NP-complete [6], a significant reduction in complexity from
the problem of solving a general Dec-MDP. Unfortunately,
not all multi-agent domains are transition-independent.

Factoring is another approach that has been applied to
the problem of planning for multi-agent teams. Factoring
has been applied successfully to the problem of speeding
up policy computation for large MDPs (e.g. [2, 7]). Unlike
standard MDP representations which enumerate all possi-
ble states, factored MDPs take advantage of conditional in-
dependences among state variables to allow more compact
problem representations, and in some cases, more compact
policies. The presence of an additional type of indepen-
dence, called context-specific independence, can lead to even
greater savings in the size of problem representation and
the efficiency of planning [3]. Work has been done in ap-
plying factoring to decentralized planning for multi-agent
MDPs [8]. In that approach, it is assumed that agents have
full observability of all relevant state variables and the chal-

lenge is to enable those agents to plan independently without
reasoning over the full set of joint actions.

When agents must coordinate without communication,
generating a policy for the team is NEXP-complete. How-
ever, if it is assumed that agents will be allowed to commu-
nicate with their teammates at every timestep during exe-
cution, then a centralized policy, which we refer to as the
free-communication policy, can be generated in polynomial
time, as if the entire team were being modeled by a single-
agent MDP [12]. In general, though, communication is not
free, and it is necessary to minimize the use of communica-
tion resources during execution. Like Roth et al. [13], we
assume that each agent in our decentralized team can inde-
pendently compute the free-communication policy, and does
so at plan-time. In this paper, we explore the challenge of
decentralized execution of this centralized policy while min-
imizing the use of communication resources.

In our work, we employ techniques for solving factored
MDPs to generate the centralized, free-communication plan
for our team. We believe that there is a natural synergy in
applying factored representations to cooperative multi-agent
teams. When represented for centralized planning, even
assuming the presence of free communication, multi-agent
teams can quickly form large domains with many relevant
state variables and joint actions. Factored representations
and solution techniques can speed up policy-generation in
large domains, but only if those domains contain significant
amounts of conditional and context-specific independence.
It is our claim that many multi-agent domains exhibit a large
amount of context-specific independence, allowing them to
be represented compactly and solved efficiently using fac-
tored representations. Although there will be times when
agents need to coordinate their actions or gain knowledge of
their teammates’ local state variables, multi-agent domains
also contain situations in which agents can act indepen-
dently for long periods of time. The challenge is to identify
the independences present in any given domain, and thus
enable agents to coordinate only when necessary. Through
addressing this challenge, factoring can enable the efficient
solution of and execution in some Dec-MDP domains.

In the remainder of this paper, we show how factored
policies can enable a team of cooperative agents to execute
independently, with each agent choosing when and what to
communicate if it is necessary for team coordination. We in-
troduce an algorithm for transforming a centralized factored
policy into a distributed policy, and evaluate the success of
our approach experimentally.

2. FACTORED DEC-MDP MODEL

The Dec-MDP model is a Markov decision process ex-
tended to handle joint actions and observations by a coop-
erative multi-agent team [1]. A Dec-MDP is composed of
the tuple (o, S, A, P,R) where: « is the number of agents
on the team, S is a finite set of world states, A is the set of
possible joint actions, with P defining a transition function
that specifies the likelihood of the team transitioning from
one state to the next given a particular joint action, and
R specifies the joint reward function of the team, given the
state and a joint action.

The state, S, is comprised of n state features or variables
X = (X1...Xy), where each state s; is an assignment of
values to each feature in A'. The features may be binary
or multi-valued, or both. While in the most general case,

a Dec-MDP model also contains a set of joint observations,
), we limit ourselves to domains in which the state features
are can be partitioned into « sets of local state features, one
for each agent, with each agent observing its local features
perfectly, and a set of joint features that are fully observable
by all of the agents.

Each agent 4 has a set A’ of possible individual actions.
Every joint action in A is comprised of one individual action
for each agent on the team. Because our model is factorable,
the relationship between state features and joint actions can
be represented as a Dynamic Decision Network [4]. For each
joint action, there is a Bayes network (such as the example
network shown in Figure 1) that specifies the relationship
between state variables at time ¢ and time ¢ + 1. State fea-
tures at time t+1 are dependent on the values of their parent
features in time ¢ and are conditionally independent of all
other features. Associated with each variable is a conditional
probability table describing the probability of that variable
given the different possible values of its parents. In many
cases, a variable will depend on certain parents in some con-
texts but not others. When this is the case, the conditional
probability table can be represented more compactly as a
tree [3]. For example, in the conditional probability tree for
variable X> at time ¢+ 1, shown in Figure 1, X> depends on
the value of X5 at time t when X7 has the value 1, but is
independent of X5 otherwise. This type of independence is
referred to as context-specific independence [3].

OO
@S@;} X

Figure 1: Example action network for a joint action
ar € A, with tree-structured CPT for X,.

Our use of a factored state representation in modeling
our multi-agent teams enables us to generate tree-structured
policies like the ones described in Boutilier et al. [2]. These
factored policies take the form of a decision tree, where the
internal nodes are state variables and the leaves are joint
actions. Structured Policy Iteration (SPI) is an algorithm
that can be used to compute decision tree-structured poli-
cies for factored MDPs. We refer you to [2] for the details
of the algorithm, but point out that it requires the MDP to
be represented as a Dynamic Decision Network, with con-
ditional probability tables for the variables represented as
trees, and that the reward function, also represented as a
tree, depend only on state features and not on the selected
action. This constraint is easily met by adding additional
state variables to the domain representation. We use SPI to
generate a factored free-communication policy for our team.
Figure 2 shows an example of one such factored policy. The
actions at the leaves are joint actions, and V1 and V2 are
state variables.

Figure 2: A factored policy over joint actions. For
example, the joint action ax indicates that one agent
executes action a while the other agent executes ac-
tion z.

3. DECENTRALIZED EXECUTION OF AN
INDIVIDUAL FACTORED POLICY

In order to execute distributedly, each agent on our team
must have a policy that maps assignments of state features
to individual actions. In Section 4 we detail an algorithm for
converting a factored joint policy generated by SPI into in-
dividual factored policies. For now, we note that an agent’s
individual policy may depend on state features that it can-
not observe directly. For example, in the policy for agent i
shown in Figure 3, the feature labeled X7 a local feature of
agent j. An agent executes a factored policy by traversing
the policy tree, choosing branches according to the value
assignments of the state variables that it encounters, until
it reaches an action at a leaf. Paths through the tree that
depend only on agent i’s features indicate portions of the
state space where that agent has context-specific indepen-
dence from its teammates. Communication is needed to fa-
cilitate the execution of those portions of the policy without
this context-specific independence.

Figure 3: A factored policy over individual actions.
X" is a state variable observed by agent i, and X7 is
a variable observed by agent j.

Previous approaches to communication for Dec-MDPs and
Dec-POMDPs has utilized either the tell paradigm of com-
munication, in which each agent reasons about its local
knowledge and decides whether to send information to its
teammates (e.g. [13]), or the synchronize paradigm, in
which if at least one agent initiates communication, all the
teammates broadcast their full observation histories (e.g. [11,
5]). In this paper, we consider a different option, query
communication. Instead of trying to predict if its informa-
tion will be useful to its teammates, each agent asks its
teammates for information when needed. In order to query,
agents must reason both about when communication is nec-

essary, as well as what information is needed. Unlike other
approaches which use broadcast communication, query com-
munication is peer-to-peer, with each agent asking for infor-
mation only from the teammate who possess it.

Table 1 shows how communication enables the distributed
execution of a factored policy. Each agent observes its lo-
cal state features, as well as any global state variables that
are observable to the team, and traverses the policy tree ac-
cording to the values of those features until it either reaches
a leaf, whereupon it executes the individual action at that
leaf, or until it reaches a decision point in the policy that
depends on a feature to which it does not have local ac-
cess. When this happens, the agent knows it must ask its
teammate to communicate the feature value. The amount
of communication needed during execution measures of the
degree of context-specific independence among agents in a
domain. Agents executing in domains where they are often
independent of their teammates will need to communicate
less than agents in domains where they must coordinate fre-
quently.

Table 1: Recursively execute a factored policy, com-
municating when necessary.

function EXECUTE(policy, features, teammate_features)
returns an action
input: policy, a tree-structured policy for agent ¢
features, the current values of i’s state features
teammate_features, a set of teammate features
for which values are known (from
previous communication)

1. if policy is a leaf return policy.action
2. if policy.variable is in features
a. x — features[policy.variable]
b. return EXECUTE(policy.childs, features,
teammate_features)
3. if teammate_features is empty
a. Find all the variables in policy.
b. Build teammate_variables by asking teammates
for the values of those variables.
4. x — teammate_features|policy.variable]
5. return EXECUTE(policy.child., features,
teammate_features)

To avoid the possibility that an agent will have to commu-
nicate more than once per timestep, when an agent reaches
a decision point where it discovers that it needs a piece of in-
formation local to one of its teammates, the agent attempts
to predict what other information it may need to know. The
agent searches for all of the variables contained in the sub-
tree of its policy rooted at this decision point and asks its
teammates for all of those feature values. This means that,
in some cases, the agent will be requesting information that
it later discovers is irrelevant. However, we believe that in
most domains where it is necessary to conserve communica-
tion resources, it is desirable to minimize the total number
of messages sent, not the size of those messages. Only a
minor change is required in the execution algorithm to ac-
commodate domains in which it is desirable to minimize the
total number of features communicated.

4. GENERATING INDIVIDUAL FACTORED
POLICIESFOR MULTI-AGENT TEAMS

Structured Policy Iteration relies on several tree opera-
tions defined by Boutilier et al., namely the ability to MERGE
multiple policy trees such that the resulting tree contains the
maximum policy attainable among the trees, and to SiM-
PLIFY trees to reduce redundant branches and subtrees. In
order to convert a factored policy for a centralized team into
factored policies for individual agents, we extend the policy
tree representation to allow for multiple actions at any given
leaf, indicating the presence of a tie, and introduce two addi-
tional tree operations, INTERSECT, which simplifies a tree by
combining branches whose leaves have non-empty action-set
intersections, and INDEPENDENT, which computes, for a sin-
gle leaf, the set of individual actions that can be performed
without considering the action choices of a teammate.

The ability to detect and propagate ties between joint ac-
tions in a policy improves the discovery of context-specific
independences among agents. If there is a portion of the
state where an agent ¢ can act independently, without need-
ing to coordinate with its teammates’ actions, the values
of the joint actions composed of i’s optimal action and all
possible actions that i’s teammates could choose will be the
same. To this end, we modify MERGE, which in its original
form picks one joint action at random when it encounters a
tie, to instead build trees where leaves may contain a set of
optimal joint actions. There is now an additional simplifi-
cation that can be performed on a policy tree, INTERSECT,
detailed in Table 2 and in the example in Figure 4. At each
non-leaf node in the policy tree, INTERSECT is recursively
called on the node’s children. After this, if every child of
the node is a leaf, and the action sets of the node’s chil-
dren have a non-empty intersection, the node is redundant
and can be replaced with a new leaf containing the intersec-
tion. If all children but one are leaves, a node may still be
redundant. This redundancy is detected by examining the
subtree that is not a leaf. If all of the actions at the leaves
of that subtree are present in the intersection of the node’s
leaf-children’s action sets, the node may be replaced by its
non-leaf child.

Table 2: Simplify a policy tree through intersection
of subtrees that contain the same actions.

function INTERSECT(policy) returns a policy
input: policy, a tree-structured policy

1. if policy is a leaf return policy
2. Recursively call INTERSECT on each child in policy.
3. if every child of policy is a leaf
return ﬂz child;.actions for each child; of policy
4. if exactly one child, childnr, of policy is a non-leaf
a. get Ar, the intersection of the leaf-children’s
action sets
b. get Anr, the set of all actions at the leaves of
childn1’s subtree
c. if Axy is a subset of Ar, return childyr,
5. return policy

An individual action is considered INDEPENDENT for an
agent ¢ in a particular leaf of a policy tree if the action is

optimal when paired with any of the other individual actions
that its teammates may choose at that leaf. Figure 5 shows
an example of a leaf in which an INDEPENDENT action can be
discovered for agent 1, and one in which no INDEPENDENT
action exists.

ax

ay —>

bx

ax
-
(@ (b)

Figure 5: Independent action examples. (a) In this
leaf, action a is can be performed independently by
agent 1, since it forms an optimal joint action with
z and y, all the possible actions that agent 2 might
perform at this leaf. (b) There is no Independent
action for agent 1 in this leaf.

The full process of transforming a factored joint policy
into factored individual policies for each agent can be found
in Table 3. First, the joint policy is re-written for each agent
so as to move the state features visible to that agent to the
upper-most nodes of the tree. This is done to increase the
likelihood that, during execution, an agent will be able to
traverse portions of its policy without requiring communi-
cation. This rewritten tree is processed to discover the IN-
DEPENDENT actions for the agent at each leaf. Leaves con-
taining independent actions are labeled with those actions,
while those where the set of independent actions is empty
retain their joint action sets. If any ties remain among the
joint actions, they are now broken according to a predeter-
mined canonical action ordering. This is necessary to avoid
equilibrium-selection mis-coordinations like the one shown
in Figure 6. At this point, the joint actions in the policy
tree are converted to individual actions. Finally, INTERSECT
is performed and the tree is simplified one final time.

Table 3: Transform a factored joint policy into fac-
tored individual policies for each agent..

function GENERATEINDIVIDUALPOLICIES
for each agent:

1. Make a joint policy for that agent, with its state
variables at the root.

2. For each leaf in the policy, find INDEPENDENT
actions

3. Break ties among remaining joint actions
using canonical action ordering.

4. Convert joint actions to individual actions.

5. INTERSECT and SIMPLIFY.

5. EXPERIMENTAL RESULTS

We demonstrate the effectiveness of our approach on an
example problem, a Meeting-Under-Uncertainty domain. In
this problem, two agents must meet at a predetermined lo-
cation in a grid world, and when both are at the goal lo-
cation, simultaneously send up a SIGNAL. The other indi-
vidual actions available to the agents are NORTH, SOUTH,

OO O =

cz cz

@ (b) ©

Figure 4: Intersect example. Agent 1 can take individual actions {a, b, ¢} and agent 2 can take actions {z, y,
z}. (a) The node labeled V4 is simplified by Intersect because all of its children are leaves. The intersection
of the leaves’ action sets is {ax, ay}. (b) V2 is simplified because it has only one child that is not a leaf (the
subtree rooted at V3). Its non-leaf children’s action sets have the intersection {az, ay}, which includes all of
the actions at the leaves of the non-leaf subtree. (c) No further intersection is possible.

@ (b) ©

Figure 6: An example of mis-coordination that can occur if ties are not broken using a canonical action
ordering. V1 is a state feature local to agent 1, and V2 is local to agent 2. (a) An individual policy is
generated for each agent, with its local variable at the root. (b) The policies are converted into policies over
individual actions, without an intermediate tie-breaking step. (c) The resulting simplified policies indicate
that agent 1 should always perform action a and agent 2 should always perform x, making the joint action
ax. This is an uncoordinated action whenever V1 = 0.

East, WEST, and STOP, with movement actions succeed-
ing with 0.9 probability. The agents receive a reward of
420 for signaling together, and receive penalties for either
mis-coordinating their SIGNAL actions or signaling from the
wrong location. The team incurs a cost of -1 for each timestep
that it takes them to reach the goal and SIGNAL. Each
agent observes its own location (X' and V' for agent 1, and
X? and Y? for agent 2) but does not know the position of
its teammate. This is a domain that admits a high degree
of factorability and which allows for considerable context-
specific independence among the two agents. While the
agents are moving toward the goal location, they can act in-
dependently. They only need to coordinate once they have
reached the goal.

We applied our algorithm to grid worlds of various sizes.
Figure 8 shows a factored individual policy for agent 1 op-
erating in the 3-by-3 grid world shown in Figure 7, with
the goal at location (2,3). A visual inspection of the policy
shows that, as expected, for most of the state space, agents
can act independently. We verified this by measuring the
amount of communication needed in an average run of the
problem.

C,

®

*

Figure 7: Agents in a 3-by-3 grid world. The goal is
at (2,3).

STOP

‘ STOP‘ ‘ STOP‘ ‘ SIGNAL‘

Figure 8: A factored policy for Agent 1 in a 3-by-3
Meeting-Under-Uncertainty problem.

We compared our execution method to a team operating
with free communication and to DEC-COMM, an execution-
time communication algorithm that chooses joint actions by
requiring agents to maintain estimates of the possible joint
beliefs of the team [13]. We ran 1000 trials of each method,
starting the agents in random locations. The complete re-
sults for a 3-by-3 grid world are shown in Table 4.

Our factored algorithm achieves the same average reward

Table 4: Complete results for the 3-by-3 Meeting-
Under-Uncertainty domain.

Mean Mean Mean
Reward | Messages | Variables
Sent Sent
@) | (¥ ()
FREE 17.484 7.032 14.064
COMMUNICATION | (1.069) (1.069) (1.069)
FACTORED 17.484 3.323 6.646
EXECUTION (1.069) (1.050) (4.199)
16.378 1.153 2.306
Dec-CoMm (1.234) (1.153) (0.498)

0.5

0.45

0.4

0.3

3-by-3 4-by-4 5-by-5 6-by-6 7-by-7

Figure 9: Communication usage as a function of
problem size.

as a team communicating at every timestep, but requires
significantly fewer instances of communication. This con-
firms our intuition that the Meeting-Under-Uncertainty do-
main admits a great deal of context-specific independence
between agents. The DEC-CoMM algorithm, an approach
specifically designed to minimize communication usage, is
able to communicate much less frequently than a team ex-
ecuting a factored policy, but does so by sacrificing some
amount of expected reward.

Figure 9 shows the amount of communication used by
a team executing a factored policy, as a percentage of the
amount of communication used by a team with full com-
munication for grid worlds of increasing size, from 3-by-3
(82 states) up to 7-by-7 (2402 states). As the problem size
increases, in this domain, the number of states in which
agents can act without coordinating increases, leading to
even greater communication savings over a team that must
communicate at every timestep.

One major challenge posed by multi-agent problems is the
exponential growth in the number of states and joint actions
as the number of agents increases. However, as the agents
may be independent of their teammates for large portions
of the state in some multi-agent domains, the single-agent
factored policies needed to control the agents may be very
compact. Table 5 shows that the number of leaves in each
agent’s factored individual policy grows linearly as the num-
ber of agents increases from two to five in a 3-by-3 Meeting-
Under-Uncertainty domain.

Table 5: Policy-tree size grows linearly with the
number of agents in a 3-by-3 Meeting-Under-
Uncertainty domain, even as the number of states
and joint actions grow exponentially.

Policy

Joint Tree

States | Actions | Leaves
2 AGENTS 82 36 9
3 AGENTS 730 216 13
4 AGENTS 6562 1296 17
5 AGENTS | 59050 7776 21

6. CONCLUSION

In this work, we show how factored policy representations
can be used for coordinated decentralized execution of a
multi-agent team, providing an efficient answer to the ques-
tions of when and what a team should communicate and al-
lowing agents to act independently of their teammates un-
til they reach a state in which potential mis-coordination
could take place. We provide a post-processing technique
for transforming a centralized factored policy into individ-
ual factored policies for each member of a team, and show
how this technique discovers context-specific independences
between agents. Our preliminary experimental results are
promising, showing that our work enables agents to act inde-
pendently and without communication under favorable state
conditions, and discovers automatically those conditions in
which agents must coordinate with their teammates.

Although the Structured Policy Iteration algorithm that
we discuss in this paper generates optimal policies for MDP
domains, it is important to note that our approach does
not require optimal joint policies as input, nor does it de-
pend on the use of one particular MDP solution technique.
The algorithms that we present in this paper can be applied
to transform a joint policy of any quality into single-agent
policies with equal expected reward. All that is required is
that the joint policies be transformable into decision trees
over state variables. For example, the SPUDD algorithm
efficiently solves Markov decision processes in which rela-
tionships among state variables are represented as algebraic
decision diagrams (ADDs) [10], which can easily be trans-
formed into trees. Thus, our work can build on any advances
that arise in the area of generating tree-structured policies
for MDPs to solve increasingly large problems.

There are several directions in which our work can be ex-
tended. Currently, our execution algorithm does not take
into account the cost of communication. An analysis of
the value of information could be integrated into the rea-
soning to allow agents to decide if the cost of a poten-
tial mis-coordination is high enough to justify communi-
cation. Additionally, our work focuses on collectively ob-
servable multi-agent domains modeled by Dec-MDPs. It is
possible that work on factored POMDPs (e.g. [9] could be
applied in a similar fashion to the decentralized execution
of Dec-POMDPs, modeling teams with collective partial o0b-
servability. There is also significant work to be done in char-
acterizing multi-agent domains that exhibit a high degree of
context-specific independence between teammates, as those
are the domains that would benefit most from the applica-
tion of our techniques.

7. ACKNOWLEDGMENTS

This research was sponsored in part by the Boeing Cor-
poration, NASA grant NNA04CK90A, and by BBNT So-
lutions, LLC under contract no. FA8760-04-C-0002. The
views and conclusions contained in this document are those
of the authors and should not be interpreted as represent-
ing the official policies, either expressed or implied, of any
sponsoring institution or any other entity.

8. REFERENCES

[1] D. S. Bernstein, R. Givan, N. Immerman, and
S. Zilberstein. The complexity of centralized control of
Markov decision processes. Mathematics of Operations
Research, 2002.

[2] C. Boutilier, R. Dearden, and M. Goldszmidt.
Stochastic dynamic programming with factored
representations. Artificial Intelligence, 2000.

[3] C. Boutilier, N. Friedman, M. Goldszmidt, and
D. Koller. Context-specific independence in Bayesian
networks. In Uncertainty in Artificial Intelligence,
1996.

[4] T. Dean and K. Kanazawa. A model for reasoning
about persistence and causation. Computational
Intelligence Journal, 1989.

[5] C. V. Goldman and S. Zilberstein. Optimizing
information exchange in cooperative multi-agent
systems. In International Joint Conferences on
Autonomous Agents and Multi-agent Systems, 2003.

[6] C. V. Goldman and S. Zilberstein. Decentralized
control of cooperative systems: Categorization and
complexity analysis. Journal of AI Research, 2004.

[7] C. Guestrin and G. Gordon. Distributed planning in
hierarchical factored MDPs. In Uncertainty in
Artificial Intelligence, 2002.

[8] C. Guestrin, S. Venkataraman, and D. Koller. Context
specific multiagent coordination and planning with
factored MDPs. In AAAT Spring Symposium, 2002.

[9] E. Hansen and Z. Feng. Dynamic programming for
POMDPs using a factored state representation. In
International Conference on AI Planning Systems,
2000.

[10] J. Hoey, R. St-Aubin, A. Hu, and C. Boutilier.
SPUDD: Stochastic planning using decision diagrams.
In Uncertainty in Artificial Intelligence, 1999.

[11] R. Nair, M. Roth, M. Yokoo, and M. Tambe.
Communication for improving policy computation in
distributed POMDPs. In International Joint
Conferences on Autonomous Agents and Multi-agent
Systems, 2004.

[12] D. V. Pynadath and M. Tambe. The communicative
Multiagent Team Decision Problem: Analyzing
teamwork theories and models. Journal of Al
Research, 2002.

[13] M. Roth, R. Simmons, and M. Veloso. Reasoning
about joint beliefs for execution-time communication
decisions. In International Joint Conferences on
Autonomous Agents and Multi-agent Systems, 2005.

