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Abstract. Motion planning is a critical component for autonomous mo-
bile robots, requiring a solution which is fast enough to serve as a building
block, yet easy enough to extend that it can be adapted to new platforms
without starting from scratch. This paper presents an algorithm based
on randomized planning approaches, which uses a minimal interface be-
tween the platform and planner to aid in implementation reuse. Two
domains to which the planner has been applied are described. The first
is a 2D domain for small-size robot navigation, where the planner has
been used successfully in various versions for five years. The second is a
true 3D planner for autonomous fixed-wing aircraft with kinematic con-
straints. Despite large differences between these two platforms, the core
planning code is shared across domains, and this flexibility comes with
only a small efficiency penalty.

1 Introduction

Motion planning is problem central to autonomous robotics. As soon as a robot
needs to move within a nontrivial environment, the question arises as to how it
should move to satisfy the constraints posed by its environment. In its general
form, the simplest motion planning problem is that of a single query [I]. That
is, given some configuration space C' that the robot operates within, find a free
path from an initial position ¢; to a final or goal position g;. Obstacles pose
constraints on valid configurations in C, thus we can subtract them from the
full space, leaving the remaining “free” configuration space Cy in which the
robot can move without hitting any obstacles. The path planning problem then
becomes finding a continuous curve p(s) € Cy for s € [0, 1] where p(0) = ¢; and
p(1) = gy. For some robots, additional constraints are needed due to limitations
of the robot itself. These could be kinematic limitations, such as a car-like robot’s
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steering limitations, or they could be dynamics constraints such as maximum
acceleration. These are collectively known as kinodynamic constraints and take
the form of additional constraints on p(s).

While the problem of motion planning has been studied extensively, the gen-
eral trend of research has been concerned with solving successively more difficult
problems. While it is important to expand the problems solvable given generous
time and computing resources, advances may not translate directly to improve-
ments at the other end of the spectrum. This other end consists of relatively
“easy” problems, but with much tighter time bounds and limited available com-
putation. It is these latter problems which abound in mobile robotics, and with
which this work is concerned. The vast majority of mobile robots exist on a 2D
surface, while those that do move freely in 3D, such as unmanned aerial vehi-
cles (UAVSs) typically do not encounter dense obstacles (i.e. C'y occupies a large
fraction of C').

In fairly static domains, two-stage “multi-shot” planners such as PRM
[2,38] work well. PRMs separate planning into a learning phase, which builds
a finite graph model G of C}, and the query phase, which maps the problem
to graph search on G. In highly dynamic environments however, learned models
quickly become obsolete. This encourages the use of “one-shot” planners which
only concern themselves with solving a single query given no apriori model of C'y.
Among the fastest one-shot planners are the RRT' family of randomized plan-
ners [4[5[6]. RRT planners incrementally build a tree in C'y while they search
for the solution to a planning problem. A typical RRT search is as follows. First,
¢; is added as the root of a tree. Then we iterate the following: Pick a draw a
random sample ¢, from C| find the closest vertex v in the current tree, then
grow the tree toward ¢, using an extend operator. The end of the extension is
added to the tree with v as its parent. The first few steps of such a tree are
shown in Figure [Il As this process is iterated, the RRT grows to fill the free
space, tending toward an even distribution. The major variables in the method
are in how we draw the random samples and in how the extend operator works.
Two adjustments turn the space-filling RRT into a planner. First, we can throw
out any extension segment that would hit an obstacle, thus restricting the tree
to Cy and guaranteeing that any path from node to node is a valid path in free
space. Next, we can alter the random target distribution by picking the goal
configuration some fraction of the time, thus biasing the tree to grow toward
the goal in a more directed fashion. Once a node is added to the tree that is
sufficiently close to the goal configuration, we can trace up the parent pointers
in the tree to recreate the path from gf to g;, the reverse of which is a plan [4].

1.1 Approach

The ERRT planner developed in previous work [6] builds on RRT and offers a
navigation approach for mobile robots using iterated replanning. Each control
cycle, a new plan is developed, rather than waiting for an error condition to oc-
cur before replanning. This allows the planner to deal with both small and large
errors in the same way, and thus is highly tolerant of position jumps and action
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Fig.1. Example growth of an RRT tree for several steps. At each iteration, a random
target is chosen and the closest node in the tree is “extended” toward the target, adding
another node to the tree.

error which is invariably present in physical robots. To speed up replanning, and
decrease the variance from cycle to cycle in the plans, ERRT also introduces the
concept of a waypoint cache. This is a fixed-size bin with random replacement
into which states from previous plans are added. During RRT’s target point
selection, some part of the time waypoints are chosen instead of random con-
figurations or ¢y. This biases the planner to search along previously successful
plans, both decreasing the running time of the planner and resulting in more
stable solutions during successive iterative replans.

In our work, we have built upon ERRT to create a planner for mobile robots
which span a wide range of parameters. The first platform are robots built for
the RoboCup F180 “small size” league [7]. The field of play is a carpet mea-
suring 4.9m by 3.8m, similar to that shown in Figure 2l Due to its competitive
nature, teams have pushed robotic technology to its limits, with the small robots
travelling over 2m/s, accelerations between 3 — 6m/s?, and kicking the golf ball
used in the game at up to 10m/s. These speeds require every module to run in
realtime to minimize latency, all while leaving enough computing resources for
all the other modules to operate. Since five robots must be controlled at up to
60Hz, this leaves a realistic planning time budget of about 1ms for each robot.
The robots themselves are holonomic, and controlled through a local obstacle
avoidance mechanism which incorporates dynamics. Thus the planner is free to
operate without kinodynamic constraints.

The second platform is an autonomous unmanned air vehicle (UAV), and
in particular an autopilot designed for the small UAV shown in Figure 21 The
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Fig.2. Two teams are shown playing soccer in the RoboCup small size league (left),
and the RnR RPV-3 unmanned air vehicle (UAV) (right)

UAV and thus the planner must operate in 3D at low to intermediate altitude,
avoiding both the terrain and user specified “no-fly” zones as obstacles. The UAV
has highly constrained kinodynamics; Despite is small size and 3.5m wingspan,
the minimum turning radius is 300m, while climb and descent rates are limited to
5m/s. The autopilot can accept new sets of waypoints every few seconds, leading
to a much less constrained timing schedule compared to the RoboCup robots.
However due to the 3D nature of the problem and the constrained kinodynamics,
the problem to be solved is much more difficult.

While widely varied, the two domains still offer similarities we may take ad-
vantage of. They are both mobile agents operating primarily in ordinary 2D or
3D space, and both can be conservatively but acceptable modelled by a bound-
ing circle or sphere. The remainder of this paper describes the planner we have
implemented based off of a generalized extension of the ERRT approach. The
next section describes an abstract domain interface that allowed us to share core
planning code across the two domains without sacrificing the planners’ execu-
tion speed. The following section then describes our collision detection approach
which takes advantage of bounding spheres to implement exact swept-volume
collision checks with high efficiency, while keeping a straighforward implemen-
tation to add new types of obstacles.

2 The Domain Interface

The domain interface resulted from an attempt to unify platform interfaces so
that common planning code could be developed. In traditional planning work,
there are typically three primary modules: Planner, collision detection, and a
platform model. While this approach works well for robots of relatively similar
type, the communication required between the platform model and collision de-
tection are through the planner, complicating the interface so that the planner
needs to know much more about the domain than is really necessary. Thus the
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current approach was devised, in which platform model and collision detection
are wrapped into a single “domain” module that the planner interacts with. In-
ternally, collision detection and the platform model are implemented separately,
but importantly the planner doesn’t depend on anything involved in the com-
munication between the two. This allows states in the configuration space to be
a wholly opaque type to the planner (denoted by S), which needs only to be
copied and operated on by the domain’s functions. Additionally, to speed up
nearest neighbor lookups, the state must provide bounds and accessors to its
individual component dimensions. This allows the planner to build a K-D tree
of states so that linear scans of the tree are not necessary for finding the near-
est state to a randomly drawn target. While the traditional architecture can be
made nearly as flexible, it typically does so at a cost in efficiency. The domain
interface approach leaves open the opportunities for improved collision detection
speed that can come with constraints or symmetry present in the agent model.
The domain operations are as follows:

— RandomWorldTarget():S - Returns a state uniformly distributed in C'

— RandomGoalTarget():S - Returns a random target from the set of goal states

— FExtend(so:S,s1:5):S - Returns a new state incrementally extending from s
toward s;

— Check(s:S):bool - Returns true iff s € Cy

— Check(sp:S,s1:5):bool - Returns true if swept-sphere from so to s is con-
tained in C

— Dist(so:5,s1:5):real - Returns distance between states so and s1

— GoalDist(s:S):real - Returns distance from s to the goal state set

Using these primitives, an RRT planner can be built which operates across
multiple platforms, and does so without sacrificing runtime efficiency. One could
say that it moves most of the important code into the domain itself, making
the planner itself simplistic. However, the crucial difference is that the code in
the domain is relatively straightforward and self contained, while the intricate
interactions and practicality driven fallback cases of planning reside in the core
planning code. Thus one could implement a domain with little or no knowledge
of path planning, reaching a core goal of general modular programming.

3 Fast Collision Checking

Collision detection is a research area in its own right, and has been extensively
studied (for a good survey see [§]). However for our planner we can achieve higher
performance than general solutions by taking advantage of some simplifications
present in our domains. First, since the mobile robots are bounded by circles or
spheres, we need not check two complex shapes against one another to test for
collision; We merely need to be able to test a sphere against the possibly com-
plex environment. This results in our planner being pessimistic, but allows us
one critical advantage: The ability to model continuous time trajectories in the
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collision check. Many implemented planners using general collision checkers rep-
resent time trajectories as fixed steps along the path. Unfortunately this creates
an uneasy tradeoff between planning time and safety. We take the conservative
approach of bounding the agent in a simple shape, but then use exact collision
checking for time trajectories given that shape. The result is a planner that does
not sacrifice safety in obtaining its fast execution times.

In our originally developed 2D implementation, checking a line-swept circle
against various geometries proved easy enough to implement for various obsta-
cles geometries, although adding a new type of obstacle proved quite tedious.
Supporting 3D queries for the UAV would have resulted in a much more com-
plex implementation to solve the trajectory-swept-sphere problem, so a different
solution was sought. Our new approach required implementing only a single
primitive for each obstacle: distance from the obstacle to a point in space. From
this primitive, all the other required queries could be derived numerically. In par-
ticular, this included the swept-sphere query required for checking trajectories.
The method works as shown in Figure Bl For any particular point, the current
distance to obstacles, or clearance, determines how far along a trajectory is safe.
The checker can then step forward by that distance, and recursively check the
remaining swept area. The figure shows a dark blue trajectory to be checked, the
light blue is the current clearance, and the red spheres show the steps that can
be safely taken each iteration. Normally, few iterations are required, although
the algorithm can take many steps if it is very close to an obstacle. This is han-
dled by failing after a certain number of iterations have been exceeded. Though
this is yet another pessimistic approximation, long paths running very close to
obstacles are not typically desirable for execution by mobile robots anyway.

A A
—

Fig. 3. An example of checking a swept circle using only obstacle distance queries to
iteratively step forward along the swept path

While in our current implementation, only line-swept-spheres are supported,
the distance query stepping method of checking a swept sphere can be applied
to other trajectory functions as well. For some continuous trajectory function
x(t) where time ¢ € [0, ty], starting from an initial position z(0) with a distance
of at least D(x(0)) = d from all obstacles, we need only find the first ¢ such that
|z(t) — 2(0)||> = d?, or verify that no such ¢ exists for ¢ € [0,¢]. For functions
with bounded curvature, such as lines and circular arcs, these calculations are
straightforward. In particular, for a linear trajectory defined by z(t) = a + bt,
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then the solution is t; = v/d* — r2/||b||. If t; > t, then the trajectory is verified
to be free, otherwise a recursive check must be made with a new trajectory
starting at time t;. Thanks to the square root, ¢; increases quite rapidly from
zero even with very small clearances, resulting in few steps needed for a typical
check, and making the approach efficient in practice.

The obstacles implemented by our collision checker range from the obvious
simple geometric shapes all the way up to 200x200 terrain meshes for the UAV
planner. While the geometric shapes are straightforward to develop a distance
metric for, the terrain posed the challenge of efficient distance calculation. Since
the terrain is a 2D grid projected into 3D as a low-curvature mesh (i.e. a relatively
flat manifold), we broke it up using a 2D K-D tree in grid space, and bounded
the individual nodes with an axis-aligned bounding box in the 3D space. To
query the distance from a point to the terrain, we follow the branches of the
K-D tree nearest first, calculating a distance to the actual terrain once a leaf
node is reached. After that, the remainder of the traversals and be compared
against this known minimum and pruned if the bounding box is further than
the current minimum. This aggressive pruning and the relatively flat nature of
actual terrain meshes yields near logarithmic access times for the queries.

4 Results and Conclusion

In the RoboCup domain, we found the planner to work well in practice, helping
our team consistently place within the top four teams, with comparatively few
penalties for aggressive play. In testing, the planner in the RoboCup achieved
execution times below 1ms to meet the tight timing requirement of the small-size
system. It averaged just 0.5 ms per run, compared to an average of 0.9 ms for a
baseline RRT implementation lacking a waypoint cache. In practice this means
that the ERRT implementation can expand more nodes than plain RRT while
remaining within the 1 ms planning envelope. Next, while reusing the same code
and the same generic collision detection framework, a UAV planner was created
by writing a new domain implementation. An example is shown in Figure [l
using actual data for the 12km x 12km area surrounding Reno, Nevada, USA. It
has been tested driving a vendor-provided UAV simulator and a real hardware
autopilot for an existing UAV. Depending on the problem difficulty, it runs
from 0.5s to 2.0s per query on a modern computer. Eight ERRT searches are
generated per query, and the shortest plan from a successful search is returned.
Due to local minima in the distance metric resulting from kinematic constraints,
running several independent runs generated more consistent results than running
one large plan. In the RoboCup environment, path consistency is achieved by a
high waypoint cache bias in ERRT [6].

Development of a unified planner for multiple mobile robot platforms provided
many insights that would be difficult to determine if only one platform or similar
platforms were considered for an implementation. However there are still many
interesting areas of further work. First and foremost, the relationship between dis-
tance metric, kinodynamic constraints, and accelerated nearest-neighbor search
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AN

Fig.4. A kinodynamicly-limited search tree (left), and the corresponding simplified
plan (right) for the UAV. The plan length is approximately 13km with waypoints
every 100m.

should be explored. Developed good distance metrics for kinematically constrained
platforms is possible, but tedious, and more seriously it prevents most forms of
accelerating nearest-neighbor search to fail because the triangle inequality is no
longer satisfied. Using Euclidean distance worked, but generated local minima that
could only be avoided by rerunning the planner several times, which is an inelegant
solution. Better approximations which still allow the use of fast geometric data
structures most likely exist.
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