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Abstract

In this paper we introduce Active Monte Carlo Recognition (AMCR), a new
approach for object recognition. The method is based on seeding and propagat-
ing ”relational” particles that represent hypothetical relations between low-level
perception and high-level object knowledge. AMCR acts as a filter with each
individual step verifying fragments of di↵erent objects, and with the sequence of
resulting steps producing the overall recognition. In addition to the object label,
AMCR also yields the point correspondences between the input object and the
stored object. AMCR does not assume a given segmentation of the input object.
It e↵ectively handles object transformations in scale, translation, rotation, a�ne
and non-a�ne distortion. We describe the general AMCR in detail, introduce a
particular implementation, and present illustrative empirical results.

1 Introduction

As Computer Vision researchers, we are interested in processing and extracting
information from a sequence of images. Since image sequences are subject to
continuity constraints, iterative methods should be applied, rather than treating
the images as being independent of one another.

In the field of state estimation by vision, e.g. recursively estimating the po-
sition and motion of a vehicle on a highway [4][3], the concept of iterative pro-
cessing has been fully adopted. Until now, it has not been adopted for the task
of object recognition. Almost all existing approaches for object recognition treat
the images as being independent from one another, processing each in a pipeline
of steps, not considering the results of earlier processing.

In this paper, we propose a new, iterative approach for object recognition.
The framework deals with a sequence of input images of an object, and iteratively
finds the best match in a given set of prototype objects. Besides recognizing the
object, this approach finds the mapping that transforms the input object to the
object stored in memory. It can handle di↵erences in scale, translation, rotation,
a�ne and even non-a�ne distortions.



The most important aspect of our approach is that recognition does not take
place in a one-way pipeline: It is recursive and exploits feedback information.
While the recognition runs, it can guide low-level operations according to the
current recognition state. For instance, when the system cannot decide whether
the input object is a camel or a dromedary, our method allows to focus attention
on the back of the animal, thus finding out whether there are one or two humps.

2 Related Work

Our method is di↵erent and contrasts with two common approaches for object
recognition: Independent Feature Extraction and Directed Processing. The first
means running low-level image operations in each image of a video stream from
scratch. In [6], for instance, building the scale space has to be done for each image
anew. On a Pentium 4 3GHz processor just building the scale space for a 640⇥480
image takes approximately one second1. In object recognition from video rather
than from photographs, this processing time is too long. Other examples for
Independent Feature Extraction include Shape Contexts [2], Maximally Stable
Extremal Regions [8], and a�ne interest point detectors [9].

Directed Processing means that current approaches treat object recognition
as being solvable in a one-way sequence of processing steps, hopefully ending with
the recognition of the object (for example, [6] builds the scale space, extracts
keypoints, builds feature descriptors, matches these descriptors with descriptors
in a database).

In contrast to Independent Feature Extraction, our approach allows to speedup
processing by making use of earlier results. When a feature was detected in frame
I

k

the same feature is likely to occur at a close position in I

k+1.
In contrast to Directed Processing, our approach is iterative and does allow

feedback loops. The current state of recognition can guide attention to parts and
features that help to discriminate between objects.

3 Active Monte Carlo Recognition (AMCR)

In this section we introduce our new approach. We call it Active Monte Carlo

Recognition (AMCR), because it is based on sequential Monte Carlo filtering
[11]. The word active stresses the fact that the approach allows the integration
of information feedback. It can guide low-level feature extraction based on the
current recognition state, as well as focus attention on important image locations.
In this sense, the approach integrates a visual behavior, that is, a policy for
guiding attention and feature extraction to parts of the object which allow its
recognition.

Sequential Monte Carlo methods, or particle filters, have extensively been ap-
plied for robust object tracking. The best-known approach is the Condensation
algorithm. For example, in [5] it is shown that a leaf can robustly be tracked in
1 using the C++ implementation of [6]



the presence of background clutter. Also, particle filtering has become the stan-
dard approach for mobile-robot localization [10]. Here, a probability distribution
for the robot’s position is approximated and propagated by a set of particles,
each representing a hypothesis for the robot’s position. Starting with a uniform
distribution for example, the particles start to build clusters at highly likely
points in a map, while the robot moves and observes its environment [10].

3.1 Analogy between Object Recognition and Mobile Robot
Localization

One inspiration for our approach came from realizing that object recognition
and mobile robot-localization are essentially the same problem: When a robot
finds its position in one of a set of maps (e.g. of di↵erent buildings), one could
say that it recognized that its current environment matches one of the maps.
When considering the environment as an object, finding the correct map actu-
ally means object recognition. Besides identifying the correct map, the correct
position within this map is found, too. Hence, the correspondences between en-
vironment and map are also found. In the following section we will adapt and
modify the Monte Carlo Localization approach to perform object recognition.
Here, the main additional complication is, that we want to be not only invariant
with respect to translation and rotation, but also to scale and a�ne distortion.

3.2 An Example

The initial task is a follows. Given are:

– I = I1, ..., Il

: a sequence of l input images
– P = {M1,M2, ...,Mr

}: a set of r prototype images

The goal is to find the image M

k

that corresponds to the image sequence. We
assume that I shows an object of one of the prototype images M

i

but that it can
be arbitrarily scaled, translated, rotated or even sheared, in short, we want to
allow any a�ne transformation. Furthermore, we do not assume that the object
in I

k

is already segmented from the background, i.e. we allow background clut-
ter. However, we do assume that the prototype images are perfectly segmented.
Besides identifying M

k

we also want to find the a�ne transformation for a good
match. Figure 1 shows an example of this setup.

3.3 Overview

We deal with two types of particles, V-particles and M-particles. The V-particles
refer to positions in the input image, while the M-particles refer to positions in
the prototype images. One V-particle is linked to several M-particles as shown
in figure 2. One important property of the algorithm is that the particles move.
While the V-particles move in the input image, the M-particles form moving
clusters in the prototype images, at positions that correspond to the shape sur-
rounding the V-particles.
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Fig. 1. The goal is to identify the bird shown in a sequence of input images I

k

in the set of prototype images M1,M2,M3 and to determine the a�ne trans-
formation that maps the input object to its corresponding prototype object.
Background clutter in the input image can be present. The shape shown in the
image sequence can move. We assume that the movement is restricted to a�ne
transformations.

To get an initial idea of how the algorithm works, Figure 3 illustrates the
algorithm using only one V-particle. Initially, the M-particles are randomly dis-
tributed in the prototype images. While the V-particle moves, the M-particles
move accordingly, subject to their estimate of the a�ne transformation. Step by
step the M-Particles start to build clusters at probable locations and finally only
one cluster remains in the prototype that corresponds to the input image. The
resulting particles hold the correct a�ne transformation.

3.4 Definitions

To give a mathematically sound description of our algorithm we have to define
several terms:

Definition 1. A V-particle v is defined as v := (p, E
a

, E
f

,O,Q,F) where

p = (x, y,�)T

describes a position and orientation in the input image I, E
a

is

an a�ne estimator, E
f

is a feature extractor, O is an observation model, Q
is a motion model and F is a feedback strategy. (The latter five terms will be

described with an example in section 4.)

Definition 2. A prototype pose x̃ = (x, y,�, i), x, y 2 IR, � 2 [0, ..., 2⇡],
i 2 {1, ..., r}, specifies a position (x, y) with orientation � in the i

th

of all r

prototype images.

Definition 3. An M-particle m is defined as m := (x̃,A,⇡) where x̃ specifies

a pose in one of the prototype images. The 3 ⇥ 3 matrix A defines a 2D a�ne

mapping in homogeneous coordinates. The value ⇡ 2 [0, ..1] is a probability.

Definition 4. A particle configuration C is a triple C = (V,M,R), where

V := {v
i

}, i = 1, ...,m is a set of m V-particles, M := {m
i

}, i = 1, ..., n is a

set of n M-particles and R : M �! V is a mapping relating each M-particle

to a V-particle. The mapping is surjective but not injective, that is, di↵erent

M-particles can be mapped to the same V-particle.
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Fig. 2. Each of the m = 10 V-particles in the input image I is linked to 50 M-
particles in each prototype image M1,M2,M3. All particles are drawn in gray,
except the v1 and the M-particles that are linked to it. The links are drawn by
straight thin lines. Note, that only the connections of v1 are drawn, but that
each V-particle has the same number of connections (to di↵erent M-particles).

The mapping R induces an equivalence relation in the set M, dividing it in
subsets whose elements are mapped to the same V-particle. The subset belonging
to v 2 V is

R

�1(v) = {m 2M : R(m) = v} (1)

Thus, each V-particle is linked to a whole set of M-particles and the sets of M-
particles are disjoint. Relating our approach to mobile robot localization, each V-
particle can be thought of a “simulated robot” discovering the input environment
(the image I) and the related M-particles represent a probability distribution
for the robot’s position within a set of maps (the prototype images M

i

). An
example is shown in figure 2 where each of m = 10 V-particles is linked to 50 M-
particles in each prototype image resulting in a number of n = 10⇥3⇥50 = 1500
M-particles. The set R

�1(v) contains M-particles that are distributed over all
prototype images. Often, we are interested in only the M-particles of a V-particle
v that are in the same prototype image M

k

. We will denote this set by

R

�1
k

(v) := {m = (i,p,A) 2M : R(v) = m ^ i = k} (2)

This set R

�1
k

(v) approximates the probability distribution for the corresponding
position v in the prototype image M

k

.
Often, we will consider an M-particle m in conjunction with its linked V-

particle vm := R(m). Such a pair (vm,m) represents a hypothetical relation
between the input image and a prototype image. Thus we call the entity (vm,m)



(a) iteration 0

(b) iteration 5

(c) iteration 32
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Fig. 3. This figure illustrates the algorithm using only one V-particle connected
to 500 M-particles in each prototype image. (a) Initially, the M-particles are
distributed randomly. (b)While the V-particle moves, the M-particles start to
build clusters at probable locations. (c)Finally, only one cluster remains in the
prototype image that corresponds to the input image. The trajectory of the V-
particle corresponds to the thin curve in the input images. While the V-particles
move, the M-particles move accordingly, subject to their current estimate of how
the input and prototype images are related in terms of an a�ne transformation.



a relational particle. The a�ne mapping A, stored in m, defines how the local
neighborhood around vm has to be transformed in order to match the local
neighborhood around m.

Definition 5. A relational particle r is a tuple (vm,m), with m 2 M and

vm := R(m).

3.5 Probabilistic Formulation

For each V-particle v we reformulate the problem of object recognition as the
problem of localizing v. Here, localizing v means finding its corresponding pro-
totype pose x̃ = (x, y,�, i) (see definition 2), that is identifying the correct pro-
totype image M

i

and finding the corresponding pose (x, y, �) within M

i

. Since
we do not assume that the object shown in the input images is segmented, the
algorithm will try to recognize whatever is at the position of v. Since several
V-particles exist, di↵erent objects can be recognized simultaneously.

With each new image I

k

, each V-particle v = (p, E
a

, E
f

,O,Q,F) will perform
a movement and a measurement z

k

. The movement is controlled by the feedback
policy F that returns a control command u

k

in each iteration. It consists of a
rotation and a translation. The measurement z

k

is a feature descriptor returned
as a result of applying feature extractor E

f

. We want to estimate the prototype
pose x̃ based on all measurements Z

k = {z
k

}, i = 1, ..., k, up to the current
time, and knowledge about the movements and the initial state of x̃. The initial
knowledge about the state x̃0 is given by the apriori probability distribution
p(x̃0) over the space of x̃. For instance, it could be that certain prototype images
are known to be more likely, in a given context. However, we will often assume
an initial uniform distribution. Thus, for each V-Particle, we are interested in
constructing the posterior density p(x̃k|Zk) of the current prototype pose x̃k

conditioned on all measurements.
In analogy to mobile robot localization [10], to localize x̃k the corresponding

position of the V-particle in time step k, we need to recursively compute the
density p(x̃k|Zk) at each time step, which is done in two phases, the prediction
phase and the update phase:

– Prediction Phase We use the motion model Q of the V-particle to predict
x̃ in the form of a predicted probability density function (PDF) p(x̃

k

|Zk�1)
taking only motion into account. In contrast to real mobile robot localization
we know the e↵ect of the control input precisely, without noise. However it
still makes sense to include a noise model, since the overall approach will
then be able to handle even non-a�ne distortions (to some limited degree).
We assume that the current state x̃k is only dependent on the previous
state x̃

k�1 (the Markov assumption) and the known control input u
k�1.

The motion model is specified as a conditional density p(x̃
k

|x
k�1,uk�1) and

the predictive density over x̃
k

is then calculated by integration:

p(x̃
k

|Zk�1) =
Z

p(x̃
k

|x
k�1,uk�1)p(x̃

k�1|Zk�1)dx̃
k�1 (3)



– Update Phase In this phase we take a measurement z
k

by applying fea-
ture extractor F

e

around the V-Particle and use its measurement model O to
obtain the posterior p(x̃

k

|Zk). We assume that the measurement z
k

is con-
ditionally independent from earlier measurements Z

k�1 given x̃
k

and the
measurement model is given in terms of a likelihood p(z

k

|x̃
k

). This term
expresses the likelihood that the V-particle is at a location corresponding to
x̃

k

, given that zk was observed. The posterior density over x̃
k

is obtained
using Bayes theorem:

p(x̃
k

|Zk) =
p(z

k

|x̃
k

)p(x̃
k

|Zk�1)
p(z

k

|Zk�1)
(4)

3.6 The AMCR-Algorithm

For each V-particle v = (p, E
a

, E
f

,O,Q,F) the density p(x̃
k

|Z
k

) is approxi-
mated by its set R

�1(v) of connected M-Particles. The overall algorithm is then
summarized by the following procedure:

Algorithm 3.1: AMCR()

for each I

k

do

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

for each V-particle v = (p, E
a

, E
f

,O,Q,F)

do

8
>>>>>><

>>>>>>:

Get control command u
k

= F(v)
Move v according to u

k

for each m 2 R

�1(v)

do
⇢
predict(m,Q)
update(v,m, E

a

, E
f

,O)
resample(R�1(v))

every w

th

frame:
⇢
update(V )
resample(V )

Run other algorithms like tracking in parallel

Here, updating and resampling V is done only every wth frame (w = 10 in our
implementation). To update V, each v 2 V is assigned a weight proportional to
the number of M-particles connected to v. When resampling V, particles that are
created in several instances receive an exact copy of the M-Particles connected
to the original V-particle. By resampling V the focus of attention is directed to
parts of the input image that are interpretable in terms of the prototype images.
The entire procedure of propagating the particles by sampling, reweighting, and
resampling (Sampling/Importance Resampling, or SIR) is discussed in full detail
in [12].

One important property of AMCR is that the input images are only accessed
at the position of the V-particles. In each iteration algorithms such as deter-
mining the optical-flow can be processed in parallel and the V-particles can be
moved according to the optical flow. In this way recognition can be distributed
over several frames, even though the input object moves.



4 Radial-AMCR: AMCR for shape recognition

In this section, we describe a particular application of the AMCR-algorithm,
allowing it to perform shape recognition. Here, we assume that all V-particles
use the same a�ne estimator, feature extractor, motion and measurement model.
We call this particular instantiation Radial-AMCR because it is based on radial
edge scans.

4.1 The A�ne Estimator and the Measurement Model

Ik
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Fig. 4. Each pair (v,m) of particles creates a hypothesis for an a�ne trans-
formation by constructing two triangles. The corner points of the triangles are
found by three edge scans per particle. To compare the local shape around the
particles 8 further points are determined by edge scans.

For Radial-AMCR the a�ne estimator E
a

estimates an a�ne mapping for
each M-particle by considering two triangles, one in the input image I

k

and one
in the prototype image of the M-particle. The three points of each triangle are
found by applying an edge-detector along three scan lines, radially emerging
from the V- and M-particle’s position. The orientation of the V- and M-particle
specifies the direction of the first scan line. The remaining angles are at 120
and 240 degrees relative to the first direction. In doing so, three points a,b
and c are determined for the V-particle v in I

k

and three points a0,b0 and c0

are determined for the M-particle m in its prototype image. The pair (v,m), a
relational particle, will now represent the hypothesis that the shape in the input
image has to be transformed in such a way, that both triangles match. That is,



we compute the a�ne transformation A that maps a to a0,b to b0 and c to c0.
Depending on the position of the V- and M-particles di↵erent hypotheses arise.
Although, the a�ne mapping A is stored in the M-particle, it is an attribute of
the whole relational particle (v,m). It is possible to store it in m, because each
M-particle can only be linked to one V-particle.

Based on the estimate of the a�ne transformation, we are now able to spec-
ify a measurement model. Similar to how the triangles are found, the feature
extractor E

f

performs radial edge scans along 8 rays. For each relational particle
(v,m), two sets of 8 points are found, z

k

= (p0, ...p7) in input image I

k

(which
constitutes the measurement of the V-particle) and p00, ...p

0
7 in the prototype

image of m. Based on these points and the a�ne transformation we specify the
measurement model O, that is the likelihood p(z

k

|x̃). The underlying considera-
tion is that if the current M-particle was in the correct prototype image (the one
that corresponds to the input images) and if its position and orientation exactly
corresponded to the position of the V-particle in the current input image, then,
when transforming the points p0, ...,p7 using A, they would exactly match the
points p00, ...,p

0
7. We then calculate the deviations w

j

= p0
j

�Ap
j

, j = 0, ..., 7
and assume that each deviation is either an outlier or subject to a Gaussian
distribution,

p(||w
j

||) = p

outlier

+ (1� p

outlier

)
1

�

w

p
2⇡

e

� ||wj

||2
2�

2
w

. (5)

Here, p

outlier

is the probability of an outlier, in case of which we assume a
uniform distribution over all ranges of ||w

j

|| and �

w

is a constant (p
outlier

= 0.1
and �

w

= 10 pixel in our implementation). Assuming that the individual scan
line measurements are independent the measurement model then is

⇡ = p(z
k

|x̃i

k

) := ⇧

j2Ivalid p(||w
j

||)⇧
j2Iinvalid pinvalid. (6)

Here, Ivalid is the subset of indices {i = 1..m} for which both v

i

and v

0
i

indicate
the validity of the ith edge measurement, and Iinvalid is its complementary set.
The constant pinvalid is the modeled probability of an invalid range measurement
(pinvalid = 0.1 in our implementation).

4.2 The Motion Model

The motion model Q defines how the M-particles move, when a V-particle moves
as a response to its control command u. It is specified in terms of the conditional
density function p(x̃

k

|x̃
k�1,uk�1). Rather than explicitly specifying this func-

tion we specify how to sample from it. Given u specifying the translation and
rotation of the V-particle we transform the movement by the M-particle’s cur-
rent estimate of the a�ne transformation and add zero-mean Gaussian noise to
both translation and rotation. The M-particle will then perform this transformed
movement. When the prototype image is not an exact a�ne transformation of
the input image, non-a�ne distortions can be compensated by the noise in the
M-particle’s movement.



4.3 Feedback Loops

There are two di↵erent feedback loops: Feature Feedback and Attention Feedback.
Feature feedback means that di↵erent V-particles can have di↵erent feature ex-
tractors and that the extractors are selected depending on the recognition state.
For instance, when recognition is ambiguous at a given iteration, feature extrac-
tors could change from edges to texture, if texture would better discriminate
among the hypotheses. This aspect is not dealt with in more detail in this pa-
per. Attention feedback has two mechanisms: One automatically occurs during
V-resampling. V-particles with many connected M-particles will be reproduced
more likely, which lets the V-particles concentrate on interpretable parts of the
input shapes. V-particles which cover non-interpretable background clutter, will
vanish automatically. The second mechanism involves the motion guidance of
the V-particles.

Consider the case where a V-particle determines its movement solely based
on the input image. For instance, a V-particle could always move forward and be
reflected at an edge in the image. This simple behavior would let the V-particle
explore its input shape. Although the approach works, it is not optimal. To see
why, consider the case where the prototype images are very similar, i.e. as in the
scenario shown in figure 5. Since the birds are very similar, it takes 71 iterations
till the method converges to only one remaining cluster in the correct prototype
image. The reason is that the M-particles often scan the shapes at parts that are
very similar. A strategy of guiding the V- and M-particles to parts that help to
discriminate the shapes is required to increase the performance. In the situation
shown in figure 5b) the recognition process is not sure, whether the input image
is M2 or M3 and a feedback control that would move the V-particle to a part
that best discriminates M2 and M3 (i.e the head of the birds) is desirable in this
situation. One di�culty in implementing such an approach is to automatically
compare all pairs of prototype images and to find the discriminative locations.
This issue will be subject of a separate paper.

4.4 Lookup Tables

In each iteration, each M-particle has to apply its feature extractor in its pro-
totype image. But since, the prototype images (the memory) is fixed, we can
pre-compute lookup tables to speed up the extraction process. For instance, for
Radial-AMCR each pixel in each prototype images holds a pre-computed radial
scan, and the edge points can simply be looked up. Thus, while the V-particles
actually have to access the input image, the M-particles will just operate on
lookup tables. In this sense, the prototype images M

i

are rather feature lookup
tables, instead of the actual prototype images.

4.5 The Focus of Attention

In our approach, the positions of the V-particles constitute the focus of atten-
tion. Since we do not assume that the input image is segmented, the V-particles
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Fig. 5. Even if the prototype images are very similar the method converges. The
figures shown here, are snapshots of a real experiment. However, convergence is
slow in the case of high similarity. To speed it up, a feedback policy is needed
that guides the V-particles to parts of the figures that let discriminate them (e.g.
the feed, tail and head).

will try to recognize whatever is at their position. Consider i.e an image showing
di↵erent shapes the same time. Starting with 100 V-particles, initially randomly
distributed in the image, some of the particles will lay within the figures, some
between the figures, and some at image parts that contain background clutter.
V-particles that are in figures, that are represented in the prototype images,
will produce clusters after several iterations, the other V-particles will remain
unsuccessful, that is they will not yield a focussed cluster of M-particles in a
prototype image. This implies, that di↵erent shapes can be recognized simulta-
neously. Context based recognition can be achieved through the initial distribu-
tion of M-particles in the prototype images. If a prototype has no M-particles
no processing power is consumed in trying to recognize it. That is, depending on
the situation in which recognition takes place, certain prototypes can be biased.

5 Experimental Results

It is di�cult to compare our algorithm against other methods for shape or object
recognition, because they typically are not iterative. But the iterativeness is one



of the most important properties of AMCR, because it allows to distribute the
computational load over several frames. Even though recognition might take a
second, the video input can be processed at full frame rate during this second.
Thus other algorithms like tracking can run in parallel. This is the important
philosophy behind our approach.

Despite this di�culty, we performed a comparison against shape contexts [1]
by repeating the iterations over static images. Some of the input images that
were correctly classifed are shown in figure 6. These had to be identified within

Fig. 6. Some examples of input images that were correctly classified.

a database of 17 prototype shapes. Because of the severe background clutter
our method performed clearly better than shape contexts. However, this is not
the point, because shape contexts themselves could be integrated in AMCR
by defining an appropriate observation model. Thus, our approach is more a
framework that allows to incorporate existing approaches, rather than being
opposed to them.

With the following example we try to show all properties of AMCR. We work
with a prototype memory of only three shapes. We printed two of them on a
sheet of paper, together with outlier shapes, such that the figures of interest
cannot easily be segmented from the background clutter (see figure 7a). Then
we took a video, while moving the sheet around. Running Radial-AMCR with
30 V-particles and 60 M-particle per prototype and V-particle, our method iter-
atively recognizes the given shapes. Using the lookup tables, one iteration takes
approximately 61 milliseconds on a Pentium IV, 3 GHz processor. Splitting the
update phases over two frames, the processing time per frame can be reduced to
30 milliseconds, which allows to process the input video at a rate of 30 frames
per second. While recognition runs, we simultaneously determine the optical
flow (using Lukas Kanade [7]) in the input sequence, and move the V-particles
according to the flow, such that the relative position between the input shapes
and the V-particles remains the same. This example is illustrated in figure 7. It
shows how recognition and tracking can be performed simultaneously, how the
process of recognition can be distributed over several frames and how several
objects can be recognized simultaneously.
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Fig. 7. At the beginning (a) the V and M-particles have random positions in
the input image and the prototype images. After 34 iterations only V-particles
remain, that are interpretable in terms of the prototype images. The M-particles
form clusters at corresponding positions. The thin straight lines show these cor-
respondences. While recognition runs, the input image is rotated and translated
randomly and the V-particles are moved according to the optical flow. Thus,
while tracking, the process of recognition is distributed over the sequence of
images.

6 Conclusions

In this paper we have introduced Active Monte Carlo Recognition (AMCR) as a
new framework for object recognition and a result of our realization of the sim-
ilarity between mobile robot localization and object recognition. In relation to
existing approaches, AMCR is based on an image sequence rather than on single
images, and it includes a feedback loop integrated in the recognition process
to guide attention to discriminative parts. At the core of AMCR are relational

particles that represent hypotheses for relations between an input image and a
set of prototype images. Low-level image access is hence performed with a rela-
tionship to high-level memory. We have shown the potential of our approach by
implementing a particular instantiation of the algorithm for shape recognition.
In summary, our approach has several contributions, including:

– Iterativeness The process of recognition is distributed over a sequence of
images showing the same object. Tracking can be performed simultaneously
with recognition.



– Local image access The input images are only accessed at the position
of the V-particles. By moving the V-particles recognition can be combined
with tracking. For instance, the V-particles can be moved according to the
optical flow such that the relative position between V-particles and the object
remains the same.

– Multi-Modality AMCR maintains several hypothetical interpretations dur-
ing its iterations. Also, several objects can be recognized simultaneously.

– Simultaneous Segmentation and Recognition Our method does not re-
quire the object to be segmented from the background. Rather, segmentation
and recognition are performed simultaneously.

– Integration of Feedback Loops During iterations, an object might not
be uniquely classified. Our approach allows to guide attention to parts and
features that help discriminate the di↵erent hypotheses.

Future work will concentrate on the simultaneous application of di↵erent
feature-extractors, a hierarchical organization of the prototype objects and the
learning of feedback strategies.
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