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Abstract— Robots need to track object. Object tracking ef-
ficiency completely depends on the accuracy of the motion
model and of the sensory information. Interestingly, when mul-
tiple teammembers can actuate the object being tracked, the
motion can become highly discontinuous and nonlinear. We
have previously developed a successful tracking approach that
switches among target motion models as a function of one
robot’s actions. In this paper, we report on a tracking approach
that can use a dynamic multiple motion model based on a
team coordination plan. We present the multi-model probabilistic
tracking algorithms in detail and present empirical results both
in simulation and in a human-robot Segway soccer team. The
team coordination plan allows the robot to much more effectively
track mobile targets.

I. INTRODUCTION

There have been plenty of investigations into the problem
of tracking moving objects e.g. [1]. There has been a simi-
lar interest in tracking objects from various robot platforms
within the robotics community, e.g. [2]. When tracking is
performed by a robot executing specific tasks acting over the
object(target) being tracked, such as a Segway RMP soccer
robot kicking and receiving a ball, the motion model of the
object becomes tightly dependent on the robot’s actions [3].
The robot’s tactic provides valuable information in terms of the
object behavior. A tactic-based motion modelling and tracking
in such scenarios has been introduced in [4].

However, for the environments in which the Segway RMP
soccer robot operates in, there are multiple objects, besides the
ball, e.g. the teammember and the opponents, which need to be
tracked properly. All the players on the field can also actuate
over the ball, namely grab and kick the ball according to the
rules which makes the motion model of the ball even more
complex. When the robot is playing a game as a member of a
human-robot team, the team coordination knowledge provides
further information that can be incorporated into the motion
modelling and tracking process. In this paper, we present an
extension to the tactic-based tracking scheme introduced in [4]
to solve a plan-dependent multi-target tracking problem.

The paper is organized as follows. We first give a brief
description of the Segway RMP soccer robot. Next we show
the play-based motion modelling for multiple objects and
we incorporate the team coordination knowledge into the
motion modelling. We then describe the multi-model tracking

algorithm for multiple objects, leading to our experimental
results, related work, conclusions and future work.

II. SEGWAY RMP SOCCER ROBOT

The Segway platform is unique due to its combination
of wheel actuators and dynamic balancing. Segway RMP,
or Robot Mobility Platform, provides an extensible control
platform for robotics research [5].

In our previous work, we have developed a Segway RMP
robot base capable of playing Segway soccer. We briefly
describe the two major components of the control architecture,
the sensor and the robot cognition, which are highly related
to our multi-model motion tracking.

A. Vision Sensor

The goal of vision is to provide as many valid estimates
of objects as possible. Tracking then fuses this information to
track the most interesting objects (the ball and the teammem-
ber, in this paper) of relevance to the robot. We do not discuss
the localization of the robot in the sense that a lot of soccer
tasks (known as tactics and plays in later sections) can be done
by the Segway RMP robot independently of knowing where
it is in the world. Also we use global reference in this paper
(global position and velocity) which means it is relative to the
reference point where the robot starts to do dead reckoning.

B. Robot Cognition

A control architecture, called Skills-Tactics-Plays, was pro-
posed in [6] to achieve the goals of responsive, adversarial
team control. The key component of STP is the division
between single robot behavior and team behavior.

A play, P , is a fixed team plan which consists of a set of
applicability conditions, termination conditions, and N roles,
one for each team member. Each role defines a sequence of
tactics T1, T2, · · · and associated parameters to be performed
by that role in the ordered sequence. Assignment of roles to
team members is performed dynamically at run time. Upon
role assignment, each robot i is assigned its tactic Ti to execute
from the current step of the sequence for that role.

A tactic, T , encapsulates a single robot behavior. Each robot
i executes its own tactic as created by the current play P .
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Fig. 1. Skill state machines (SSMs) for an example tactic: CatchKickToTeam-
member.

A tactic Ti determines the skill state machine SSMi to be
executed by the robot i.

A skill, S, is a focused control policy for performing some
complex action. Each skill is a member of one, or more, skill
state machines SSM1, SSM2, · · ·. Each skill S determines
what skill it transitions to S′ based upon the world state, the
time skill S has been executing for, and the executing tactic
for that robot.

We construct the robot cognition using a similar archi-
tecture. Plays, tactics, and skills, form a hierarchy for team
control. Plays control the team behavior through tactics, while
tactics encapsulate individual robot behavior and instantiate
actions through sequences of skills. Skills implement the
focused control policy for actually generating useful actions.
Figure 1 shows the SSMs and transitions for an example
tactic: CatchKickToTeammember, which contains six skills.
Each node in the figure is a skill and the edges show the
transition between skills.

Segway soccer is a team sport, and therefore the building
of our game strategy required not only execution of single
robot behavior , but also coordination with the teammember,
the human player. The current coordination is simple and ba-
sically based upon two fixed plays for offensive and defensive
situation respectively. Our offensive play is shown as follows,
in which the termination condition is either play aborted or the
situation changed (a turn-over of ball possession announced
by the referee). There are two roles in this play, one passes
the ball to the other who positions down field and waits for
receiving a pass.

PLAY Naive Offense
APPLICABLE offense
DONE aborted !offense
ROLE 1
pass 2
none

ROLE 2
position_down_field
receive_pass
none

Our current coordination is purely observation based. Each
player assigns role from his own eyeshot without communi-
cation. For example, should the robot think the teammember
is closer to the ball, the robot would choose to position and
receive the ball (ROLE 2) from its teammember (ROLE 1).
Furthermore, the robot knows which side gains possession of

the ball from the referee announcement (whistle), therefore
it tells offensive from defensive situation clearly and thus
it has deterministic idea of which play the team is using.
The robot assumes that its teammember is performing the
same game play as itself. The robot can infer what tactic the
teammember is executing from the team play. For instance,
after receiving the ball from the teammember, as a passer, the
robot would assume the teammember go forward to a tactically
advantageous position to receive a pass. The predefined play
for team coordination provides useful information for motion
modelling, which will be further discussed in section III.

III. PLAY-BASED MOTION MODELLING

In this section, we take a multi-target tracking problem
as a detailed example to show the extension of the tactic-
based motion modelling method in general when the team
coordination knowledge (play) is incorporated. First we give
an introduction of the environment and objects under the
Segway soccer setup. Second, we describe detailed motion
models for both the ball and the teammember. Third, we
extend the tactic-based motion modelling to the play level
when both the ball and the teammember are included into
the tracking. We show how we model the play-dependent
interactions between the teammember, the robot and the ball
and set up a base for giving the multi-model tracking algorithm
in the next section.

A. Tracking Scenario

In a Segway soccer game, there are multiple moving objects
on the field. e.g, the ball, the human teammember and the two
opponents. Each team is identified by their distinct color. The
ball is in orange [7]. We construct two single target trackers in
the system, for the ball and the teammember respectively. We
use two separate trackers instead of one multi-target tracker
for both of them because we can differentiate the ball with the
teammember thanks to the color-based vision system.

The general parameterized state-space system for the kth
target xk,t at time t is given by:

xk,t = fm
k (xk,t−1,um

k,t−1,v
m
k,t−1) (1)

zk,t = hm
k (xk,t,nm

k,t) (2)

where fm
k and hm

k are the parameterized state transition and
measurement functions for the mth model of the kth target;
x,u, z are the state, input and measurement vectors; v,n are
the process and measurement noise vectors of known statistics;
m is the model index that can take any one of Nk values,
where Nk is the number of models of the kth target being
tracked (ball/teammember);

B. Ball Motion Modelling

In our Segway RMP soccer robot environment, we define
five models to model the ball motion (for the rest of this paper,
for simplicity, we use xt to represent the ball state, and use
x′

t to represent the teammember state).



• Free-Ball. The ball is not moving at all or moving straight
with a constant speed decay d which depends on the
environment surface.

xt = Ftxt−1 + v1
t−1 (3)

zt = Htxt + n1
t (4)

where xt = (xt, yt, ẋt, ẏt)
T , zt = (xt, yt)

T ; xt, yt are the
ball’s x, y position in the global coordinate at time t;
and ẋt, ẏt are the ball’s velocity in x and y direction in
the global coordinate. The superscript “1” indicates the
model index. Ft and Ht are known matrices as follows:

Fk =




1 0 ∆t 0
0 1 0 ∆t
0 0 d 0
0 0 0 d


 ,Hk =

[
1 0 0 0
0 1 0 0

]

where ∆t is the time interval between vision frames.
• Robot-Grab-Ball. The ball is grabbed by the robot’s

catcher. In the case of robot grabbing ball, no vision
is needed to track the ball, because we assume the ball
moves with the robot. Therefore the ball has the same
velocity as the robot (but plus the noise) and its global
position at time t is just the robot’s global position plus
their relative position, which is assumed to be a constant,
plus the noise.

• Human-Grab-Ball. The ball is held by the teammember.
we can infer the ball position similarly if we know the
teammember position well.

• Robot-Kick-Ball. The ball is kicked by the robot therefore
its velocity is equal to a predefined initial speed plus the
noise. The ball is supposed to move toward either the
human teammember or the goal.

• Human-Kick-Ball. The ball is kicked by the teammember
and it is supposed to be either a pass to the robot or a
shoot at the goal .

C. Teammember Motion Modelling

We define four models to model the human teammember’s
motion.

• Random Walk. The teammember is wondering in the field.
So the state at the new time is the state at the current time
with some additive zero-mean (assumed Gaussian) noise.

• Holding Ball. The teammember is holding the ball with-
out moving and waiting for the robot to receive the ball.
Should the robot know the ball position well, it can infer
the teammember position by the ball position in a similar
way as Robot-Grab-Ball for ball motion modelling.

• Accelerating. The teammember dashes and obtains a
velocity in a short time.

• Positioning. The teammember is going to a predefined
tactical position with a constant speed. This case happens
mostly after the teammember passing the ball to the robot
and moving down the field toward opponent’s goal.
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Fig. 2. Play-Based motion modelling, where m1, m2, · · · , mn are n models,
Pa is the team play, vb is the additional information. hi,j is the transition
probability from model mi to model mj given mi, and 〈Pa, vb〉. Each layer
in the graph is conditioned on a particular combination of the play executed
and the additional information obtained.

D. Play Based Model Transitions

Given the knowledge of the team coordination plan (the
play Pt−1 at time t − 1), the robot can infer what tactic
the teammember is executing (T ′

t−1), which provides valuable
information about the motion model of the teammember (m′

t).
Both the robot and the teammember act over the ball in a
Segway soccer game. The motion model of the ball (mt)
is therefore affected by what tactic the robot (Tt−1) and the
teammember (T ′

t−1) are executing.
From the previous subsection, we know that the model

index m determines the present model being used. For our
teammember tracking example, m′

t = i, i = 1, · · · , 4. In our
approach, it is assumed that the teammember motion model
index, m′

t, conditioned on the previous tactic executed T ′
t−1

by the teammember, and other useful information v′
t (such

as ball state), is governed by an underlying Markov process,
such that, the conditioning parameter can branch at the next
time-step with probability.

p(m′
t = i|m′

t−1 = j, T ′
t−1, v

′
t) = h′

i,j (5)

where i, j = 1, · · · , Nm′ . Since T ′
t−1 can be determined by

Pt−1, we get

h′
i,j = p(m′

t = i|m′
t−1 = j, Pt−1, v

′
t) (6)

Since we can draw p(m′
t = i|m′

t−1 = j) in an Nm′ × Nm′

table, we can create a table for Equation 6 with a third axis
which is defined by the tuple 〈Pa, vb〉 as shown in Figure
2. Here the play Pa, is the primary factor that determines
whether mi transits to mj and what the transition probability
is, while the information vb determines the prior condition
of the transition. Each layer in the graph is conditioned on a
particular combination of the tactic executed and the additional
information obtained.

For our ball tracking example, mt = i, i = 1, · · · , 5.
Similarly,

hi,j = p(mt = i|mt−1 = j, Tt−1, T
′
t−1, vt) (7)
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where i, j = 1, · · · , Nm. Since Tt−1, T
′
t−1 can be determined

by Pt−1, we get

hi,j = p(mt = i|mt−1 = j, Pt−1, vt) (8)

Suppose the current team play is the Naive Offense in Section
II-B, we can obtain the corresponding motion model transi-
tions for both the ball and the teammember using the play-
based method (Figure 3).

IV. MULTI-MODEL MOTION TRACKING

Following the play-based motion model given in the previ-
ous section, we can use dynamic Bayesian networks (DBNs) to
represent the whole system for teammember and ball tracking
in a natural and compact way as shown in Figure 4 and Figure
5 respectively. In this graph, the system state is represented
by variables (play P , tactic T , infrared sensor measurement s,
ball state x, ball motion model index m, vision sensor mea-
surement of ball z, teammember state x′, teammember motion
model index m′, vision sensor measurement of teammember
z′), where each variable takes on values in some space. The
variables change over time in discrete intervals, so that e.g. xt

is the ball state at time t.
Furthermore, the edges indicate dependencies between the

variables. For instance, in Figure 5 the ball motion model index
mt depends on mt−1, Tt−1, T

′
t−1, st and xt−1, hence there are

edges coming from the latter five variables to mt.
For the rest of this section, we give the ball-tracking algo-

rithm following Figure 5. The teammember-tracking algorithm
can be obtained similarly following Figure 4.

We use the sequential Monte Carlo method to track the
motion model m and the object state x. Particle filtering
is a general purpose Monte Carlo scheme for tracking in a
dynamic system. It maintains the belief state at time t as a
set of particles p

(1)
t , p

(2)
t , · · · , p(Ns)

t , where each p
(i)
t is a full

instantiation of the tracked variables {p(i)
t , w

(i)
t }, w

(i)
t is the

weight of particle p
(i)
t and Ns is the number of particles. In

our case, p
(i)
t = 〈x(i)

t ,m
(i)
t 〉.

The equations below follow from the ball-tracking DBN.

m
(i)
t ∼ p(mt|m(i)

t−1,x
(i)
t−1, st, Tt−1, T

′
t−1) (9)

x(i)
t ∼ p(xt|m(i)

t ,x(i)
t−1) (10)
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Fig. 4. A dynamic Bayesian network for teammember tracking with a
Segway RMP robot. Filled circles represent deterministic variables which are
observable or are known as the tactic or the play that the robot is executing.

Note that Tt−1 and T ′
t−1 are inferred deterministically from

Pt−1 instead of sampling. Also note that in Equation 10,
the ball state is conditioned on the ball motion model m

(i)
t

sampled from Equation 9.
Then we use the Sample Importance Resampling (SIR) al-

gorithm to update the state estimates. The sampling algorithm
is as follows:

[{x(i)
t , m

(i)
t , w

(i)
t }Ns

i=1] = SIR[{x(i)
t−1, m

(i)
t−1, w

(i)
t−1}Ns

i=1, zt, st, Tt−1, T
′
t−1]

01 for i = 1 : Ns

02 draw m
(i)
t ∼ p(mt|m(i)

t−1,x
(i)
t−1, st, Tt−1, T

′
t−1).

03 draw x
(i)
t ∼ p(xt|m(i)

t ,x
(i)
t−1).

04 set w
(i)
t = p(zt|x(i)

t )
05 end for
06 Calculate total weight: w =

∑
[{wi

t}Ns
i=1]

07 for i = 1 : Ns

08 Normalize: wi
t = wi

t/w
09 end for
10 Resample.

The inputs of the algorithm are samples drawn from the
previous posterior 〈x(i)

t−1,m
(i)
t−1, w

(i)
t−1〉, the present vision and

infrared sensory measurement zt, st, the robot’s tactic Tt−1,
and the teammember’s tactic T ′

t−1. The outputs are the updated
weighted samples 〈x(i)

t ,m
(i)
t , w

(i)
t 〉. In the sampling algorithm,

first, a new ball motion model index, m
(i)
t , is sampled accord-

ing to Equation 9 at line 02. Then given the model index,
and previous ball state, a new ball state is sampled according
to Equation 10 at line 03. The importance weight of each
sample is given by the likelihood of the vision measurement
given the predicted new ball state at line 04. Finally, each
weight is normalized and the samples are resampled. Then we
can estimate the ball state based on the mean of all the x(i)

t .
Similarly the state of the teammember x′

t can be obtained from
the teammember tracker.

V. EXPERIMENT

From previous work we knew the initial speed and accuracy
of the ball velocity after a kick motion. We profiled the system
and measurement noise as well. In this section, we evaluate
the effectiveness of our tracking system in both simulated and
real-world tests.
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TABLE I

THE AVERAGE RMS ERROR OF POSITION ESTIMATION AND VELOCITY

ESTIMATION FROM HUMAN TRACKERS AND BALL TRACKERS.

Motion Model Single Model Multi-Model

Human Position Est RMS (m) 0.0030 0.0014

Human Velocity Est RMS (m/s) 0.42 0.025

Ball Position Est RMS (m) 0.0028 0.0017

Ball Velocity Est RMS (m/s) 0.4218 0.0597

A. Simulation Experiments

Because it is difficult to know the ground truth of the
object’s position and velocity in the real robot test, we do the
simulation experiments to evaluate the precision of tracking.

Experiments are done following the Naive Offense play, in
which the robot acts as the receiver and the human teammem-
ber acts as the passer. Noises are simulated according to the
model we profiled in previous work. In the beginning, the
teammember holds the ball. After a fixed amount of time, the
ball is kicked towards the robot, and the teammember moves
forward to a predefined location.

We implement both a single model tracker and a play-based
multi-model tracker for the ball and the teammember. We
simulate the experiment for 50 runs, and then compare the per-
formance of the two trackers with different implementations.
The average RMS error of position estimation and velocity
estimation are shown in Table I. The results show that the
play-based multi-model scheme performs much better than
the single model especially in terms of velocity estimation.
Because with the play-based motion model, when the ball
is being kicked, most particles evolving using the transition
model determined by the play will change its motion model
m

(i)
t from Free-Ball to Human-Kick-Ball, and a velocity will

be added to the ball accordingly.
Figure 6 and Figure 7 show the ball velocity estimation and

the teammember velocity estimation during a short term for
a given simulation test. In both figures, The left graph shows
the x-component of the velocity (vx) estimation through single
model tracking and through play-based multi-model tracking.
The right graph shows the y-component of the velocity (vy)
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estimation. The dotted line with x-mark represents the true
value, the solid line with circle represents the the velocity
estimation through play-based multi-model tracking, the solid
line with cross represents the the velocity estimation through
single model tracking. We note that the velocity estimation
with multi-model trackers approximate the true velocity in
terms vx and vy much more consistently than with single
model trackers, since the former tracker switches model effec-
tively responding to the actual change happened on the tracked
object.

B. Team Cooperation Test

In the real-world test, we do experiments on the Segway
RMP soccer robot executing the offensive play and coordi-
nating with the human teammember. The test setup is demon-
strated in Figure 8, in which the digits along the lines show the
sequence of the whole strategy, the filled circle at position B
represents the robot, the unfilled circle at position E represent
an opponent player, and the shaded circle represent the human
teammember.

When each run begins, the human teammember is at posi-
tion A . With this team cooperation plan (play), the robot
chooses the tactic CatchKickToTeammember to execute, in
which the robot starts with the skill Search-Ball. When the
robot finds the ball, the teammember passes the ball directly
to the robot and chooses a positioning point to go to either
at C or D. The robot grabs the ball after the ball is in
the catchable area and is detected by the infrared sensor
(skill Grab-Ball). Next the robot searches for the teammember
holding the ball with its catcher (skill Search-Teammember).
After the robot finds the teammember, the robot kicks the
ball to its teammember and the teammember shoots at the
goal(skill KickToTeammember, completing the whole offensive
play. Each run ends in one of the following conditions.

• succeed if the human receives the ball from the robot or
the human does not receiver the ball but the pass can be
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TABLE II

THE AVERAGE TIME TAKEN OVER ALL THE SUCCESSFUL RUNS.

Motion Model Single Model Multi-Model

Mean Time (sec) 33.4 22.6

considered as a “good” one.
• fail if the robot is in searching for the ball or the

teammember for more than 30 seconds.
• fail if the ball is out of the field before the robot catches

it.
In the experiment over 15 runs, the robot with single model

trackers fails 5 of the total. While the robot with play-based
multi-model trackers fails 2 of the total. We also keep track
of the mean time taken in all the successful runs. We list
the result in Table II. Using play-based multi-model tracking
saves 32.3% time in terms of completing the whole play over
single model tracking. During the experiment, we note that
when using the single model tracking, most time were spent
on searching the teammember. Incorporating the team cooper-
ation knowledge known as play into the teammember motion
modelling greatly improves the accuracy of the teammember
motion model and therefore avoids taking time in searching a
lost target from scratch.

VI. RELATED WORK

Tracking moving objects using a Kalman filter is the op-
tional solution if the system follows a single model, f and h
in Equation 1 and 2 are known linear functions and the noise
v and n are Gaussians [8]. Multiple model Kalman filters
such as Interacting Multiple Model (IMM) are known to be
superior to the single Kalman filter when the tracked object is
maneuvering [9]. For nonlinear systems or systems with non-
Gaussian noises, a further approximation is introduced, but the
posterior densities are therefore only locally accurate and do
not reflect the actual system densities.

Since the particle filter is not restricted to Gaussian den-
sities, a multi-model particle filter is introduced. However,
this approach assumes that the model index, m, is governed
by a Markov process such that the conditioning parameter
can branch at the next time-step with probability p(mt =
i|mt−1 = j) = hi,j where i, j = 1, · · · , Nm. But the

uncertainties in our object tracking problem do not have such
a property due to the interactions between the robot and
the tracked object. In this motivation, a tactic-based motion
modelling method is proposed in [4]. Based on that approach,
we further introduce the play-based motion modelling method
when team coordination knowledge is available. In [3], an
approach were proposed for tracking a moving target using
Rao-Blackwellised particle filter. They use a fixed transition
table between different models. Our transition model is depen-
dent on the play that the robot is executing and the additional
information that matters. This play-based motion modelling
can be flexibly integrated into our existing skills-tactics-plays
architecture.

VII. CONCLUSIONS AND FUTURE WORK

Motivated by the interactions between a team and the
tracked object, we contribute a method to achieve efficient
tracking through using a play-based motion model and com-
bined vision and infrared sensory information. This method
gives the robot a more exact task-specific motion model
when executing different tactics over the tracked object (e.g.
the ball) or collaborating with the tracked object (e.g. the
teammember). Then we represent the system in a compact
dynamic Bayesian network and use particle filter to keep track
of the motion model and object state through sampling. The
empirical results from the simulated and the real experiments
show the efficiency of the multi-model tracking over single
model tracking.

Future work will include modelling the multi-target motion
when each object has multiple hypothesis, which is caused
by incorrect measurements originating from the clutter. We
would like to see how the information from the tactic and the
play can help to eliminate false alarms and achieve efficient
resampling under the framework of the particle filter.
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