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ABSTRACT
The essence of the signal-to-symbol problem consists of associating
a symbolic description of an object (e.g., a chair) to a signal (e.g.,
an image) that captures the real object. Robots that interact with
humans in natural environments must be able to solve this problem
correctly and robustly. However, the problem of providing com-
plete object models a priori to a robot so that it can understand its
environment from any viewpoint is extremely difficult to solve. Ad-
ditionally, many objects have different uses which in turn can cause
ambiguities when a robot attempts to reason about the activities of
a human and their interactions with those objects. In this paper,
we build upon the fact that robots that co-exist with humans should
have the ability of observing humans using the different objects and
learn the corresponding object definitions. We contribute an object
recognition algorithm, FOCUS, that is robust to the variations of
signals, combines structure and function of an object, and general-
izes to multiple similar objects. FOCUS, which stands for Finding
Object Classification through Use and Structure, combines an ac-
tivity recognizer capable of capturing how an object is used with
a traditional visual structure processor. FOCUS learns structural
properties (visual features) of objects by knowing first the object’s
affordance properties and observing humans interacting with that
object with known activities. The strength of the method relies on
the fact that we can define multiple aspects of an object model, i.e.,
structure and use, that are individually robust but insufficient to de-
fine the object, but can do when combined.

Categories and Subject Descriptors: I.2.10 Vision and Scene Un-
derstanding : Perceptual Reasoning

General Terms: Algorithms

Keywords: Functional object recognition, learning by demonstra-
tion

1. INTRODUCTION
“One can only see what one knows” is a key idea that empha-

sizes the importance of prior knowledge for sensor-based object
recognition. The object models given to an intelligent robot dictate
how it can take a stream of data, such as images from a camera, and
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extract meaningful information. One way to obtain new informa-
tion about an environment is to learn through observation. Learning
through observation is a powerful technique by which a robot can
obtain knowledge about the physical world by watching humans
interact with objects within it. Specifically, such observations pro-
vide a powerful method for learning affordance properties [12] of
those objects. Affordance properties, or how an object can be inter-
faced with, capture the essence of an object’s utility. For instance,
a table can be used as a place to place objects, but it can also be
used as something to stand on. Likewise, a step ladder can be used
to reach high objects but objects can also be placed on it. In this
work, we add information related to the use or function of the ob-
ject with the aim of recognizing and generalizing objects robustly
in any environment.

In traditional object recognition approaches, models of objects
to be observed are given to an intelligent sensor as a mapping of
features of the sensory signal to object descriptions. For example,
CAD models and size and edge descriptors may be used to define
and recognize objects. The sensory data stream must be searched
for features of these objects given a number of assumptions about
the kinds of objects, their placement, and the position of the sen-
sor with respect to those objects. The signal-to-symbol problem is
extremely challenging not only due to the difficulty of defining a
general model of a specific object (e.g., a model of a specific kind
of object) but also due to the brittleness of the mapping to a general
signal (e.g., any image conditions).

As an example of the complexity of this problem, Figure 1 shows
a visual representation of a set of different kinds of chairs. Note the
difference in three-dimensional structure and volume, as well as
how the orientation of the chair with respect to the observer can
change its visually observed image. One approach to recognizing
these different chairs out of an image might involve storing three-
dimensional models of exemplar chairs (such as CAD models) and
inferring the correct orientation of the chair as well as the rela-
tive position of the observing camera to the chair. This complexity
increases as the number of different kinds of possible chairs in-
creases. Further complexity is added by considering that the range
to the chair is unknown, that there may be other objects occluding
the image of the chair, and the fact that the image of the chair has
to be extracted from a noisy and cluttered background image. In
addition, there will be many objects of interest besides chairs. As
we now well know, the complexity and size of the prior models can
quickly spiral out of control. However to intelligently process sen-
sory signals, it is critical to reason about objects and therefore the
absolute need to invest on reliable object recognition.

Our algorithm, FOCUS (Finding Object Classification through
Use and Structure), models inanimate objects in the environments
by structural and functional definitions. The structural part of the



Figure 1: An example of the complexity of modeling the visual
notion of “chair”. Chairs come in many different shapes and
sizes and their appearance can change drastically as the view-
point of the camera changes.

model aims at capturing a simple and generalized definition of an
object (e.g., a chair has some color). The functional part of the
model captures how one uses an object: one sits down on a chair.
FOCUS includes two main components: first, a structure recog-
nition algorithm which visually tracks pixel regions captured by
its camera; second, an action recognition algorithm which classi-
fies the physical actions of intelligent entities (such as humans or
robots). Objects in the environment are recognized by associat-
ing an observed action with a particular environmental feature. As
an example, by knowing where chairs are, a robot can know best
where to expect humans to spend most of their time while work-
ing in an office setting. By observing a human sitting down, the
FOCUS algorithm can classify the object on which the human sat
as functionally a chair. This would include any other object where
a human would sit, including small tables, couches, heat registers,
or even boxes. Thus, the problem space is reduced from need-
ing to reason about multiple object types to the problem of motion
recognition and classification which can be robust across different
environments.

By finding one object in the image, we can then generalize and
find multiple similar objects. We aim at giving the found exam-
ples to a learning algorithm, which will be hopefully capable of
finding increasingly better general descriptions of objects. FOCUS
uniquely contributes to the field of functional object recognition
and learning through observation in the following ways. First, FO-
CUS does not require specific visual models of the environment or
the objects presented within it to be known ahead of time. This
is in contrast to other object recognition algorithms which require
some prior or exemplar knowledge. A robot’s sensory model of
an object is blank until an observation is made of a human that in-
teracts with the object in a known fashion. Secondly, the object
descriptor that FOCUS employs abstracts away from any specific
low-level feature detection modalities. Whatever feature detection
is employed by FOCUS merely requires a method for applying the
algorithm onto an image and a method for comparing the parame-
ters of different features of the same type to determine a measure
of similarity.

The paper is organized as follows. Section 2 discussed some
related work. Section 5 describes the complete object recognition
algorithm while sections 3 and 4 discuss the lower-level visual fea-
ture extractors as well as the human activity recognition algorithms,
respectively. Section 6 describes empirical validation of the method
and section 7 concludes the paper.

2. RELATED WORK
Representing a concept as an aggregate of multiple different modes

of thinking has been proposed by [23]. In the representation of FO-
CUS, we consider both the affordance property of the object as

well as the sensory definition and merge these two representational
modes to create a much richer description of the object.

Our approach relies on visual structural information to extract
candidate features from the scene. Some examples of this range
from active contour models [18, 4], to autonomous vehicle guid-
ance on a highway [9], and tracking a leaf in a cluttered back-
ground [17]. Other work has been devoted to the problem of learn-
ing specific features through methods such as PCA [24]. In [25],
context is used to help disambiguate objects observed in scenes.
These methods worked well because of their use of appropriate
prior knowledge. However, they required much more complete vi-
sual object models to be known a priori and our work assumes that
the robot must learn such knowledge exclusively by observing hu-
mans.

Our approach also relies on human activity recognition which
is a topic that has been studied fairly extensively for a number of
years. In [13], hand gestures such as writing in different languages
on a whiteboard, as well as activities such as using a Glucose mon-
itor are recognized. In [16], finite state machine models of gestures
are constructed that by learning the spatial and temporal informa-
tion of the gestures separately from each other. An extension to the
Hidden Markov Model [28] formalism called the Abstract Hidden
Markov mEmory Model (AHMEM) [26] is used to represent both
state-dependent and context-free behaviors. A system for torso and
arm position tracking is described in [8] which fits a priori geomet-
ric models to data collected from a stereo camera. Classifying the
behaviors of individual (non-human) agents using hidden Markov
models has been studied in [14] where an overhead camera is used
to track soccer playing robots. However, much of the research has
relied on very rigid assumptions about the placement of the sensor
with respect to the object being tracked. Our work does not rely on
such assumptions and can be considered to be more general.

Functional object recognition has also been examined from the
standpoint of using visual recognition of the parts of an object to
determine how that object can be used [32]. As an example, a tool
such as a hammer can be recognized by first identifying some sort
of striking head as well as a handle [29]. Other approaches include
reasoning about the causal structure of physics in a scene [6]. A
similar approach is called Form and Function [36]. Gibson’s theory
of affordances [12] can be applied to this sort of definition in that
certain objects have forms that are derived from their functions.
Thus, the specific shape of an object can be used to identify how
the object can be used and thus ultimately identify the object itself.
One example is the ratio of height to width of individual stairs in a
staircase [22]. Another example can be found in the relative spatial
locations of an object’s components [5]. Thus can be derived one
of the key ideas that inspires our research: the affordance of an
object is directly related to its function. Our approach makes no
assumption about the structure of an object, nor of the physical
models that may govern it but rather uses an observation of a human
activity that interacts with that object to identify it as belonging to
a specific class. Only then are the structural features of that object
learned and generalized. However, those features are only useful
from the standpoint of being able to recognize similar features in
other objects.

Additionally, activity tracking was used in concert with known
object models and context in order recognize a variety of differ-
ent objects [7]. The difference between this approach and our ap-
proach is that image-based object models are known ahead of time.
No concept of how an object is used is incorporated into the dis-
ambiguation process. Our approach does not make use of known
object models but rather segments the image based on the detected
activity and updates the object model accordingly.



In work very closely related to our own, [15] combines a struc-
tural hierarchy of objects and empty spaces (voids) with tracked ac-
tivities of people interacting with them to identify objects by their
use. In this work, objects are classified as either vertical or hor-
izontal supportable objects on which someone can place or hang
portable objects. Additionally, voids are recognized as doorways
when someone moves through them. A combination of a passive
video camera and depth maps from stereo are used to pre-segment
the image in order to identify these physical characteristics. Our
approach only requires a single video camera to run and also only
focuses primarily on identifying the objects based on the specific
set of activities that the human performs on them rather than requir-
ing an ontology to describe the space. Our approach also includes a
generalization phase which takes the learned visual characteristics
of a particular object and finds other objects like it in the environ-
ment without having to observe a person interacting with them first.

Training a robot about its environment and the objects within
it has been examined from the standpoint of direct human inter-
vention, cooperative learning, and robotic self-discovery. For in-
stance, in [35] a system of gesture-based programming was de-
veloped based on a multi-agent model of “encapsulated expertise.”
Robot to robot action recognition and cooperation has been suc-
cessfully accomplished using a stereo vision system[20] and ex-
tended by [2] to “learning by imitation” in which a robot learns its
behaviors by observing the behaviors of another robot. A system
that learned the parameters for teleoperated manipulations was de-
veloped by [27]. The paradigm of learning from observation has
also been used very successfully to train humanoid robots on spe-
cific tasks [10] as well as action generation [3]. Object recognition
and learning object models from multiple sources and modalities of
information has been explored by [1]. Another method, described
in [11] and again in [30], discusses how a robot can use active per-
ception (vision and tactile information) to explore its environment
to learn structural properties of objects through manipulation. Our
algorithm draws from these two paradigms by making use of mul-
tiple sources of information gleaned by observing human activities
to learn the visual object definitions.

3. CANDIDATE FEATURE SEGMENTATION
An object to be identified has a structural and functional defini-

tion as well as spatial and temporal connections which relate the
activity recognizer with the structural recognizer. Table 1 lists the
object features and gives a concrete example of a chair, as we have
implemented.

Object Features Example: Chair
Structural Colored region
Functional Sit still(face) returns the face

position as Frame:Ft,pixel:Ps

Spatial Connection PixelDist(Ps) returns ∆p, s.t.
chair is at Ps−∆p

Temporal Connection PastFrameDist(Ft) returns ∆f , s.t.
chair is at Ft−∆f

Table 1: Chair as structure and function

The structure feature is defined in terms of color, meaning that
the model says that a chair has a color but does not specify which
color. Color as an object feature, as opposed to a CAD model,
is computationally inexpensive and more environmentally invari-
ant. Clearly, color by itself does not identify a chair, but will do so
when combined with the activity recognizer. The activity “Sit still”

is recognized by a face at some pixel location and at a frame at some
time. Table 1 shows the spatial and temporal connections between
an activity of “Sit still” and a chair. The spatial connection returns a
pixel displacement to be applied to the position of the face in order
to search for the chair. Because the body should occlude the chair,
there is a temporal connection between the body and the chair. This
temporal connection shows which frame the chair should be visible
in the past. Spatial and temporal connections can either be given
explicitly in the model, or could be associated with procedures to
determine them, i.e. the temporal connection procedure could re-
turn the first frame where the person is not occluding an object.

Because each low-level feature abstraction must define its own
specific candidate feature and similarity measure components, we
present example algorithms for the contiguous region feature. This
feature detector uses color and shape homogeneity constraints to
segments each image into contiguous regions of similar color. Cur-
rently, two different types of low-level features are implemented in
FOCUS. The first is a contiguous region tracker, described in [34],
and the second is based on the PCA-SIFT [19] algorithm. The for-
mer algorithm, illustrated in Figure 2, tracks regions from frame to
frame and thus does not have to re-segment each new image. Each
of these tracked regions becomes potential candidate features for
objects.

Figure 2: Example of the region growing algorithm starting in
the upper left and going to the lower right. In this figure, the
boundaries for light-colored region are found by an expanding
boundary illustrated by white dots. The final region is shown
in black.

4. ACTIVITY RECOGNITION
We assume that the objects we want to recognize are used by hu-

mans and therefore, we want to detect those human’s activities. We
detect people by searching a video stream for faces [31]. Because
natural human environments contain objects that are typically un-
known and unmodeled, detecting people’s bodies is very challeng-
ing and difficult to do properly. As a result, the most robust feature
for detecting a person becomes their face. Faces are very unique
and distinguishing features which greatly simplify the task of de-
termining whether an object is a person or not. The face detection
algorithms that we use are a compromise between the need for ac-
curate and robust person detection and the needs for CAMEO to op-
erate in real-time. The decision to process facial data only directly
affects the selection of specific features for activity recognition.

The relative displacements of the face positions are calculated
(difference from one frame to the next) and given as input to the
activity recognition algorithm. We have defined a finite state dia-



gram that encapsulates a coarse level of possible activities that can
be detected in the data stream of visually tracked faces. Figure 3
illustrates the state diagram of the activities FOCUS can now rec-
ognize.

Sit stillStand still

StandingWalking

Walking

right

up

right

Fidget

Fidget

left

Sitting

down

left

Figure 3: Example finite state diagram for a single person in a
meeting.

The “Sit still” state represents instances when a person is sitting
in their chair and is stationary. The “Fidget left” and “Fidget right”
states represent motion of those people in their chair, such as if they
look around or lean to one side to talk to someone. The “Standing
up” and “Sitting down” states represent the transitions from a “Sit
still” and “Stand still” state. These are the actual activities involved
with getting up from one’s chair and taking one’s seat, respectively.
Finally, once a person is in the “Stand still” state, they can “Walk
left” and “Walk right”.

We use the Viterbi algorithm [28] to infer the person’s state given
the sequence of data from the detected face positions. Viterbi is a
dynamic programming algorithm which takes into account the state
transition probabilities to generate the most likely state sequence
that could have generated the observation sequence. This is more
formally defined as:

q1:t = argmax
q1:t

P (q1:x|y1:t) (1)

where qt is the most likely state at time t. Thus, for each timestep,
Viterbi computes a term δt(j), defined as:

δt(j) = max
i

[δt−1(i)P (Xt = j|Xt−1 = i)]P (yt|Xt = j) (2)

which is initialized as:

δ0(i) = P (X0 = i)P (y0|X0 = i) (3)

Additionally, the index of the most likely state at time t − 1 to
transition into each state at time t is computed and stored in a table
ψt(j) as follows:

ψt(j) = argmax
i

[δt−1(i)P (Xt = j|Xt−1 = i)] (4)

Finally, after the entire observation sequence has been analyzed in
this fashion, the state sequence is obtained by backtracking over the
table of ψ values ranging from t = 0 to t = T :

qT = argmax
i

[δT (i)]

qt = ψt+1(qt+1) (5)

After the most likely activity state sequence has been computed
for each tracked face, the location of the face is returned by the
action recognition algorithm along with the specific activity name.
This is used by FOCUS to identify when a human has potentially
used an object of interest.

5. OBJECT CLASSIFICATION BY USE AND
STRUCTURE

FOCUS combines activity recognition with visual feature extrac-
tion to learn to associate what features belong to a specific func-
tional object type. Figure 4 illustrates the overall FOCUS approach.
In addition to the face tracking and activity recognition modules for
identifying people and their activities, FOCUS uses a feature ex-
traction and segmentation module to identify potentially significant
structures in the environment. While in this example, the sensory
data is provided by a stationary camera, the algorithm can easily be
generalized by mounting the camera on a moving robotic platform
and tracking the objects from frame to frame as the robot moves
in its environment. The structural feature detector used by FOCUS
(described in section 3) was originally implemented for tracking
contiguous regions in the environment by a fast-moving robot.

5.1 Object Class Definitions
FOCUS connects the output from the activity recognizer with

the list of potential object candidates returned by the visual fea-
ture segmentation algorithm. This allows the algorithm to infer
the functional relationship between objects and activities and as-
sociate a specific set of visual features with the object in ques-
tion. FOCUS object class definitions consist of several compo-
nents, some of which must be defined a priori. The pre-defined
components represent the prior knowledge about humans and ac-
tivities that must be known before the visual features of any object
can be learned. The unknown component of an object is the vi-
sual feature definition which, unlike the other components, will be
learned dynamically.

Affordance property Each object class to be detected must have
a specific activity that can be recognized when the human
uses it. For FOCUS, a chair is any object that a human can
sit down upon, and a door is any region that a human can
walk through. By identifying the associated actions when
they occur, the location of the person in the image is used to
specify low-level visual features that are part of the object.

Spatial association Just as with the activity recognition module,
several a priori assumptions are made about the relationships
of people and the environment. Portals will be larger than the
person walking through them, “chairs” will be below head-
height, “tables” will not be taller than a person, etc... Heuris-
tics can be employed to identify typical regions that are the
walls and ceiling (if visible). These regions can then also be
excluded from consideration. When an activity is detected,
the low-level visual feature that best matches the spatial as-
sociation criteria is selected as the best candidate.

Temporal association When an action is detected, the person in-
teracting with the object will typically occlude the object
from the robot’s point of view. Therefore, FOCUS cannot
assume that it can find the object in the current image using
the spatial information inferred in the previous section. In-
stead, a previous image from a stored history must be used.
In this model, the index of the previous frame can be given
or can be inferred by assuming a maximal size of the object.
By searching backwards over the face tracking results, an im-
age can be found when the person’s location was not close to
their current position. If the robot has never viewed the area
behind the person, the algorithm will fail and the robot must
either wait for the person to get up and move, or it should
move to a new view point and wait for a similar action to
take place later.
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Figure 4: Flow diagram of FOCUS. In this example, an omni-directional camera captures raw video from the environment. This
video is searched for human faces. When a face is found, the person is tracked over time. The motions of the individual faces are
analyzed for specific activities. Finally, the “functional” aspects of the activity are used to classify “structural” features of objects
used in that activity (i.e., chairs are identified where people sit).

Visual descriptor Initially, this component of an object class is
empty as the robot has not observed any data that can be
stored within it. When a specific visual feature is associated
with a detected human activity, the details of the visual fea-
ture descriptor along with its parameters are stored in this
field of the object class. If distinctly different feature types
are detected later but which still correspond to the same ob-
ject type (such as the different chairs in Figure 1), they are
appended to the list of possible feature descriptors. Thus,
for this example, FOCUS can greatly enrich its definition of
objects that can function as chairs.

Object generalization Having associated a candidate feature for
the chair object, FOCUS searches the image for an instance
of similar features. A match would be an indication of po-
tential other chairs. In order to accomplish this, a similarity
measure is defined which allows FOCUS to compare feature
sets found in the regions. In our example, region features in-
clude mean color, size, and boundary shape. For the case of
color, we define two regions to be similar if their color dis-
tance is below a given threshold tc based on the Euclidean
color distance in RGB color space. Similarly, their boundary
shapes must match based on comparison of their curvature
parameters.

5.2 The Algorithm
The FOCUS algorithm tracks humans as they move around their

environment. The structural feature processor segments the image
into chunks based on homogeneity constraints defined by the visual
feature extraction algorithm. When an activity is recognized, that
activity is used to find the object class whose specific affordance
property matches. The spatial correspondence and temporal cor-
respondence features of that object class are then used to identify
the specific visual structural component in the image that will be
correlated with the activity. This object’s specific visual features
are stored in the visual descriptor and the parameters are used to
perform a search for similar objects in the image that match those
parameters based on the object generalization parameters.

6. EMPIRICAL VALIDATION
Figure 5 shows an illustrative example of the FOCUS algorithm

operating on a video stream. A chair is defined as an object with
some color (not specified ahead of which color.) Two different
types of chairs, red and blue, are recognized through two persons
sitting on one chair of each type. The region segmentation algo-
rithm is also running over this image and is identifying contiguous
regions of similar color (boundaries between regions are shown as
black lines). In Figure 5(a), a person is tracked and is identified
as walking while in Figure 5(b), the person is identified as stand-
ing. In Figure 5(c) the person is identified as sitting down. Using
the knowledge about the spatial relationship between the position
of the face and the expected location of the chair, the segmented
region which is closest to the expected position of the chair is con-
sidered to be a structural feature of that chair. However, FOCUS
needed to return to an image before Figure 5(b) to find that candi-
date region as the person moved and occluded the chair from that
point on. To find hypotheses for other chairs, the system searches
the image for regions with similar color (see Figure 5(c)). Nearly
all of the red chairs were found in this way. However, since there
were two types of chairs with two different colors (red and blue)
present in the room, not all chairs are found. In Figure 5(d), a sec-
ond person walks through the room and sits down now in a blue
chair. In this instance, the same algorithm is performed but now, a
blue blob is identified as a chair. All regions that are similar to this
one are identified as being chairs of type 2, as shown in Figure 5(e).
From this example, we can see that FOCUS has identified an asso-
ciation between a particular set of low-level vision features and the
activity of sitting down. The results of this particular experiment
are shown in the table below:

Chair type Total Detected False positives
Red 15 9 3
Blue 5 3 0

The table shows the total number of chairs of each color type
that could have been detected is compared to the actual number that
were detected. Additionally, any incorrectly objects incorrectly la-
beled during the detection phase are also shown. Note that not all



of the chairs in the room are identified properly. Partially, this is
because not all of the chairs are necessarily the same shape as the
exemplar chair from the robot’s point of view. The shape differ-
ences are too great with respect to the similarity metric that is used
for the color/shape detection algorithm. These chairs would be de-
tected once another person sat down in them and the other objects
of similar shape/color would then be labeled appropriately. This is
also an example of how one structural feature detector (shape and
color) can be used. FOCUS is agnostic to the specifics of the fea-
ture detector and can make use of any other sort of structural fea-
ture detector algorithm such as PCA-SIFT [19] or KLT [21] [33]
tracked features. The benefit for a robot that uses FOCUS to under-
stand its environment is the association of environmental features
with particular human affordance properties. Even if the robot is in-
capable of directly manipulating the object (for example, how can
a wheeled robot sit down?), it is sill capable of reasoning about that
environmental feature as an object that must be taken into account
when reasoning about human interactions.

7. CONCLUSIONS
Object recognition is a well-known and difficult problem, partic-

ularly from images where different views of objects and taken in
different environments. In this paper, we have contributed an ap-
proach that aims at overcoming two main issues: (i) the brittleness
of object recognition with respect to signals in specific environ-
ments; (ii) the difficulty of accurately defining universal structural
properties of objects. FOCUS combines a simple structural defi-
nition of objects with their use. Object usage is tracked in terms
of motion detection which is quite robust with respect to the envi-
ronment. FOCUS tracks the use of an object through recognizing
activities of people in interacting with the environment. A simple
structural definition, in terms of general features is associated with
the activity when the latter is detected. FOCUS then generalizes to
finding the candidate similar objects in the image. For robots that
must interact with humans in natural environments, the space of
possible object definitions can be very large. However, by defining
objects rather by a smaller set of possible human uses, this space
can be reduced to a tractable size. Additionally, by reasoning about
how the objects are used by humans, a robot that makes use of the
FOCUS algorithm take on a much more human-centric perspective
which in turn can lead to more natural human/robot interactions.
Our method shows that a poorly-defined structural model of an ob-
ject combined with its use can be powerful at classifying and ob-
jects in a scene. The paper presents the specific fully-implemented
example of identifying a chair. The method extends to any objects
by adding the corresponding structural and activity models.

FOCUS continually learns by observing how humans directly in-
teract with objects. Right now, there exists no notion of identifying
objects indirectly within FOCUS, but this is an area of active fu-
ture research. An important distinction between FOCUS and other
functional object recognition approaches is that FOCUS makes no
restrictions on the kinds of objects that can belong to the different
classes. That is, classes do not need to be disjoint sets. For exam-
ple, a table could belong to a class of “chairs” (things to sit on) as
well as a class of “ladders” (things to climb on.) This acknowledges
the simple fact that a single object can be multi-function. Because
the learned entries for these classes are data-driven, higher-level
descriptions (such as formal dictionary definitions of objects) do
not bias the learning algorithm. As a result, FOCUS is capable of
learning how objects can be used in novel fashions that fit outside
their “traditional” uses and definitions.
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Figure 5: Snapshots from a video illustrating FOCUS running. In (a)-(b) a human’s face is tracked while walking to a chair. At the
same time the image is segmented into homogeneous regions. In (c) the action recognition algorithm determines that the person is
now sitting in a chair, and the segmented region, associated in space and in a previous frame, instantiates the visual characteristics
for the chair, in this case colored red. All regions with a similar color are detected, in order to find chairs of the same type. In (d)-(e)
the process is repeated with a second person, sitting on a second type of chair.


