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Abstract also enable teams of heterogeneous robots to perform effi-
ciently under dynamic and uncertain conditions. Thus, the
teams are envisioned maintaining a long-term presence on overall research challenge is to provide a principled method-
other planets, effective coordination of human-robot teams ology for creating pickup teams. This paper presents a first

is paramount. Two critical research challenges that must be approach to address this ChaIIer.lge..
solved to realize this vision are the human-robot team chal- The human-robot team coordination challenge further re-

lenge and the pickup-team challenge. In this paper, we ad- ~ quires robust team operation across multiple environments,
dress these two challenges, propose a novel approach to solve  team capabilities applicable across humans and multiple ro-
both challenges, and evaluate our approach in the newly in-  bot types, effective multi-human-multi-robot interaction in
troducedreasure huntlomain. a team setting, and teams that improve over time. Compe-
titions, such as RoboCup, have been effective in focusing
; efforts to overcome some of these challenges (Netdal.
Introduction 1998). However, these competitions focus on part of the
We have entered a new era of Space exploration that requiresoverall problem and do not generally address teams formed
the sustained presence of human-robot teams on other plan-in an ad-hoc manner, complex environments beyond a well-
ets. Meeting this requirement entails solving many research defined soccer field, and the complexities of heterogeneous
challenges. Two critical challenges to be solved are effec- teams. This paper focuses on dynamically forming teams
tive coordination of human-robot teams and enabtiiogup of humans and heterogeneous robots to perform tasks that
teams In response to these challenges, the vision that drives require coordination. The robots have limited individual ca-
the reported work is that humans and robots will dynami- pabilities, can sense different information about their envi-
cally form teams to solve complex tasks by efficiently join-  ronment, and can be assigned abstract tasks for execution.
ing their complementary capabilities. Robots can solve primitive tasks in different ways depend-
The Pickup Team challenge is to dynamically form teams ing on the robot capabilities and the prevailing environmen-
of robots (and possibly humans) given very little a priori in-  tal conditions.
formation. That is, team members may have only minimal We propose a novel approach to solving both the pickup
prior knowledge of each others’ behavior, the tasks at hand, team challenge and the human-robot team coordination chal-
and the environments they operate in, but are able to com- |enge. The proposed approach combines and extends three
bine effectively. There are several additional reasons why an previously proven components: THeaderBots market-
increased understanding of pickup teams is needed. First, based coordination approach for efficient and flexible allo-
the development of large teams or teams of expensive ro- cation of tasks to teams and roles to team-membiies;s
bots at the same site at the same time is impractical. This for synchronizing team-execution of coordinated tasks, and
limitation currently hinders multi-robot research. Success- the multi-agent multi-modal dialog systefeamTalk This
ful pickup teams will facilitate further research by allow-  approach is implemented on a team consisting of a human, a
ing separate researchers to easily pool their robots to cre- Segway RMP robot, and a Pioneer IIDX robot, and demon-
ate teams for further study. Second, robots may be neededstrated in a treasure hunt scenario.
for emergency tasks where there may be insufficient time
to hand-engineer the coordination mechanisms before task The Treasure Hunt Domain
execution. Pickup teams enable robot teams to be formed
on very short notice for such tasks. Third, as robots fail,
get lost, or otherwise malfunction, it is often necessary to
substitute or add new robots. Successful pickup teams wil
allow the integration of new robots into existing teams, and

In this new era of space exploration where human-robot

To investigate the coordination of human-robot pickup

teams, we require a domain that will allow for dynamic and

| heterogeneous team formation, encourage coordination and
tight coupling between team members, and provide a metric
against which to compare team performances. We believe

Copyright © 2005, American Association for Avrtificial Intelli- the treasure hunt domain, jointly proposed by researchers at

gence (www.aaai.org). All rights reserved. The Boeing Company and at Carnegie Mellon University,



provides for each of these characteristics.

The treasure hunt domain consists of human-robot teams
competing in and exploring an unknown space. The robots
are heterogeneous, and the particular capabilities necessary
to accomplish hunt tasks are distributed throughout the team.
The hunt tasks require a team to acquire specific objects,
the treasure, within an unknown or partially-known environ-
ment. Thus a representation of the world must be built as
it is explored, and the treasure must be identified and then
localized within the built representation. Team coordination
follows as a direct necessity, as the abilities required to per-
form each of these tasks are distributed throughout the team
members.

The ultimate goal with respect pickup team formation is
speed and flexibility. Within this domain, not only are teams Figure 1: The left figure shows a Segway robot, while the
created quickly and on the fly, but each member has no prior right figure shows the pioneer robots.
knowledge about the abilities of its potential teammates; a
robot knows of its own capabilities only. Inherent to the defi-
nition of a hunt task are the abilities necessary to accomplish nated search of the space and the maintenance of an accu-
it. Communication between potential pick-up team mem- rate shared knowledge about the space. As such, this domain
bers is therefore carried out at the time of team formation, to provides a rich environment in which to push the boundaries

ensure the satisfaction of all capabilities requirements. of adaptive, autonomous robotics.
This domain can also be extended to include an adversar-
ial environment in which to execute the hunt tasks. Teams Component Technologies

can compete against the clock, with the intent of collecting
as much treasure as possible within the allotted time or com-
pete against other dynamically formed teams. A metric for
team performance can be the amount of treasure collecte
by the team in a given time period, or conversely, the time
:?(l(::u?g a team to collect a percentage of the total hidden STP: Skills, Tactics, and Plays
In our specific treasure hunt implementation, potential Veloso and colleagues (Bowling, Browning, & Veloso 2004)
team members include humans, Pioneer robots and the ro-introduce a skills, tactics, and plays architecture (STP) for
botic Segway RMP platform provided by Segway, LLC (see controlling autonomous robot teams in adversarial environ-
Figure 1). The Pioneer robot is equipped with a SICK laser ments. In STP, teamwork, individual behavior, and low-level
and gyroscope, and is therefore able to both construct a map control are decomposed into three separate modules. Rel-
of an unknown environment, and localize itself upon that evant to our implementation are Plays which provide the
map. The Segway robot has been outfitted with two cam- mechanism for adaptive team coordination. Plays are the
eras, by which it is able to visually identify both the Pioneer central mechanism for coordinating team actions. Each play
robot and the treasure. The presented task is to search forconsists of the following component&) a set of roles for
and retrieve treasure. To explore an area while searching for each team member executing the pl@y,a sequence of ac-
the treasure, the Pioneer is able to navigate and build a map,tions for each role to perfornfc) an applicability evaluation
while the Segway is able to follow the Pioneer and search function,(d) a termination evaluation functiog) a weight
for treasure. Upon treasure identification, the robots must to determine the likelihood of selecting the play.
return home with the treasure. By localizing on its created  Each play is a fixed team plan that describes a sequence of
map, the Pioneer is able to determine the home location; the actions for each role in the team toward achieving the team
Segway then follows the Pioneer as it proceeds home. Team goal(s). Each of the roles is assigned to a unique team mem-
coordination between the robots during execution is accom- ber during execution. The role assignment is based on the
plished jointly via the visual identification of the Pioneer by  believed state of the world and is dynamic (e.g., role A may
the Segway, and by communication between the two robots start with player 1, but may switch to player 3 as execution
should this visual link be lost (in which case the Pioneer is progresses). Note that the role assignment mechanism is in-
commanded to pause, until seen by the Segway). Commu- dependent of the play framework.
nication additionally occurs when the Segway informs the  The concept of plays was created for domains where tight
Pioneer that treasure has been found. synchronization of actions between team members is re-
The treasure hunt domain satisfies the criterion set for the quired. Therefore, the sequence of tactics to be performed
study of the performance of human-robot pickup teams. It by each role is executed in lock step with each other role in
offers a number of challenging aspects, including robust and the play. Hence, the play forms a fixed team plan whereby
efficient operation in unconstrained environments, and ad- the sequence of activities is synchronized between team
hoc team formation. Efficient execution requires a coordi- members.

In this section we review our current approaches to team-
work — Skills, Tactics, and Plays (STP) for team coordi-

ghation in adversarial environments, and TraderBots for ef-
ficient and robust role assignment in multi-robot tasks.



As not all plans are appropriate under all circumstances,
each play has a boolean evaluation function that determines
the applicability of the play. This function is defined on the
team’s belief state, and determines if the play can be exe-
cuted or not. Thus, it is possible to define special purpose
plays that are applicable only under specific conditions as
well as general-purpose plays that can be executed under
much broader conditions. Once executed, there are two con-
ditions under which the play can terminate. The first is that
the team finishes executing the team plan. Each play in-
cludes an evaluation function that determines whether the
play should be terminated. As with applicability, this evalu-
ation function operates over the team'’s belief state. Hence,
the second means of ending a play is if the termination eval-
uation function determines that the play should end, either
because it has failed or is successful.

Team strategy consists of a set of plays, called a play-
book, of which the team can execute only one play at any
instant of time. A play can only be selected for execution
if it is applicable. From the set of applicable plays, one is
selected at random with a likelihood that is tied to the play’s
weight. The plays are selected with a likelihood determined
by a Gibbs distribution from the weights over the set of ap-
plicable plays, which means the team strategy is, in effect,
stochastic. This strategy is desirable in adversarial domains
to prevent the team strategy being predictable, and therefore
exploitable by the opponent.

TraderBots

TraderBots, developed by Dias and Stentz (Dias 2004) is a
coordination mechanism, inspired by the contract net pro-
tocol by Smith (Smith 1980), is designed to inherit the ef-
ficacy and flexibility of a market economy, and to exploit
these benefits to enable robust and efficient multi-robot co-
ordination in dynamic environments. A brief overview of
the TraderBots approach is presented here to provide con-
text for the reported experimental results and analysis.
Consider a team of robots assembled to perform a par-
ticular set of tasks. Consider further, that each robot in the
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Figure 2: TeamTalk system architecture

ing local costs in terms of the global value of the tasks being
performed.

TeamTalk

The human interface to the robots, TeamTalk (Haetigl.
2004), is a multi-modal multi-agent dialog system, which
accommodates multiple dialog agents and supports multi-
ple simultaneous conversations. TeamTalk is based on the
Ravenclaw dialog manager (Bohus & Rudnicky 2003), a
generalized framework that makes use of task-tree repre-
sentations to manage interaction between the user and the
computer (in the present case, multiple robots). In addition
to Ravenclaw, TeamTalk makes use of various spoken lan-
guage technologies developed at Carnegie Mellon. These
include Sphinx-11 (Huanget al. 1993) for automatic speech
recognition and Phoenix (Ward 1994) for context-free gram-
mar parsing. Language generation is template based and
synthesis (the Kalliope module) uses Swift, a commercial-
ized version of the Festival synthesizer (Blaakal. 2004).

A diagram of the system architecture, as configured for one

team is modeled as a self-interested agent, and the team ofiUman and two robots is shown in Figure 2.

robots as an economy. The goal of the team is to complete
the tasks successfully while minimizing overall costs. Each
robot aims to maximize its individual profit; however, since
all revenue is derived from satisfying team objectives, the ro-
bot's self-interest equates to doing global good. Moreover,
all robots can increase their profit by eliminating excess cost.
Thus, to solve the task-allocation problem, the robots run
task auctions, and bid on tasks in other robots task auctions.
If the global cost is determined by the summation of indi-
vidual robot costs, each deal made by a robot will result in
global cost reduction. Note that robots will only make prof-
itable deals. Furthermore, the individual aim to maximize
profit (rather than to minimize cost) allows added flexibility
in the approach to prioritize tasks that are of high cost and
high priority over tasks that incur low cost but provide lower
value to the overall mission. The competitive element of the
robots bidding for different tasks enables the system to de-
cipher the competing local information of each robot, while
the currency exchange provides grounding for the compet-

The TeamTalk system provides a framework for exploring
a number of issues in human-robot communication, includ-
ing multi-participant dialog and grounding. We will briefly
discuss some of these issues and describe our current solu-
tions.

Managing multi-participant dialogs Building systems
with multiple human and robot participants presents several
challenges. After considering several alternatives, we settled
on the following design. Each human participant is given
a complete interface hosted on a single computer incorpo-
rating the components that perform speech recognition, un-
derstanding, generation, and synthesis. An alternative and
seemingly natural solution would have been to give each ro-
bot its own spoken language capability, but this anthropo-
morphism is not necessary. A single transducer for the hu-
man also allows us to mitigate the effects of environment and
distance. Associating the interface directly with the human
also allows us to use a multi-modal interface that combines
speech and gesture in a single device (a tablet computer).



Finally, there is the issue of cost as the number of robots a sequence of action primitives that can actually be executed
increases. by the robots, but a role can also require a certain set of
TeamTalk creates a stateful dialog manager for each ro- capabilities. Robots only bid on roles that they have the ca-
bot; this manager handles all of the human-side communi- pability to perform, thus accommodating the heterogeneity
cation. TeamTalk automatically spawns a new dialog man- of the robots and providing an efficient way for new kinds of
ager whenever the system detects a hitherto unknown robot. robots with different sets of capabilities to represent them-
This mechanism allows the system to deal gracefully with selves to the system. Traderbots also requires that robots

the appearance of new robots on the team.
To support flexible communication, user input is broad-

have the ability to estimate the cost of actions; for instance,
a cost may be the total distance that a role requires a robot

cast to all robots on the team, much as one might encounter to move. By minimizing cost i_n performing role allocations
on a shared radio channel. Broadcasting also allows us to we hope to not only get feasible solutions but also to have

support more complex group addressing functions (see be-

low) and creates the conditions for beneficial eavesdropping.

Grounding concepts and clarification dialog Robust
mechanisms for grounding are an essential part of interac-
tion between agents, particularly in open domains where

novel events and entities can occur. The Treasure Hunt calls

for interactive technigues that allow humans and robots to

develop common shared understanding of the environment

that they are operating in. For example, a newly activated
robot needs to communicate its capabilities to the human by

transmitting an ontology (and associated language) that can
be used to configure understanding, generation and popu-

late the sub-task library. Grounding is also performed dur-
ing activities. For example, a shallow but useful form of
grounding is agreeing on names for landmarks (with names
chosen from a closed set of labels). A more complex ver-
sion would involve introducing new labels to the system

(given that task-specific names make more sense than ab-

high efficiency.

The heterogeneity of the pickup teams demands that much
care be taken during play execution; roles may depend on
each other, and all robots need to do their part to actually
discover, localize, and retrieve treasure. Thus, once the allo-
cation has been performed, the tight coordination subsystem
must monitor and direct play execution.

The following describes our implementation of the sub-
systems for dynamic pickup team allocation and tight coor-
dination. The first part introduces the main components of
implementation, and the second part of the section illustrates
system performance by describing the life cycle of a treasure
hunt task as it moves through allocation to execution.

Implementation Components

To realize the full functionality of our system, a number of
different processes must be run on each of the different ro-
bots, as well as on a human operator’s workstation. The fol-

stract ones). We can go beyond that and have a system thalj, ing describes only those processes essential to the func-

can generalize mappings between labels and features in the

environment ("Call that a doorway”, "Now go to the door-
way"). Current capability includes only fixed labeling.

Clarification deals with confusions and ambiguities in
communication due either to processing (for example recog-
nition errors) or actual ambiguities ("I know of two doors.
Which one do | go to?”). In the case of recognition or un-
derstanding errors clarification is triggered by confidence
metrics computed for recognition accuracy, grammar cov-
erage, concept history, the task, and per-robot policies. In
this way, the system can conservatively ground concepts for
high risk tasks, and yet liberally and efficiently execute low
risk tasks. An example, of a per-robot policy is as follows:
the Pioneer robot with its laser-based collision detection will
translate on command, only asking for command confirma-
tion when there is a very noisy speech signal; conversely,
the Segway SMP, with its high momentum, poor odometry,
and total lack of collision detection, almost always asks for
translation confirmation.

Implementation

tion of the system.

The top layer of our implementation consists of a num-
ber of Traders. Each agent, including the human operator,
is assigned a Trader. A Trader is the agent’s interface to the
market. The Trader can introduce items to be auctioned to
other Traders by sending a call for bids, can respond to calls
for bids with bids, can determine which bids are most benefi-
cial for the auctioning agent, and can issue awards to bidders
that have won auctions. Each robot agent has a trader called
a RoboTrader.

In our system the human operator has a trader, called the
OpTrader. Each human team member uses TeamTalk as a
client from which to communicate with the OpTrader. In
this implementation, TeamTalk runs on a tablet PC, and each
human team member carries the tablet PC with them. The
tablet runs an instance of the TeamTalk software, provides
for pen-and-tablet-based i/o with the robots, and provides for
speech-based i/o though an attached headset microphone.

A human team member (each with an instance of
TeamTalk) is a TeamTalk client of the OpTrader, and each
TeamTalk instance spawns a Ravenclaw dialog manager for

We have attempted to address two main challenges in our each active robotp x m stateful dialogs are held, where

implementation. The first is the dynamic formation of
pickup teams efficiently given heterogeneous robots. We

n is the number of human team members (and TeamTalk
instances) andn is the number of robotic team mem-

have adapted the Traderbots system to perform this func- bers. Each TeamTalk instance contains a single automatic
tion. Tasks are matched with plays consisting of a number speech recognition engine, parser, natural language genera-
of roles; the roles of the play, when performed, should sat- tion module, text-to-speech engine, and pen-and-tablet inter-
isfy the requirements of the task. Each role in a play contains face. For each robot that comes on-line, the interface spawns



a separate dialog management system and confidence annomodel confidences from Sphinx, additional confidence an-
tation module. notations imparted by Phoenix’s parser coverage of the hy-
The PlayManager forms the next component module. The potheses, and the expectation agenda generated by Raven-
primary role of the PlayManager is to select useful plays for claw based on that robot's dialog state. From all of this
a task and to coordinate the execution of activities in a play evidence, Helios picks concepts to pass to the dialog man-
across a small sub-team to perform a won task. The Play- ager, and assigns a final combined confidence value for each
Manager can select plays to be bid upon for a specified task, unique concept that is passed along.
coordinate the execution of a play with the play managers At this point, each robot’s dialog manager has received
for the other assigned roles, execute the sequence of tasksa set of concepts with associated confidences. Each dia-
for its particular robot, and synchronize the activities, where log manager decides whether it is the addressed robot in the
required, between the different roles. dialog or it is simply eavesdropping on a conversation be-
A final important component, the Robot Server, provides tween the human and another dialog partner. We allow for
an interface between the PlayManager and the componentsthe possibility of opportunistic eavesdropping, so that an un-
on the robot responsible for controlling the robot. A strength addressed robot could, for example, develop a better context
of our system is that neither the PlayManagers nor the from which to understand the next utterance that may ac-
Traders need to know very much about how the control of tually be addressed to it. The dialog manager may act on
the system is actually implemented, as the Robot Server the concepts, or it may engage in a grounding action on one
serves as the single point of contact. Thus the Robot Serversor more of the concepts. This decision is made based on a
on the robots must understand a standard packet, cause Playpolicy that depends on the concept confidence history in the
Manager commanded actions to be performed, and to senddialog, and the action to be performed (more on this below).
action statuses, but beyond that robot platform developers The dialog is a mixed-initiative dialog, so that if certain con-
are free to develop their system in any fashion they wish.  cepts are provided that only partially complete some agenda,
the dialog system may take initiative to obtain the missing
information. For example, "how far do you want me to go
backwards?”. Based on grounded concepts, the dialog man-
ager sends messages to the back-end manager, which in turn
inserts tasks to a®pTraderserver.

The Treasure Hunt Task Life Cycle
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Auction Call
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= A task is issued and enters the Trading system Initially,

the human operator designates a SearchArea task, embed-

ding the points of a bounding polygon in the task data. The

task is sent to the OpTrader. The OpTrader creates an auc-

tion call with the task data, serializes it, and sends it via the

wireless network using UDP to all RoboTraders (see Figure

3).
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raders receive the call for bids from the OpTrader. They
deserialize the call and pass the task specification to their in-
dividual PlayManagers over a UDP socket connection. Each
contacted PlayManager will compare the task string against
the applicability conditions for each play in its playbook. It
will then select a play stochastically amongst the set of plays
that are applicable, and return this play to the RoboTrader.

Figure 3: Parts (a) and (b) of the task life-cycle as discussed

in the Implementation section.
The RoboTrader assesses the playThe RoboTrader now

has a play matching the task and a set of roles. It then must

select one of the roles for itself. For each role in the play, the
A human operator utters (or pen gestures) a task If the RoboTrader first considers whether or not it possesses all the
message was a pen gesture, it is passed directly to Helios. capabilities required to perform that role. For all roles for
If the task is an utterance, it is decoded by Sphinx into one which it is capable, the Trader then performs a cost evalua-
or more hypotheses along with associated confidence scorestion.
The hypotheses are routed to Phoenix, which parses each hy- In the treasure hunt we are largely concerned with mini-
pothesized utterance, and for each parse, generates the conmizing the time it takes to accomplish the task. As our ro-

cepts and additional confidence annotation.
These concepts are routedroinstances of Helios, one

bots move roughly the same speeds during play execution,
we try to minimize distance traveled as an approximation of

for each robot. Helios examines the acoustic and language time. If robots were heterogeneous with respect to speed this



PIONEER 1

RoboTrader

Play — SEARCH 1
Role 1 — Cover area and map — Cost $105

' Role 2 — Follow and look for treasure.
___________ Lo T

Figure 4: The RoboTrader, upon receiving a play from the

PlayManager, selects a play for itself and produces a cost
estimate. It auctions the other role in the play to the other

robots.

should be reflected in their costing function. For most roles,

cost is computed as total metric path cost for goal points to
be visited in the role. Costing in our system is modular, so

additional or different costing functions can be added easily
as required.

Once a cost has been assigned to each role, the RoboT-

rader selects the lowest cost role for itself, then prepares an
auction call with all the remaining roles. This auction call is

Play — SEARCH 1
Role 1 — Cost $105

Role Bid Role Bid Role Bid
Role 2 Role 2 Role 2

Cost $180 Cost $140 Cost $ 00
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Figure 5: Receiving the bids for the remaining role, the Op-
Trader selects the lowest cost bid.
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Figure 6: The bids from all plays are returned to the Op-

serialized and sent to the other Traders, as shown on the left Trader, who selects the lowest cost task bid and sends a task

in Figure 4.

The other RoboTraders bid on the role auction After

the other RoboTraders receive and deserialize the role call,
they determine their own cost for each role in the call. For
any role in the call that requires capabilities the Trader does
not possess it assigns an infinite cost. For all roles that the
Trader can perform, it assigns the cost determined by the
costing function. Note that the Trader must bid on all roles
for which it is capable. The role bids are then returned to
auctioneering RoboTrader (shown in Figure 5).

The RoboTrader bids on the task Once all bids are re-
ceived or a timeout has expired the auctioneer RoboTrader
then determines the winner or winners of the role auction.
All role bids are considered, and the lowest cost bid is se-
lected. If that bid is non-infinite, the role is designated as
assigned to the bidding Trader. As a Trader can only win
a single role in a play, that Trader’s other bids are nullified.
Additionally, all bids for that role from any other Trader are
nullified. Then the lowest cost remaining bid is considered;
this continues until all roles in the play are assigned or there
are no remaining bids.

If all roles from the play have been assigned, the RoboT-
rader constructs a bid for the original task, with a cost that

award to the winning bidder.

is summed over all assigned role cost estimates. The bid is
sent to the OpTrader. This process is shown in Figure 6.

Task and role awards are granted Once the OpTrader
has received bids from all RoboTraders or a call timeout has
expired it awards the task to RoboTrader with the lowest cost
bid. An award message is sent to the winning RoboTrader.
All other RoboTraders are informed they lost the auction.
The winning RoboTrader then sends role award messages to
all RoboTraders that were assigned roles in the winning play.
Note that at this point the RoboTrader still has not accepted
the task award.

Awards are accepted and play execution begins The ini-

tial role bids made by the RoboTraders were non-binding.
However, a role award is binding; once accepted, a role must
be performed. If a RoboTrader has received no other role
award in the interval between bidding and the arrival of this
award, it accepts the role award. Otherwise it rejects the role
award. If any of the role awards are rejected, or one of the
Traders awarded a role does not respond to the award by a
timeout, then the task award is rejected and the OpTrader



OpTrader purposes.

When each RoleExecutor reaches the end of its sequence
of actions to perform, it informs the PlayManager of suc-
cessful termination, and when the team is complete the Play-
************************* Manager reports this to the RoboTrader. Alternatively, if a
robot fails, or the time limit for execution is reached (as en-
coded in the play itself), the play is terminated and reported
as such. Taken together, execution is distributed and loosely
coupled.

RoboTrader

Play Search 1
Role 1 — Assigned to Pioneer 1
Role 2 — Assigned to Segway 2

””””””” The robots report Task completion messages, as well as
other messages (e.g., status reports) originated by the ro-
bots, are captured by the TeamTalk back-end manager and

PlayManager
the messages are routed to each robot’s corresponding He-

! lios just as for the human utterances. Helios assigns high
Action 1 ; Acion] J | confidence to information which originates from robots, on
Robot : :
Server : :

the presumption that robot communications channel is not
noisy.
PIONEER 1

Generally, robot-originated messages are interpreted as
requests by the robots to communicate to the human, and
Ravenclaw passes those messages directly to Rosetta. Mes-
sages may also complete task agencies, allowing Ravenclaw
to take these off of the focus stack and modify the expecta-

acceptance to the OpTrader and forward the role assign- tion agenda as appropriate (Bohus & Rudnicky 2003). Mes-
sages are also routed to the GUI controller to allow the sys-

ments to the PlayManager. The PlayManager contacts thetem 1o modifv the displav or perform some other sianalin
play managers of all robots assigned a role and sends them a tion. In thlfy pr ym P ted task. this m kllgn : t%
description of the actions in their role. Action primitives are action. € case of a compieted task, this may change the

sent to the robot servers and the play execution begins. color of the robot's icon. .
Rosetta uses template-based natural language generation

to render concept terms into well-formed sentences. The
must perform another auction. sentences generated by Rosetta are routed to Kalliope for
If all role awards are accepted, the RoboTrader sends a Synthesis. Kalliope selects a different Swift voice for each
task acceptance message to the RoboTrader. Then it sendgOPOL thus each robot speaks in its own distinct voice. This
an execution message to the PlayManager detailing the final Nelps the user to keep better track of information.
role assignments. This stage is shown in Figure 7. The Ro-
boTrader's role in the pickup team allocation is concluded Related Work

except for relaying status information to the OpTrader when \jithin the field of robotics, there has been considerable
the play completes. Future work, however, will examine dy- yesearch into multi-robot coordination for a variety of do-
namic re-assignment of roles if and when required. mains and tasks (Mataric 1994; Balch & Arkin 1998;
Gerkey & Mataric 2003). Many groups have focused on re-
The PlayManager begins play execution Once informed search questions relevant to robot teams particularly (Balch
of the play to execute, and the list of assigned roles, the Play- & Parker 2001). RoboCup robot soccer has offered a stan-
Manager forms the subteam to execute the play. It does this dardized domain in which to explore multi-robot team-
by contacting each of the subteam members’ RoleExecutors work in dynamic, adversarial tasks (Nod# al. 1998;
and transmits the play in compressed XML format to them. Nardiet al. 2004) (see alsbttp://www.robocup.orj Seg-
The RoleExecutor is responsible for executing the assigned way Soccer (Browningt al. 2005) is a new league within
role in the play. If any subteam members are essential and this RoboCup domain, which addresses the coordination of
fail to acknowledge the play reception, or are not able to heterogeneous team members specifically. The emphasis of
be contacted, the play is terminated and reported as such tothese human-robot teams is equality, both physically, as both
the RoboTrader. Otherwise, execution proceeds by the Play- ride the Segway mobility platform, and with respect to deci-
Manager informing each RoleExecutor to start operation.  sion making power and responsibility.

At this point, each RoleExecutor becomes loosely cou-  How to effectively coordinate heterogeneous teams has
pled to the PlayManager. The RoleExecutor will execute its been an ongoing challenge in multi-robot research (Scerri
sequence of actions and will only inform the PlayManager of et al. 2004; Kaminka & Frenkel 2005). However, no one
termination (success or failure), or when it needs to synchro- has focused explicitly on the principles underlying the build-
nize with another role according to the play. To synchronize, ing of such highly dynamic teams when the a priori inter-
the RoleExecutor contacts the appropriate teammate’s Role- action between individual robot developers is so minimal.
Executor and informs the PlayManager for status-keeping Much of the existing research implicitly assumes that the

Figure 7: After the RoboTrader has confirmed the availabil-
ity of the winning Role bidder, it can send notice of task



robot team is built by a group of people working closely
together over an extended period of time. While some pre-
vious research within the software agents community has
addressed the coordination of simulated agents built by dif-
ferent groups (Pynadath & Tambe 2003), none has chosen to
address this pickup challenge for the coordination of multi-
ple robots. We believe this research direction of forming dy-
namic teams will greatly advance the science of multi-robot
systems.

Dialog agents are almost always designed with the tacit
assumption that at any one time, there is a single agent and
a single human, and that their communication channel is

two-way and exclusive. As a consequence such systems do

not deal gracefully with additional speakers or agents in the

channel. One approach constructs an aggregated spoken di-

alog front-end for a community of under-specified agents,

for example (Harris 2004). These systems, however, sacri-
fice the integration of domain knowledge into the dialog and

support only shallow levels of interaction.

Conclusions

In this paper, we presented the concept of pickup teams,
where teams are formed dynamically from humans and het-
erogeneous robots with no a priori experience of one an-
other. We have described an appropriate domain for explor-
ing the research issues related to pickup teams: multi-robot
treasure hunts. Based on our prior work with synchronized
activities using STP with plays and tactics combined with

robust multi-robot role assignment using the TraderBots’

market-based architecture, we have proposed a new tech-

nique to address the problem of pickup teams. We have also
described issues in language-based multi-actor communica-
tion in mixed human-robot teams and have presented mech-
anisms appropriate to managing interaction in such settings.
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