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Abstract

In this new era of space exploration where human-robot
teams are envisioned maintaining a long-term presence on
other planets, effective coordination of human-robot teams
is paramount. Two critical research challenges that must be
solved to realize this vision are the human-robot team chal-
lenge and the pickup-team challenge. In this paper, we ad-
dress these two challenges, propose a novel approach to solve
both challenges, and evaluate our approach in the newly in-
troducedtreasure huntdomain.

Introduction
We have entered a new era of Space exploration that requires
the sustained presence of human-robot teams on other plan-
ets. Meeting this requirement entails solving many research
challenges. Two critical challenges to be solved are effec-
tive coordination of human-robot teams and enablingpickup
teams. In response to these challenges, the vision that drives
the reported work is that humans and robots will dynami-
cally form teams to solve complex tasks by efficiently join-
ing their complementary capabilities.

The Pickup Team challenge is to dynamically form teams
of robots (and possibly humans) given very little a priori in-
formation. That is, team members may have only minimal
prior knowledge of each others’ behavior, the tasks at hand,
and the environments they operate in, but are able to com-
bine effectively. There are several additional reasons why an
increased understanding of pickup teams is needed. First,
the development of large teams or teams of expensive ro-
bots at the same site at the same time is impractical. This
limitation currently hinders multi-robot research. Success-
ful pickup teams will facilitate further research by allow-
ing separate researchers to easily pool their robots to cre-
ate teams for further study. Second, robots may be needed
for emergency tasks where there may be insufficient time
to hand-engineer the coordination mechanisms before task
execution. Pickup teams enable robot teams to be formed
on very short notice for such tasks. Third, as robots fail,
get lost, or otherwise malfunction, it is often necessary to
substitute or add new robots. Successful pickup teams will
allow the integration of new robots into existing teams, and
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also enable teams of heterogeneous robots to perform effi-
ciently under dynamic and uncertain conditions. Thus, the
overall research challenge is to provide a principled method-
ology for creating pickup teams. This paper presents a first
approach to address this challenge.

The human-robot team coordination challenge further re-
quires robust team operation across multiple environments,
team capabilities applicable across humans and multiple ro-
bot types, effective multi-human-multi-robot interaction in
a team setting, and teams that improve over time. Compe-
titions, such as RoboCup, have been effective in focusing
efforts to overcome some of these challenges (Nodaet al.
1998). However, these competitions focus on part of the
overall problem and do not generally address teams formed
in an ad-hoc manner, complex environments beyond a well-
defined soccer field, and the complexities of heterogeneous
teams. This paper focuses on dynamically forming teams
of humans and heterogeneous robots to perform tasks that
require coordination. The robots have limited individual ca-
pabilities, can sense different information about their envi-
ronment, and can be assigned abstract tasks for execution.
Robots can solve primitive tasks in different ways depend-
ing on the robot capabilities and the prevailing environmen-
tal conditions.

We propose a novel approach to solving both the pickup
team challenge and the human-robot team coordination chal-
lenge. The proposed approach combines and extends three
previously proven components: TheTraderBotsmarket-
based coordination approach for efficient and flexible allo-
cation of tasks to teams and roles to team-members,Plays
for synchronizing team-execution of coordinated tasks, and
the multi-agent multi-modal dialog systemTeamTalk. This
approach is implemented on a team consisting of a human, a
Segway RMP robot, and a Pioneer IIDX robot, and demon-
strated in a treasure hunt scenario.

The Treasure Hunt Domain
To investigate the coordination of human-robot pickup
teams, we require a domain that will allow for dynamic and
heterogeneous team formation, encourage coordination and
tight coupling between team members, and provide a metric
against which to compare team performances. We believe
the treasure hunt domain, jointly proposed by researchers at
The Boeing Company and at Carnegie Mellon University,



provides for each of these characteristics.
The treasure hunt domain consists of human-robot teams

competing in and exploring an unknown space. The robots
are heterogeneous, and the particular capabilities necessary
to accomplish hunt tasks are distributed throughout the team.
The hunt tasks require a team to acquire specific objects,
the treasure, within an unknown or partially-known environ-
ment. Thus a representation of the world must be built as
it is explored, and the treasure must be identified and then
localized within the built representation. Team coordination
follows as a direct necessity, as the abilities required to per-
form each of these tasks are distributed throughout the team
members.

The ultimate goal with respect pickup team formation is
speed and flexibility. Within this domain, not only are teams
created quickly and on the fly, but each member has no prior
knowledge about the abilities of its potential teammates; a
robot knows of its own capabilities only. Inherent to the defi-
nition of a hunt task are the abilities necessary to accomplish
it. Communication between potential pick-up team mem-
bers is therefore carried out at the time of team formation, to
ensure the satisfaction of all capabilities requirements.

This domain can also be extended to include an adversar-
ial environment in which to execute the hunt tasks. Teams
can compete against the clock, with the intent of collecting
as much treasure as possible within the allotted time or com-
pete against other dynamically formed teams. A metric for
team performance can be the amount of treasure collected
by the team in a given time period, or conversely, the time
taken by a team to collect a percentage of the total hidden
treasure.

In our specific treasure hunt implementation, potential
team members include humans, Pioneer robots and the ro-
botic Segway RMP platform provided by Segway, LLC (see
Figure 1). The Pioneer robot is equipped with a SICK laser
and gyroscope, and is therefore able to both construct a map
of an unknown environment, and localize itself upon that
map. The Segway robot has been outfitted with two cam-
eras, by which it is able to visually identify both the Pioneer
robot and the treasure. The presented task is to search for
and retrieve treasure. To explore an area while searching for
the treasure, the Pioneer is able to navigate and build a map,
while the Segway is able to follow the Pioneer and search
for treasure. Upon treasure identification, the robots must
return home with the treasure. By localizing on its created
map, the Pioneer is able to determine the home location; the
Segway then follows the Pioneer as it proceeds home. Team
coordination between the robots during execution is accom-
plished jointly via the visual identification of the Pioneer by
the Segway, and by communication between the two robots
should this visual link be lost (in which case the Pioneer is
commanded to pause, until seen by the Segway). Commu-
nication additionally occurs when the Segway informs the
Pioneer that treasure has been found.

The treasure hunt domain satisfies the criterion set for the
study of the performance of human-robot pickup teams. It
offers a number of challenging aspects, including robust and
efficient operation in unconstrained environments, and ad-
hoc team formation. Efficient execution requires a coordi-

Figure 1: The left figure shows a Segway robot, while the
right figure shows the pioneer robots.

nated search of the space and the maintenance of an accu-
rate shared knowledge about the space. As such, this domain
provides a rich environment in which to push the boundaries
of adaptive, autonomous robotics.

Component Technologies
In this section we review our current approaches to team-
work – Skills, Tactics, and Plays (STP) for team coordi-
nation in adversarial environments, and TraderBots for ef-
ficient and robust role assignment in multi-robot tasks.

STP: Skills, Tactics, and Plays
Veloso and colleagues (Bowling, Browning, & Veloso 2004)
introduce a skills, tactics, and plays architecture (STP) for
controlling autonomous robot teams in adversarial environ-
ments. In STP, teamwork, individual behavior, and low-level
control are decomposed into three separate modules. Rel-
evant to our implementation are Plays which provide the
mechanism for adaptive team coordination. Plays are the
central mechanism for coordinating team actions. Each play
consists of the following components:(a) a set of roles for
each team member executing the play,(b) a sequence of ac-
tions for each role to perform,(c) an applicability evaluation
function,(d) a termination evaluation function,(e) a weight
to determine the likelihood of selecting the play.

Each play is a fixed team plan that describes a sequence of
actions for each role in the team toward achieving the team
goal(s). Each of the roles is assigned to a unique team mem-
ber during execution. The role assignment is based on the
believed state of the world and is dynamic (e.g., role A may
start with player 1, but may switch to player 3 as execution
progresses). Note that the role assignment mechanism is in-
dependent of the play framework.

The concept of plays was created for domains where tight
synchronization of actions between team members is re-
quired. Therefore, the sequence of tactics to be performed
by each role is executed in lock step with each other role in
the play. Hence, the play forms a fixed team plan whereby
the sequence of activities is synchronized between team
members.



As not all plans are appropriate under all circumstances,
each play has a boolean evaluation function that determines
the applicability of the play. This function is defined on the
team’s belief state, and determines if the play can be exe-
cuted or not. Thus, it is possible to define special purpose
plays that are applicable only under specific conditions as
well as general-purpose plays that can be executed under
much broader conditions. Once executed, there are two con-
ditions under which the play can terminate. The first is that
the team finishes executing the team plan. Each play in-
cludes an evaluation function that determines whether the
play should be terminated. As with applicability, this evalu-
ation function operates over the team’s belief state. Hence,
the second means of ending a play is if the termination eval-
uation function determines that the play should end, either
because it has failed or is successful.

Team strategy consists of a set of plays, called a play-
book, of which the team can execute only one play at any
instant of time. A play can only be selected for execution
if it is applicable. From the set of applicable plays, one is
selected at random with a likelihood that is tied to the play’s
weight. The plays are selected with a likelihood determined
by a Gibbs distribution from the weights over the set of ap-
plicable plays, which means the team strategy is, in effect,
stochastic. This strategy is desirable in adversarial domains
to prevent the team strategy being predictable, and therefore
exploitable by the opponent.

TraderBots
TraderBots, developed by Dias and Stentz (Dias 2004) is a
coordination mechanism, inspired by the contract net pro-
tocol by Smith (Smith 1980), is designed to inherit the ef-
ficacy and flexibility of a market economy, and to exploit
these benefits to enable robust and efficient multi-robot co-
ordination in dynamic environments. A brief overview of
the TraderBots approach is presented here to provide con-
text for the reported experimental results and analysis.

Consider a team of robots assembled to perform a par-
ticular set of tasks. Consider further, that each robot in the
team is modeled as a self-interested agent, and the team of
robots as an economy. The goal of the team is to complete
the tasks successfully while minimizing overall costs. Each
robot aims to maximize its individual profit; however, since
all revenue is derived from satisfying team objectives, the ro-
bot’s self-interest equates to doing global good. Moreover,
all robots can increase their profit by eliminating excess cost.
Thus, to solve the task-allocation problem, the robots run
task auctions, and bid on tasks in other robots task auctions.

If the global cost is determined by the summation of indi-
vidual robot costs, each deal made by a robot will result in
global cost reduction. Note that robots will only make prof-
itable deals. Furthermore, the individual aim to maximize
profit (rather than to minimize cost) allows added flexibility
in the approach to prioritize tasks that are of high cost and
high priority over tasks that incur low cost but provide lower
value to the overall mission. The competitive element of the
robots bidding for different tasks enables the system to de-
cipher the competing local information of each robot, while
the currency exchange provides grounding for the compet-

Figure 2: TeamTalk system architecture

ing local costs in terms of the global value of the tasks being
performed.

TeamTalk
The human interface to the robots, TeamTalk (Harriset al.
2004), is a multi-modal multi-agent dialog system, which
accommodates multiple dialog agents and supports multi-
ple simultaneous conversations. TeamTalk is based on the
Ravenclaw dialog manager (Bohus & Rudnicky 2003), a
generalized framework that makes use of task-tree repre-
sentations to manage interaction between the user and the
computer (in the present case, multiple robots). In addition
to Ravenclaw, TeamTalk makes use of various spoken lan-
guage technologies developed at Carnegie Mellon. These
include Sphinx-II (Huanget al. 1993) for automatic speech
recognition and Phoenix (Ward 1994) for context-free gram-
mar parsing. Language generation is template based and
synthesis (the Kalliope module) uses Swift, a commercial-
ized version of the Festival synthesizer (Blacket al. 2004).
A diagram of the system architecture, as configured for one
human and two robots is shown in Figure 2.

The TeamTalk system provides a framework for exploring
a number of issues in human-robot communication, includ-
ing multi-participant dialog and grounding. We will briefly
discuss some of these issues and describe our current solu-
tions.

Managing multi-participant dialogs Building systems
with multiple human and robot participants presents several
challenges. After considering several alternatives, we settled
on the following design. Each human participant is given
a complete interface hosted on a single computer incorpo-
rating the components that perform speech recognition, un-
derstanding, generation, and synthesis. An alternative and
seemingly natural solution would have been to give each ro-
bot its own spoken language capability, but this anthropo-
morphism is not necessary. A single transducer for the hu-
man also allows us to mitigate the effects of environment and
distance. Associating the interface directly with the human
also allows us to use a multi-modal interface that combines
speech and gesture in a single device (a tablet computer).



Finally, there is the issue of cost as the number of robots
increases.

TeamTalk creates a stateful dialog manager for each ro-
bot; this manager handles all of the human-side communi-
cation. TeamTalk automatically spawns a new dialog man-
ager whenever the system detects a hitherto unknown robot.
This mechanism allows the system to deal gracefully with
the appearance of new robots on the team.

To support flexible communication, user input is broad-
cast to all robots on the team, much as one might encounter
on a shared radio channel. Broadcasting also allows us to
support more complex group addressing functions (see be-
low) and creates the conditions for beneficial eavesdropping.

Grounding concepts and clarification dialog Robust
mechanisms for grounding are an essential part of interac-
tion between agents, particularly in open domains where
novel events and entities can occur. The Treasure Hunt calls
for interactive techniques that allow humans and robots to
develop common shared understanding of the environment
that they are operating in. For example, a newly activated
robot needs to communicate its capabilities to the human by
transmitting an ontology (and associated language) that can
be used to configure understanding, generation and popu-
late the sub-task library. Grounding is also performed dur-
ing activities. For example, a shallow but useful form of
grounding is agreeing on names for landmarks (with names
chosen from a closed set of labels). A more complex ver-
sion would involve introducing new labels to the system
(given that task-specific names make more sense than ab-
stract ones). We can go beyond that and have a system that
can generalize mappings between labels and features in the
environment (”Call that a doorway”, ”Now go to the door-
way”). Current capability includes only fixed labeling.

Clarification deals with confusions and ambiguities in
communication due either to processing (for example recog-
nition errors) or actual ambiguities (”I know of two doors.
Which one do I go to?”). In the case of recognition or un-
derstanding errors clarification is triggered by confidence
metrics computed for recognition accuracy, grammar cov-
erage, concept history, the task, and per-robot policies. In
this way, the system can conservatively ground concepts for
high risk tasks, and yet liberally and efficiently execute low
risk tasks. An example, of a per-robot policy is as follows:
the Pioneer robot with its laser-based collision detection will
translate on command, only asking for command confirma-
tion when there is a very noisy speech signal; conversely,
the Segway SMP, with its high momentum, poor odometry,
and total lack of collision detection, almost always asks for
translation confirmation.

Implementation
We have attempted to address two main challenges in our
implementation. The first is the dynamic formation of
pickup teams efficiently given heterogeneous robots. We
have adapted the Traderbots system to perform this func-
tion. Tasks are matched with plays consisting of a number
of roles; the roles of the play, when performed, should sat-
isfy the requirements of the task. Each role in a play contains

a sequence of action primitives that can actually be executed
by the robots, but a role can also require a certain set of
capabilities. Robots only bid on roles that they have the ca-
pability to perform, thus accommodating the heterogeneity
of the robots and providing an efficient way for new kinds of
robots with different sets of capabilities to represent them-
selves to the system. Traderbots also requires that robots
have the ability to estimate the cost of actions; for instance,
a cost may be the total distance that a role requires a robot
to move. By minimizing cost in performing role allocations
we hope to not only get feasible solutions but also to have
high efficiency.

The heterogeneity of the pickup teams demands that much
care be taken during play execution; roles may depend on
each other, and all robots need to do their part to actually
discover, localize, and retrieve treasure. Thus, once the allo-
cation has been performed, the tight coordination subsystem
must monitor and direct play execution.

The following describes our implementation of the sub-
systems for dynamic pickup team allocation and tight coor-
dination. The first part introduces the main components of
implementation, and the second part of the section illustrates
system performance by describing the life cycle of a treasure
hunt task as it moves through allocation to execution.

Implementation Components

To realize the full functionality of our system, a number of
different processes must be run on each of the different ro-
bots, as well as on a human operator’s workstation. The fol-
lowing describes only those processes essential to the func-
tion of the system.

The top layer of our implementation consists of a num-
ber of Traders. Each agent, including the human operator,
is assigned a Trader. A Trader is the agent’s interface to the
market. The Trader can introduce items to be auctioned to
other Traders by sending a call for bids, can respond to calls
for bids with bids, can determine which bids are most benefi-
cial for the auctioning agent, and can issue awards to bidders
that have won auctions. Each robot agent has a trader called
a RoboTrader.

In our system the human operator has a trader, called the
OpTrader. Each human team member uses TeamTalk as a
client from which to communicate with the OpTrader. In
this implementation, TeamTalk runs on a tablet PC, and each
human team member carries the tablet PC with them. The
tablet runs an instance of the TeamTalk software, provides
for pen-and-tablet-based i/o with the robots, and provides for
speech-based i/o though an attached headset microphone.

A human team member (each with an instance of
TeamTalk) is a TeamTalk client of the OpTrader, and each
TeamTalk instance spawns a Ravenclaw dialog manager for
each active robot,n × m stateful dialogs are held, where
n is the number of human team members (and TeamTalk
instances) andm is the number of robotic team mem-
bers. Each TeamTalk instance contains a single automatic
speech recognition engine, parser, natural language genera-
tion module, text-to-speech engine, and pen-and-tablet inter-
face. For each robot that comes on-line, the interface spawns



a separate dialog management system and confidence anno-
tation module.

The PlayManager forms the next component module. The
primary role of the PlayManager is to select useful plays for
a task and to coordinate the execution of activities in a play
across a small sub-team to perform a won task. The Play-
Manager can select plays to be bid upon for a specified task,
coordinate the execution of a play with the play managers
for the other assigned roles, execute the sequence of tasks
for its particular robot, and synchronize the activities, where
required, between the different roles.

A final important component, the Robot Server, provides
an interface between the PlayManager and the components
on the robot responsible for controlling the robot. A strength
of our system is that neither the PlayManagers nor the
Traders need to know very much about how the control of
the system is actually implemented, as the Robot Server
serves as the single point of contact. Thus the Robot Servers
on the robots must understand a standard packet, cause Play-
Manager commanded actions to be performed, and to send
action statuses, but beyond that robot platform developers
are free to develop their system in any fashion they wish.

The Treasure Hunt Task Life Cycle

SEARCH (8,12) (8,18) (14,18) (14,12)

SEARCH−1

PlayManager

RoboTrader

Task
SEARCH−2

PlayManager

RoboTrader

Task
SEARCH−3

PlayManager

RoboTrader

Task
SEARCH−4

PlayManager

RoboTrader

TaskPlay Play Play Play

PIONEER 1 SEGWAY 1 SEGWAY 2 PIONEER 2

Task

Auction Call

OpTrader

Figure 3: Parts (a) and (b) of the task life-cycle as discussed
in the Implementation section.

A human operator utters (or pen gestures) a task If the
message was a pen gesture, it is passed directly to Helios.
If the task is an utterance, it is decoded by Sphinx into one
or more hypotheses along with associated confidence scores.
The hypotheses are routed to Phoenix, which parses each hy-
pothesized utterance, and for each parse, generates the con-
cepts and additional confidence annotation.

These concepts are routed tom instances of Helios, one
for each robot. Helios examines the acoustic and language

model confidences from Sphinx, additional confidence an-
notations imparted by Phoenix’s parser coverage of the hy-
potheses, and the expectation agenda generated by Raven-
claw based on that robot’s dialog state. From all of this
evidence, Helios picks concepts to pass to the dialog man-
ager, and assigns a final combined confidence value for each
unique concept that is passed along.

At this point, each robot’s dialog manager has received
a set of concepts with associated confidences. Each dia-
log manager decides whether it is the addressed robot in the
dialog or it is simply eavesdropping on a conversation be-
tween the human and another dialog partner. We allow for
the possibility of opportunistic eavesdropping, so that an un-
addressed robot could, for example, develop a better context
from which to understand the next utterance that may ac-
tually be addressed to it. The dialog manager may act on
the concepts, or it may engage in a grounding action on one
or more of the concepts. This decision is made based on a
policy that depends on the concept confidence history in the
dialog, and the action to be performed (more on this below).
The dialog is a mixed-initiative dialog, so that if certain con-
cepts are provided that only partially complete some agenda,
the dialog system may take initiative to obtain the missing
information. For example, ”how far do you want me to go
backwards?”. Based on grounded concepts, the dialog man-
ager sends messages to the back-end manager, which in turn
inserts tasks to anOpTraderserver.

A task is issued and enters the Trading system Initially,
the human operator designates a SearchArea task, embed-
ding the points of a bounding polygon in the task data. The
task is sent to the OpTrader. The OpTrader creates an auc-
tion call with the task data, serializes it, and sends it via the
wireless network using UDP to all RoboTraders (see Figure
3).

Each RoboTrader receives the task auction call and gets
a matching play from the PlayManager The RoboT-
raders receive the call for bids from the OpTrader. They
deserialize the call and pass the task specification to their in-
dividual PlayManagers over a UDP socket connection. Each
contacted PlayManager will compare the task string against
the applicability conditions for each play in its playbook. It
will then select a play stochastically amongst the set of plays
that are applicable, and return this play to the RoboTrader.

The RoboTrader assesses the playThe RoboTrader now
has a play matching the task and a set of roles. It then must
select one of the roles for itself. For each role in the play, the
RoboTrader first considers whether or not it possesses all the
capabilities required to perform that role. For all roles for
which it is capable, the Trader then performs a cost evalua-
tion.

In the treasure hunt we are largely concerned with mini-
mizing the time it takes to accomplish the task. As our ro-
bots move roughly the same speeds during play execution,
we try to minimize distance traveled as an approximation of
time. If robots were heterogeneous with respect to speed this



Play − SEARCH 1

Role 1 − Cover area and map − Cost $105

Role 2 − Follow and look for treasure.

RoboTrader

Auction Call

SEGWAY 1

RoboTrader

RoboTrader

SEGWAY 2

RoboTrader

PIONEER 2

PIONEER 1

Figure 4: The RoboTrader, upon receiving a play from the
PlayManager, selects a play for itself and produces a cost
estimate. It auctions the other role in the play to the other
robots.

should be reflected in their costing function. For most roles,
cost is computed as total metric path cost for goal points to
be visited in the role. Costing in our system is modular, so
additional or different costing functions can be added easily
as required.

Once a cost has been assigned to each role, the RoboT-
rader selects the lowest cost role for itself, then prepares an
auction call with all the remaining roles. This auction call is
serialized and sent to the other Traders, as shown on the left
in Figure 4.

The other RoboTraders bid on the role auction After
the other RoboTraders receive and deserialize the role call,
they determine their own cost for each role in the call. For
any role in the call that requires capabilities the Trader does
not possess it assigns an infinite cost. For all roles that the
Trader can perform, it assigns the cost determined by the
costing function. Note that the Trader must bid on all roles
for which it is capable. The role bids are then returned to
auctioneering RoboTrader (shown in Figure 5).

The RoboTrader bids on the task Once all bids are re-
ceived or a timeout has expired the auctioneer RoboTrader
then determines the winner or winners of the role auction.
All role bids are considered, and the lowest cost bid is se-
lected. If that bid is non-infinite, the role is designated as
assigned to the bidding Trader. As a Trader can only win
a single role in a play, that Trader’s other bids are nullified.
Additionally, all bids for that role from any other Trader are
nullified. Then the lowest cost remaining bid is considered;
this continues until all roles in the play are assigned or there
are no remaining bids.

If all roles from the play have been assigned, the RoboT-
rader constructs a bid for the original task, with a cost that

SEGWAY 1

RoboTrader

Cost $180

Role 2

Role Bid

RoboTrader

PIONEER 2

RoboTrader

SEGWAY 2

Play − SEARCH 1

Role 2 − Cost $140

Role 1 − Cost $105

RoboTrader

PIONEER 1

Cost $140

Role 2

Role Bid
Role 2

Role Bid

Cost $ ∞

Figure 5: Receiving the bids for the remaining role, the Op-
Trader selects the lowest cost bid.

RoboTrader

PIONEER 2

RoboTrader

SEGWAY 1

RoboTrader

PIONEER 1

$280
Task Bid

$260
Task Bid

OpTrader
Task

Award

$300
Task Bid

RoboTrader

SEGWAY 2

$245
Task Bid

Figure 6: The bids from all plays are returned to the Op-
Trader, who selects the lowest cost task bid and sends a task
award to the winning bidder.

is summed over all assigned role cost estimates. The bid is
sent to the OpTrader. This process is shown in Figure 6.

Task and role awards are granted Once the OpTrader
has received bids from all RoboTraders or a call timeout has
expired it awards the task to RoboTrader with the lowest cost
bid. An award message is sent to the winning RoboTrader.
All other RoboTraders are informed they lost the auction.
The winning RoboTrader then sends role award messages to
all RoboTraders that were assigned roles in the winning play.
Note that at this point the RoboTrader still has not accepted
the task award.

Awards are accepted and play execution beginsThe ini-
tial role bids made by the RoboTraders were non-binding.
However, a role award is binding; once accepted, a role must
be performed. If a RoboTrader has received no other role
award in the interval between bidding and the arrival of this
award, it accepts the role award. Otherwise it rejects the role
award. If any of the role awards are rejected, or one of the
Traders awarded a role does not respond to the award by a
timeout, then the task award is rejected and the OpTrader
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Role 1 − Assigned to Pioneer 1

Role 2 − Assigned to Segway 2
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Figure 7: After the RoboTrader has confirmed the availabil-
ity of the winning Role bidder, it can send notice of task
acceptance to the OpTrader and forward the role assign-
ments to the PlayManager. The PlayManager contacts the
play managers of all robots assigned a role and sends them a
description of the actions in their role. Action primitives are
sent to the robot servers and the play execution begins.

must perform another auction.
If all role awards are accepted, the RoboTrader sends a

task acceptance message to the RoboTrader. Then it sends
an execution message to the PlayManager detailing the final
role assignments. This stage is shown in Figure 7. The Ro-
boTrader’s role in the pickup team allocation is concluded
except for relaying status information to the OpTrader when
the play completes. Future work, however, will examine dy-
namic re-assignment of roles if and when required.

The PlayManager begins play execution Once informed
of the play to execute, and the list of assigned roles, the Play-
Manager forms the subteam to execute the play. It does this
by contacting each of the subteam members’ RoleExecutors
and transmits the play in compressed XML format to them.
The RoleExecutor is responsible for executing the assigned
role in the play. If any subteam members are essential and
fail to acknowledge the play reception, or are not able to
be contacted, the play is terminated and reported as such to
the RoboTrader. Otherwise, execution proceeds by the Play-
Manager informing each RoleExecutor to start operation.

At this point, each RoleExecutor becomes loosely cou-
pled to the PlayManager. The RoleExecutor will execute its
sequence of actions and will only inform the PlayManager of
termination (success or failure), or when it needs to synchro-
nize with another role according to the play. To synchronize,
the RoleExecutor contacts the appropriate teammate’s Role-
Executor and informs the PlayManager for status-keeping

purposes.
When each RoleExecutor reaches the end of its sequence

of actions to perform, it informs the PlayManager of suc-
cessful termination, and when the team is complete the Play-
Manager reports this to the RoboTrader. Alternatively, if a
robot fails, or the time limit for execution is reached (as en-
coded in the play itself), the play is terminated and reported
as such. Taken together, execution is distributed and loosely
coupled.

The robots report Task completion messages, as well as
other messages (e.g., status reports) originated by the ro-
bots, are captured by the TeamTalk back-end manager and
the messages are routed to each robot’s corresponding He-
lios just as for the human utterances. Helios assigns high
confidence to information which originates from robots, on
the presumption that robot communications channel is not
noisy.

Generally, robot-originated messages are interpreted as
requests by the robots to communicate to the human, and
Ravenclaw passes those messages directly to Rosetta. Mes-
sages may also complete task agencies, allowing Ravenclaw
to take these off of the focus stack and modify the expecta-
tion agenda as appropriate (Bohus & Rudnicky 2003). Mes-
sages are also routed to the GUI controller to allow the sys-
tem to modify the display or perform some other signaling
action. In the case of a completed task, this may change the
color of the robot’s icon.

Rosetta uses template-based natural language generation
to render concept terms into well-formed sentences. The
sentences generated by Rosetta are routed to Kalliope for
synthesis. Kalliope selects a different Swift voice for each
robot, thus each robot speaks in its own distinct voice. This
helps the user to keep better track of information.

Related Work
Within the field of robotics, there has been considerable
research into multi-robot coordination for a variety of do-
mains and tasks (Mataric 1994; Balch & Arkin 1998;
Gerkey & Mataric 2003). Many groups have focused on re-
search questions relevant to robot teams particularly (Balch
& Parker 2001). RoboCup robot soccer has offered a stan-
dardized domain in which to explore multi-robot team-
work in dynamic, adversarial tasks (Nodaet al. 1998;
Nardi et al. 2004) (see alsohttp://www.robocup.org). Seg-
way Soccer (Browninget al. 2005) is a new league within
this RoboCup domain, which addresses the coordination of
heterogeneous team members specifically. The emphasis of
these human-robot teams is equality, both physically, as both
ride the Segway mobility platform, and with respect to deci-
sion making power and responsibility.

How to effectively coordinate heterogeneous teams has
been an ongoing challenge in multi-robot research (Scerri
et al. 2004; Kaminka & Frenkel 2005). However, no one
has focused explicitly on the principles underlying the build-
ing of such highly dynamic teams when the a priori inter-
action between individual robot developers is so minimal.
Much of the existing research implicitly assumes that the



robot team is built by a group of people working closely
together over an extended period of time. While some pre-
vious research within the software agents community has
addressed the coordination of simulated agents built by dif-
ferent groups (Pynadath & Tambe 2003), none has chosen to
address this pickup challenge for the coordination of multi-
ple robots. We believe this research direction of forming dy-
namic teams will greatly advance the science of multi-robot
systems.

Dialog agents are almost always designed with the tacit
assumption that at any one time, there is a single agent and
a single human, and that their communication channel is
two-way and exclusive. As a consequence such systems do
not deal gracefully with additional speakers or agents in the
channel. One approach constructs an aggregated spoken di-
alog front-end for a community of under-specified agents,
for example (Harris 2004). These systems, however, sacri-
fice the integration of domain knowledge into the dialog and
support only shallow levels of interaction.

Conclusions
In this paper, we presented the concept of pickup teams,
where teams are formed dynamically from humans and het-
erogeneous robots with no a priori experience of one an-
other. We have described an appropriate domain for explor-
ing the research issues related to pickup teams: multi-robot
treasure hunts. Based on our prior work with synchronized
activities using STP with plays and tactics combined with
robust multi-robot role assignment using the TraderBots’
market-based architecture, we have proposed a new tech-
nique to address the problem of pickup teams. We have also
described issues in language-based multi-actor communica-
tion in mixed human-robot teams and have presented mech-
anisms appropriate to managing interaction in such settings.
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