
Mechanism Design for Multi-Agent Meeting Scheduling

Elisabeth Crawford and Manuela Veloso
Computer Science Department, Carnegie Mellon University, Pittsburgh, PA, 15213

{ehc,mmv}@cs.cmu.edu

Abstract

In this paper we examine the benefits and limitations
of mechanism design as it applies to multi-agent meeting
scheduling. We look at the problem of scheduling multiple
meetings between various groups of agents that arise over
time. All the agents have private information regarding their
time preferences for meetings. Our aim is to elicit this infor-
mation and assign the meetings to times in a way that max-
imizes social welfare.

We discuss problems with previous attempts to design
incentive compatible (IC) and individually rational (IR)
mechanisms for meeting scheduling. We show how request-
ing agent preferences for entire schedules helps to eliminate
IC problems. We focus, in particular, on the problem of de-
termining when agents are available for meetings. We show
that our choice of IC and IR mechanisms is quite restricted
when we allow agents to declare their availability.

Keywords: Multi-Agent Systems, Mechanism Design,
Meeting Scheduling

1. Introduction

For many people, scheduling meetings is a daily and
time consuming task. Finding satisfactory times for new
meetings can be very difficult, particularly when the meet-
ings have many participants or existing meetings need to be
moved. As such, a number of researchers e.g [23, 14, 7] and
more recently [1, 17] have looked into designing intelligent
software agents that can automate the process. There are
two major challenges that are yet to be fully overcome: (i)
the design of accurate algorithms to learn a user’ schedul-
ing preferences and (ii) the design of effective methods for
agents to agree upon meeting times. In this paper we focus
on the second problem and assume we are dealing with soft-
ware agents that have an accurate model of their users’ pref-
erences. In particular, we investigate the feasibility of using
mechanism design to solve (ii).

The multi-agent meeting scheduling problem (MAMS)
consists of a set of agentsA, a set of sequential time slots

T , and a set of meetingsM that are arise over time. Each
agent inA has preferences about how the meetings inM
are scheduled. Given a set of meetingsMi let τMi

denote
all the possible ways in which these meetings can be ar-
ranged overT . We call agenti′s true preference function
for a set of meetingsMi, θiτ , where the domain ofθiτ is
τMi and the range is a value representing the utility of this
meeting arrangement to the agent.

To solve MAMS we need to find an assignment of meet-
ings to times. An assignmentt for a meetingm is valid if
each agent participating in the meeting has no other meet-
ing scheduled for timet. A solution to the MAMS problem
consists of a valid assignment of a subset of the requested
meetingsM to time slots inT . In general we would like
to find a valid assignment for allm ∈ M . If we consider
T to be infinite, this is always possible, however, in this pa-
per we will only consider finiteT . Clearly there can be good
and bad solutions to MAMS. When designing a system to
solve the problem it is necessary to decide what metric, if
any, is to be maximized. For instance, we may wish to max-
imize the number of meetings assigned or the sum of the
agents’ utilities.

In this paper, we focus on mechanism design approaches
to MAMS. We investigate whether mechanism design can
be applied to MAMS to find the schedules with the high-
est sum of agent utilities by eliciting each agent’s true pref-
erencesθiτ .

This paper is organized into 6 sections. In Section 2, we
introduce some concepts from mechanism design, includ-
ing Incentive Compatibility (IC) and Individual Rational-
ity (IR). We also discuss the main alternative approaches
to solving MAMS namely multi-agent negotiation and dis-
tributed constraint satisfaction. In Section 3 we outline IC
problems with previous mechanism design approaches to
MAMS. In Section 4 we concentrate on the problem of pro-
viding agents with an incentive to truthfully reveal their
availability. We show that when agents are asked to reveal
their availability we are quite restricted in our choice of
mechanisms if we desire IC and IR. In Section 5, we show
that the effect availability declarations have on the meet-
ing times chosen can be reduced by having agents quantify
the value of other agents to the meetings. Finally in Sec-



tion 6, we discuss our findings and suggest some avenues
for future research.

2. Background

2.1. Mechanism Design

Mechanism design is concerned with defining games.
The participants of the games are assumed to act withself-
interestaccording to their preferences about the outcome
[20]. Given this assumption it is the aim of the mechanism
designer to choose actions and pay-offs such that the game
will have the outcome he/she desires.

Mechanism design is commonly used in auctions. For in-
stance, suppose we want to sell a good to the person that val-
ues it the most. If we collect private bids and simply sell the
good to the highest bidder (for the price of his bid) it will
not be in the best interests of the bidders to bid their true val-
uations. Rather, they will have an incentive to bid lower and
we won’t be able to guarantee that the good will go to the
participant with the highest valuation. However, by using a
second price auction, where the highest bidder pays the sec-
ond highest bid for the good, we can ensure that it is in ev-
ery bidder’s best interest to bid his true valuation. The sec-
ond price auction is a classic example of how mechanism
design can be used to achieve a desired outcome.

The outcome desired by a mechanism designer depends
largely on the specific application. However, thesocial wel-
fare maximizing outcomeis a common choice. The social
welfare maximizing outcome is the outcome that maximizes
the sum of the agents’ utilities. In general, to compute the
social welfare maximizing outcome we need to know each
agent’s utility for every possible outcome. These values are
known only to each agent. Suppose an agent reveals incor-
rect values, then the outcome we compute is not guaran-
teed to maximize social welfare. As such, it is the job of
the mechanism to get the agents to state these values truth-
fully, as in the second price auction.

Game Theory tells us that whenever a self-interested,
rational agent has a strategy that dominates all others, he
will play that strategy [8]. Thus, we want to make it ev-
ery agent’s dominant strategy to reveal his true utilities. We
can think of a strategy as a rule for deciding which action to
take. Adominant strategyis a strategy that is a best response
to all possible strategies of the other agents. In other words,
an agent has a dominant strategy if he is best off playing a
particular strategy no matter what strategy the other agents
play.

Consider the matrix game in Table 1. There are two play-
ers, the row player and the column player. The row player
chooses either the top row or bottom row of the matrix and
the column player chooses either the left or right column.
Each square contains a pair of numbers, the first number is

the pay-off to the row player if that combination of strate-
gies is chosen, and the second is the pay-off to the column
player. In our example if the row player plays U and the col-
umn player plays L the row player receives a pay-off of 5
and the column player a pay-off of 2. Notice that the row
player is always better off playing U than D, since for both
of the column player’s strategies U is better than D. We say
that U is the dominant strategy for the row player.

L R
U 5,2 6,5
D 1,4 3,5

Table 1. Example Game

Two common desiderata for mechanisms are incentive
compatibility and individual rationality. A mechanism isin-
centive compatible(IC) if it is every agent’s dominant strat-
egy to reveal his utility values (i.e his valuations) truthfully.
A mechanism isindividually rational (IR) if agents cannot
receive a negative pay-off from the mechanism i.e., they are
never worse off for having participated. IC mechanisms nor-
mally require some agents to make payments to the sys-
tem and the system sometimes also makes payments to the
agents.

The Clarke Tax mechanism [3] is a well known mecha-
nism that generally achieves both IC and IR. As the name
suggests this mechanism requires the agents to make pay-
ments to the system. Below we give an example of how one
might consider scheduling a meeting using the Clarke Tax
mechanism.

Suppose we have some centralized mechanism that re-
quests agents to bid for meeting times by stating the dol-
lar value they place on the meeting being assigned to that
time. TheClarke Taxmechanism [3] works by charging
the agents according to the amount they influence the cho-
sen meeting time. Under this scheme, each agenti states
his money value for each possible outcome. The social wel-
fare maximizing outcomex is then selected. Agenti pays
an amount equal to the sum of the other agents’ utilities for
the outcome that would have been chosen by the mecha-
nism had he not participated, minus the sum of the other
agents’ utilities forx .

Consider the utilities as reported in Table 2. The outcome
chosen by the Clarke Tax mechanism is 9am since the to-
tal bids for this time (16) are greater than the total for 10am
(14). Given this outcome we look at the tax for each agent.
To calculate Agent 1’s tax, we observe that the outcome that
would have been chosen had Agent 1 not been involved is
10am. 10am has a value of 10 to the other two agents. The
value these two agents have for the time chosen when Agent
1 is present (9am) is only 7. Thus, we require Agent 1 to



9am 10am Tax
Agent1 9 4 3
Agent2 4 6 0
Agent3 3 4 0
Total 16 14

Table 2. Example of Clarke Tax calculation

pay the difference i.e., 3. The tax for Agent 2 and Agent 3
is computed similarly. Note that the removal of Agent 2 or
Agent 3 will see 9am remain the chosen time. As such, their
presence does not pivot the outcome and hence they pay no
tax.

To see that the Clarke Tax Mechanism is IC, consider
what happens if Agent 1 overbids for 9am and gives it a
value of 10 instead of 9. 9am will still be chosen for the
meeting. Since the tax Agent 1 pays does not depend on the
value of his bid he still pays the same tax of 3. Now con-
sider what happens if Agent 1 underbids for 9am. Suppose
he bids 8 instead of 9. The time chosen by the mechanism
will still be 9am and Agent 1 will pay the same tax as be-
fore. Hence underbidding has not gained Agent 1 anything.
Suppose Agent 1 underbids further with a bid of 6 instead
of 9. The time chosen by the mechanism will now be 10am
and Agent 1 will receive a utility of 4 and pay no tax. How-
ever if Agent 1 had bid truthfully, he would have received
utility 9 and paid a tax of 3 leading to a pay-off of 6. So
Agent 1 would have been better off revealing his true pref-
erences. For a formal introduction to the Clarke Tax mech-
anism see [20].

In real world MAMS mechanisms we cannot use money
to decide on meeting times. Instead, we need to replace
money with points as done by Ephrati et al. [7]. The sys-
tem can distribute points to the agents periodically which
they can use to bid for meeting times. These points take on
some of the qualities of money as they are needed repeat-
edly by users to influence the scheduling of new meetings.
Virtual money has also been used in other multi-agent and
multi-robot systems e.g. [6].

2.2. Related work

Much of the previous work on the MAMS problem has
looked at using negotiation between agents to find a solu-
tion e.g. [14, 23]. The following, is a simple example of the
kind of negotiation protocol looked at in previous work:

• The host announces the meeting

• While the host has not found an intersection in times:

– The host proposes some times to the attendees

– The attendees propose some times to the host

These negotiation approaches assume that agents are to
some extent truthful about their availability and utilities for
times and/or are willing to compromise their preferences.

We can say an agent is truthful in a protocol, like the one
described, if he offers all the times he is available for even-
tually, and offers times in the order of his preference. Truth-
fulness however, is certainly not a dominant strategy. Sup-
pose all the agents but Agenti are truthful. Then Agenti
may be able to gain by just proposing his favorite times and
hoping the other agents eventually agree. This lack of IC
could result in problems. For instance, an intersection of
available times may not be found, despite one actually ex-
isting or the process may iterate for a very long time.

Different approaches have been taken to handling user
preferences but one method that has been combined with
negotiation is that described in [24]. Sen et al. [24] show
how voting methods can be used (within a software agent)
to evaluate different options for scheduling a meeting when
users have multi-faceted and possibly competing prefer-
ences. This preference model is used to rank proposed meet-
ing times and to decide which times are acceptable.

Garrido and Sycara [9] and Jennings and Jackson [14]
take the approach of allowing agents to not only propose
meeting times but also to quantify their preferences for pro-
posals. The agent that is collecting the proposals then makes
decisions about meeting times based on the reported utili-
ties of all the meeting participants. This style of approach
involves a lot of trust, since for the procedure to work well
all the agents must report their preferences truthfully, and
truthfulness is not a dominant strategy.

In [25] Shintani et al. propose a persuasion based negoti-
ation approach for MAMS. The persuasion mechanism in-
volves compromising agents adjusting their preferences so
that their most preferred times are the persuading agent’s
most preferred times. Similarly to the other negotiation ap-
proaches this method relies on the cooperation of the agents
and cannot guarantee outcomes that maximize the sum of
the agents’ utilities.

Distributed Constraint Reasoning (DCR) approaches
have also been applied to MAMS. For example Modi and
Veloso [16] model the meeting scheduling problem ac-
cording to the DCR paradigm and evaluate strategies for
makingbumping decisions. The way in which agent’s de-
cide when tobump(i.e., move an existing meeting to ac-
commodate a new meeting) can have implications for the
efficiency of the meeting scheduling process. A meet-
ing that is bumped must be rescheduled and it is possi-
ble that in rescheduling a bumped meeting more meetings
will be bumped. Intuitively, if the agents want the schedul-
ing process to finish quickly, they should try to bump meet-
ings that will be easy to reschedule. Similarly to the
negotiation approaches discussed, DCR approaches as-
sume the agents are cooperative.



Recently, we have been looking at how agents can nego-
tiate strategically in order to better satisfy their users’ pref-
erences [5]. In [5] we propose an approach based on the
idea of adapting a playbook of strategies [2]. We show how
agents can learn to choose strategies based on who they are
negotiating with in order to achieve a better outcome for
their users. This kind of approach could be used to nego-
tiate about a variety of matters in which agents have self-
interest.

The key issue with most of the DCR and negotiation-
based approaches discussed is the degree to which they rely
on the willingness of agents to compromise their prefer-
ences and cooperate. Certainly in a MAMS system it seems
sensible to assume agents are in part cooperative. But most
of these approaches largely ignore the possibility of agents
behaving strategically and may not optimize global utility.
Work on mechanism design for MAMS is motivated by the
possibility of being able to optimize global utility even if
some, or all, of the agents are strategic.

3. Issues with existing mechanism design ap-
proaches to MAMS

A mechanism design approach to MAMS was first taken
by Ephrati, Zlotkin and Rosenschein [7]. Ephrati et al., used
a Clarke Taxmechanism to try and ensure IC. Three differ-
ent approaches were taken to implementing the mechanism:
meeting-oriented; calendar-oriented and schedule-oriented.
The authors state that each of these approaches is IC. How-
ever, their proof did not consider therepeatedapplication
of the Clarke Tax mechanism, rather it looked at a single
step. We show, by example, that these approaches are not
IC when we consider the repeated application of the mech-
anism and we observe that achieving IC is not a trivial prob-
lem in MAMS.

3.1. Meeting-Oriented Approach

In the meeting-oriented approach proposed by [7] when
each new meeting enters the system all the agents are given
more points with which to bid. The agents attending the
meeting then bid over all time slots in the time horizon. The
social choice is calculated by the mechanism, the tax ap-
plied and the meeting recorded in the system’s copy of each
agent’s calendar. The time the meeting is scheduled at, is not
considered available when scheduling future meetings for
the agents concerned. When the agents have combinatorial
preferences over meetings and times this approach is not IC.
Consider the following example. Agent 1 has a low utility
for meetings on Tuesday, but wants to complete some work
with some other agents by Wednesday that will require two
meetings over two days. Now, if Agent 1 thinks the other
agents want one of the meetings scheduled on Wednesday,

it may be in Agent 1’s best interest to overbid for time slots
on Tuesday. This is because Agent 1 gets a high utility from
both meetings happening by Wednesday.

Tue Wed Thu Fri
Agent1 2 4 3 2
Agent2 3 5 4 4
Agent3 3 6 3 3

Total Welfare 8 15 10 9

Table 3. The Agents’ true preferences

Suppose the agents’ true preferences over the days with-
out thinking ahead are those in Table 3. Let Agent 1’s utility
from the first meeting being scheduled on Tuesdayand the
second on Wednesday be 20 — which is more than his pref-
erence for those days on their own. Now, if we assume that
the other two agents will not change their preferences when
the new meeting enters the system, the first meeting will be
scheduled on Wednesday and the second on Thursday. This
will have a utility of 7 for Agent 1, and he will be charged
0 for the first meeting and 0 for the second. Now suppose
Agent 1 changes his bid for Tuesday to 10. The first meeting
will be scheduled on Tuesday and Agent 1 will be charged
5. The second meeting, will be scheduled on Wednesday,
and Agent 1 will again pay 0. So in total, Agent 1 will get
a pay-off of 15 which is higher than the 7 points for bid-
ding truthfully. Hence we have shown by example that the
meeting-oriented approach proposed in [7] is not IC when
agents have combinatorial preferences over meetings and
times.

Since new meetings arrive over time there may be bene-
fits to viewing the meeting scheduling problem as an online
mechanism design problem. There has been some progress
recently on designing online mechanisms e.g.[21, 18, 15,
13], but we are aware of no existing research in this area
that solves the meeting scheduling problem. The meet-
ing scheduling problem is more complex than the models
looked at so far since there are multiple distinct objects
(times) that bids are placed on and bidders have combinato-
rial preferences over these objects.

3.2. Calendar-Oriented Approach

In the calendar-orientedapproach proposed in [7] the
agents express their preferences over acomplete time pe-
riod once only. As time passes, new times are added to
the period under consideration and the agents are asked for
their preferences. This approach does not allow agents to
express preferences that aremeeting dependentor prefer-
ences that depend on the calendar’s current configuration.
As such, this approach is not IC.



Consider the following scenario. Agent 1 has a high util-
ity for back-to-back meetings — he gets 5 extra utility
points when any two meetings are scheduled back-to-back.
Suppose Agent 1 is considering how to allocate his prefer-
ences for 1,2,3 and 4pm on Monday. Agent 1 knows from
experience that 2pm is a very popular time with many of the
people he regularly needs to meet with, and as such he ex-
pects a meeting will be scheduled then. Agent 1 has a low
utility for meeting at 1pm, but since he expects a meeting
to be scheduled at 2pm perhaps he should overate his pref-
erence for 1pm? Table 4 contains Agents 1’s and Agent 2’s

1pm 2pm 3pm 4pm
Agent1 3 4 2 2
Agent2 2 3 2 4
Total 5 7 4 6

Table 4. True time preferences for Monday af-
ternoon

true preferences over meeting times on Monday afternoon.
If we schedule two meetings with these preferences the first
will be scheduled at 2pm and the second at 4pm and Agent 1
will have a pay-off of 5 (6 minus a tax of 1 for the first meet-
ing and a tax of 0 for the second). But, Agent 1’s back-to-
back preference means the declaration in Table 5 will lead
to a higher pay-off.

1pm 2pm 3pm 4pm
Agent1 5 4 2 2
Agent2 2 3 2 4
Total 7 7 4 6

Table 5. Strategic declarations for Monday af-
ternoon

If Agent 1 reveals the preferences in Table 5 he will re-
ceive 12 points (3+4+5) in utility and pay a tax of 2 for the
first meeting and a tax of 1 for the second resulting in a fi-
nal pay-off of 9 points. Hence we have shown by example
that the calendar-oriented approach proposed in [7] is not
IC when agents have preferences that depend on the con-
figuration of their calendar (e.g. the preference for having
meetings back-to-back).

3.3. Schedule-Oriented Approach

The problems that have arisen in the approaches previ-
ously described have been caused by a lack of expressive-
ness in the bidding process. The lack of expressiveness has
resulted in truthfulness not being a dominant strategy and
hence the mechanisms are not IC. This is similar to the need
for combinatorial auctions when the goods are complimen-
tary. The final approach proposed in [7] allows the agents to
bid over all possible schedules. The schedules are generated
by taking every possible combination of meetings and time
slots up to some time horizon. As each new meeting enters
the system the agents are allowed to bid over all feasible
schedule configurations. This approach has more promise
in terms of IC, but some issues remain.

Suppose the time horizon in this method is two weeks.
Further, suppose that the time a particular meeting is sched-
uled next month affects some agent’s preference for when
a meeting is scheduled this month. This causes the same IC
problem we saw for the meeting-oriented example. Thus,
this mechanism is not IC either. The longer the time hori-
zon the less likely this problem is to occur. As the time hori-
zon increases the number of possible schedules grows ex-
ponentially leading to a trade-off between IC and complex-
ity. We note that the schedule-oriented approach leads to
many possibilities for which the agents must submit pref-
erences. Clearly this will require agents that have knowl-
edge of their users’ preferences, since users cannot be asked
to assess large numbers of options. Further we cannot al-
low there to be so many options that the problem becomes
intractable. The mechanism would no longer be IC if the
agents or the mechanism had to make approximations [19].

4. Towards an effective solution for MAMS

In this section we consider in more detail a variant of the
most promising approach proposed in [7] — the schedule-
oriented approach. We show that even if we ignore time
horizon issues, this mechanism has IC problems. We dis-
cuss how this can be solved. We then consider the prob-
lem of incorporating the availability of agents for particular
times into a mechanism.

4.1. A schedule-oriented mechanism

The mechanism shown in Table 6 is a variation of the
schedule-oriented mechanism described in [7]. The mech-
anism in [7] has a time frame parameter that specifies the
number of time slots that are to be frozen as time progresses.
By frozen we mean that any meeting scheduled cannot be
changed. Clearly, if we allow time frames longer than one
time slot, the agents cannot fully express their preferences
and we will have IC problems. Thus, in our variation we do



Input : length of time slots, time horizon

procedureMAMS1:
1. Divide calendar into time slotst1, t2, ...th of lengthm
2. current-time= t1
3. horizon-time= th
4. ∀ agentsi, budgeti = x
5. When agent requests meeting, do
6. ∀ agentsi, budgeti = budgeti + xnew

7. notify all agents of meeting
8. notify agents if their presence is requested
9. generate all possible combinations of meetings and times from current time to horizon time,
schedule1, schedule2, ...schedulek

10. ∀ agentsi, request valuation for each schedule
11. check∀ agentsi and∀ schedulesj:
12. valuei(schedulej) <= budgeti
13. select schedule that maximizes social welfare
14. report schedule to agents
15. ∀ agentsi, budgeti = budgeti − clarketax(i)
16. whenm units of time have passed
17. current time = next time slot
18. create new time slot at horizon, and reassign horizon time

Table 6. Variant of the schedule-oriented approach

not refer to a time frame. In fact, a meeting could be moved
right up until thecurrent-timeif this would maximize so-
cial welfare. Unfortunately, despite the fact that allowing
agents to fully express their preferences within some time
horizon has greatly reduced IC problems, at least one is-
sue remains.

4.1.1. Further IC issues with the schedule-oriented ap-
proach The following example exposes a further IC prob-
lem with the schedule-oriented approach. Suppose our time
horizon in Table 6 is a week in advance. It is Monday, there
is some meeting that will most likely be scheduled on Fri-
day that Agent 1 wants to attend. Agent 1 has a strong pref-
erence for the meeting to be at 2pm. Now suppose Agent 1
expects 5 new meetings will enter the system between now
and Friday. When each meeting enters, Agent 1 will have to
bid over the possible schedules. The question, is whether or
not Agent 1 should truthfully reveal, that he greatly prefers
schedules where the meeting is held at 2pm. If Agent 1 re-
veals this preference when each new meeting needs to be
scheduled, his preferences could strongly influence the out-
come (if they are not also the preferences of the others).
Thus, it is possible he may have to pay a high tax each time.
Instead of paying the tax each time, Agent 1 would be bet-
ter off pretending he does not have a strong preference for
the time of the meeting until the 5th meeting enters the sys-
tem. At this point he can declare his preference and thus
only risk having to pay a high tax once. As such, it is not

a dominant strategy for Agent 1 to reveal his true prefer-
ences at each iteration and hence the mechanism is not IC.
The complicated nature of this example highlights that de-
signing an IC mechanism for this problem is non-trivial.

4.1.2. A fix We show a way the problem described in the
previous section can be removed. Suppose we fix a schedule
for some time period in one round of bidding. This elimi-
nates the ability of meetings to be moved, and thus the prob-
lem described in the previous section. However, since we
also need agents to be able to fully express their preferences
over the time period, once the schedule has been fixed no
new meeting can be added into that time period. Consider
the algorithm (MAMS2) in Table 7.

The difficulty with the mechanism in Table 7 is that the
agents would have to think ahead about the meetings they
want scheduled. The shorter the time period chosen, e.g 3
days, a week, a fortnight etc the greater the time horizon
IC problem but the smaller the problem of having to think
ahead. Clearly however any very last minute meetings are
likely to be a problem.

4.2. Availability

An important missing element from the approaches dis-
cussed thus far, is a way of handling the unavailability of
agents. The systems proposed in [7], did not allow agents



Input : period-length, slot-length

procedureMAMS2:
1. Divide the calendar up into time periodsp1, p2, ...pn

2. Divide the time periods up into slotst1, t2, ...tk
3. for current-period inp1, p2, ...pn

4. while current-period not expired:
5. append requests for meetings inpcurrent+x x > 0 to lists
6. ∀ agentsi, budgeti+ = no-meetings∗xnew

7. notify agents of all meetings
8. notify agents of which meetings their presence is requested at
9. steps 9-15 of MAMS1

Table 7. Fixed schedule-oriented approach to MAMS

to indicate they are unavailable for certain times. In the
calendar-oriented and meeting-oriented approaches from
[7], if an agent had a meeting scheduled by the system for
a particular time, the agent was considered unavailable at
that time. This was the only way agents could be consid-
ered unavailable. However, for a meeting scheduling sys-
tem to achieve efficient results we need agents to be able to
declare their unavailability. Users may have important com-
mitments such as appointments with medical specialists that
cannot be moved. Furthermore, there can also be implica-
tions for the efficiency of the organization the user works
for. Suppose for instance, that a user has a very important
client presentation. It may be in both the user’s and the com-
pany’s interest if the user has no meeting immediately prior
to the presentation so he can complete his preparations. Any
practically implementable MAMS system must have a way
of handling availability — preferably by a means that does
not involve human intervention. As such, we would like a
mechanism for MAMS that gets agents to reveal their avail-
ability as well as their time preferences.

We say that when an agent declares he is unavailable for
a time, that the agentvetoesor blocks that time. In other
words, the agent’s declaration means that no meeting of
which he is a participant can be held at that time. Simply
asking agents for the times they are unavailable is not an IC
approach. If we used this scheme there would be a clear in-
centive for the agents to say they are only available at the
times for which they have the highest utility. Even more so
than with preferences, we need agents to report their avail-
ability truthfully.

4.3. IC Mechanisms for MAMS with Availability
Declarations

In this section we look at how the power of veto restricts
our choice of IC mechanisms, and hence how it restricts the

mechanisms we can use to solve MAMS.

4.3.1. Some DefinitionsRecall that a mechanism isindi-
vidually rational(IR) if every agent is never worse off from
participating in the mechanism. IR is a very desirable prop-
erty in mechanism design since agents do not have to rea-
son about whether or not they should take part.

When applying mechanism design to MAMS we are as-
suming agents havequasi-linearpreferences in order to cir-
cumvent theGibbard-Satterthwaite Impossibility Theorem
[10] [22]. Letx ∈ X be the possible outcomes of the mech-
anism. Letpi be the payment agenti is required to make to
the system. Now we letui(x) be agenti′s utility from the
whole process if the mechanism selectsx, and letvi(x) be
i′s valuation for that outcome.

We say that agenti has quasi-linear preferences if
ui(x) = vi(x) − pi, i.e., i′s utility is simply his valua-
tion for the chosen outcome, minus the payment he must
make. The assumption of quasi-linear preferences is con-
sidered reasonable in markets and it is no less reasonable
in the context of meeting scheduling. Despite the restric-
tion of quasi-linear preferences, we allow the agents to
have general valuation functions.

The Groves family of mechanisms were developed in
[12], [3] and [26] for the domain of quasi-linear preferences.
Let θr

i ∈ θr be the reported valuation function of each agent
overX. The Groves mechanism selects the outcome,x∗ as,

x∗(θr) = argmaxx∈X

∑
∀i

vi(x)

In other words, Groves mechanisms select the outcome that
maximizes social welfare.

The payment rule of the groves mechanism is,

pi(θr) = hi(θr
−i)−

∑
j 6=i

vj(x∗)



wherehi : θr
−i → < is an arbitrary function on the reported

valuations of every agent excepti.
The Groves mechanism are unique in the domain of

quasi-linear preferences in that they are the only direct
mechanisms that are allocatively efficient, IC and imple-
mentable in dominant strategies for general valuation func-
tions [11]. By the Revelation Principle this result extends to
general mechanisms[10].

Lemma 4.1 1 There exists no Groves mechanism for
MAMS with availability declarations that maximizes so-
cial welfare and simultaneously satisfies IC and IR with-
out making payments to agents when agents have general
valuation functions and the structure ofhi(θr

−i) is re-
stricted as follows:hi(θr

−i) =
∑

i 6=j vj(?) wherevj(?) is
the reported value of agentj for one of the possible out-
comes.

Proof Consider a functionhi(θr
−i) that potentially satisfies

these properties. Since the mechanism must make no pay-
ments we have the following requirement:

hi(θr
−i)−

∑
i 6=j

vj(x∗) ≥ 0

This implieshi(θr
−i) must satisfy the following inequality:∑

i 6=j

vj(x∗) ≤ hi(θr
−i) (1)

Now since the mechanism must also be IR we also require
that:

hi(θr
−i)−

∑
i 6=j

vj(x∗) ≤ vi(x∗)

This implies the following further restriction onhi(θr
−i):

hi(θr
−i) ≤

∑
i 6=j

vj(x∗) + vi(x∗) (2)

Now to ensure requirement 1 we must basehi(θr
−i) on

the preferences of the other agents for outcomes which they
find preferable either individually (i.e., every agent’s con-
tribution to h is higher than to

∑
i 6=j vj(x∗)) or in total

(i.e., the sum of the agent’s contributions toh is higher
than

∑
i 6=j vj(x∗) even though some individual contribu-

tions may be lower). Note that we cannot simply lethi(θr
−i)

be the function
∑

i 6=j vj(x∗) since no one would ever pay
tax or receive payments and hence the mechanism could not
possibly be IC.

We now consider requirement 2. When agents cannot
veto options we normally ensure this property holds by ref-
erence to the fact thatx∗ is the social choice. Since with-

1 The lemma in [4] was misstated. It should have included the condition
that the mechanism does not make payments as well as the restriction
onh

out the power of veto, for any possible outcomey not cho-
sen by the mechanism we know:∑

i 6=j

vj(y) ≤
∑
i 6=j

vj(x∗) + vi(x∗)

or y would have been the social choice. However this does
not necessarily hold wheni has the ability to veto outcomes.
We do know that it holds for anyy not vetoed byi, but note
that: (i) i may veto all but the outcome chosen and (ii) if we
exclude vetoed outcomes we are lettingi influenceh and
we loose the IC property. Furthermore there is no way to
choose contributions toh from different outcomes for dif-
ferent agents such that we can both guarantee that 2 holds
and thathi(θr

−i) ≥
∑

i 6=j vj(x∗) without reference to the
type ofi. The remaining possibility to ensure 1 and 2 with-
out direct reference to the type ofi is to sethi(θr

−i) to∑
i 6=j vj(x∗) + 1, since 1 is the smallest possible valuei

could have forx∗. However, this amounts to always apply-
ing a tax of 1 which clearly cannot satisfy IC.

As such there is not way to choose a functionhi(θr
−i) of

the form described such thathi(θr
−i) satisfies all the prop-

erties.

Theorem 4.2 There is no mechanism for MAMS with the
properties stated in the lemma for agents with general val-
uation functions.

Proof This result follows directly from the uniqueness of
Groves mechanisms and from the revelation principle.

4.3.2. The restriction onhi(θr
−i) . In the lemma we re-

strictedhi(θr
−i) to being

∑
i 6=j vj(?) wherevj(?) is the re-

ported value of agentj for one of the possible outcomes.
There is no restriction placed on the form ofhi(θr

−i) in
the definition of the Groves mechanism. As suchhi(θr

−i)
could be a very general equation involving linear and non-
linear terms and various constants. The Lemma would be
strengthened if we could prove it for generalh. We think
this is probably possible, but finding a proof or alternatively
a counter example remains open.

We note that the result described here is not only applica-
ble to the MAMS problem. It applies more generally to sit-
uations where it is necessary to allow agents to veto some
outcomes.

4.4. Mechanism for MAMS that Makes Payments

If we drop the requirement that the mechanism can only
receive payments we can achieve an IC and IR mechanism
when agents have the power to veto outcomes. By setting
hi(θr

−i) to the value the other agents place on the worst pos-
sible outcome without Agenti we can ensure IR. The pay-
ment rule becomes:

pi(θr) =
∑
j 6=i

vj(xw
−i)−

∑
j 6=i

vj(x∗)



wherevj(xw
−i) is the value of Agentj for the outcome with

the lowest sum when agenti’s values are excluded. Note
that

∑
j 6=i vj(xw

−i) ≤
∑

j 6=i vj(x∗) — either the lowest val-
ued outcome of the other agents isx∗ or it is some other out-
come with even lower value. As such, this payment rule is
always IR since the mechanism will never actually tax. Fur-
thermore sincehi(θr

−i) depends only on the reported types
of the other agents, the Groves Mechanism with this pay-
ment rule is IC.

In situations where money is being used such a pay-
ment rule would often not be feasible - since the mecha-
nism would pay out money but never receive any. However,
because we are using points as opposed to real money in
MAMS, a mechanism that just makes payments is more re-
alistic than if money were involved. However, if we have a
mechanism that only ever makes payments, then the budget
of every agent is almost certain to grow over time. Clearly
inflation is likely to be very severe and agents are going to
have to adjust their bidding as time progresses to take this
into account. Inflationary problems could be reduced by us-
ing schemes that reduce the points supply but maintain rel-
ative purchasing power amongst the agents. For instance, a
scheme of periodically halving all the agents’ budgets could
be used to stop the amount of points in the system becom-
ing very large.

4.5. Clarke Tax Mechanism for Meeting Schedul-
ing Without IR

In this section we look at what can happen if we ignore
the IR requirement and simply use a Clarke Tax mecha-
nism to encourage truthful availability and preference dec-
larations. Table 8 shows example tax calculations for three
agents under this mechanism.

sch1 sch2 sch3 sch4 sch5 Tax
Agent1 1 4 0 0 0 11
Agent2 5 3 4 9 4 0
Agent3 2 4 9 9 3 1
Total 8 l1 13 18 7

Table 8. True preferences, including availabil-
ity

In the table a value of0 indicates that the schedule is
infeasible for that agent. When choosing the social wel-
fare maximizing outcomes these schedules are blocked off.
Thus,sch2 with value11 will be chosen. Now consider the
payment Agent 1 has to make. If Agent 1 was not involved
in the process,sch4 would have been the social choice with

value to the other players of18. Without Agent 1, the value
for sch2 is only 7. To compute Agent 1’s tax we minus7
from 18 giving a tax of11 as displayed in the table. Agent 1
is paying a high amount because his unavailability is greatly
effecting the outcome. Notice that the amount Agent 1 pays
is significantly higher than his value for the chosen sched-
ule. Thus, it was clearly not in Agent 1’s interest to par-
ticipate in the mechanism in this round. If we continue to
schedule meetings and Agent 1’s unavailability continues to
cause him to pay an amount of tax that is not IR he may end
up with no points to express positive preferences with. We
cannot limit the amount an agent spends to stop his points
from becoming negative, because even if he only places bids
of 1 on times he is available for, his unavailability on its own
can cause a large tax. This example demonstrates how the
mechanism’s failure to ensure IR can reduce its effective-
ness.

5. Reducing Veto Power

In many instances when there are more than two meet-
ing participants, one person’s unavailability at a particular
time does not completely block off that time. If the time is
very particularly favored by the other participants, or if the
unavailable participant is not very important for the meet-
ing, the meeting may still be scheduled. In this section we
look at incorporating this weaker notion of veto power into
a mechanism for MAMS. In particular we look at the af-
fect it has on the IR problem in the Clarke Tax mechanism.

We propose a mechanism where not only do agents ex-
press preferences over schedules, but also over attendees.
The agents specify their preferences for schedules and the
amount their utility for a schedule is reduced by the absence
of every combination of the other participants from each
meeting in the schedule. Thus, a schedule may be picked
where some agents are not available for all meetings.

Recall the preferences in Table 8. Now suppose that
Agent 1 loses 1 utility point each for the absence of the
other two agents . Agent 2 loses 3 utility points from Agent
1’s absence and 2 from Agent 3’s. Agent 3 loses 2 from
Agent 1’s absence and 1 from Agent 2’s. Suppose also, that
when two agents are unavailable the utility for the remain-
ing agent is always reduced by 10. When a combination of
the agents is unavailable we reduce the utility of that sched-
ule to the other agents by the amount they value the par-
ticipation of the absent combination. Table 9 shows the re-
duction in utilities that occurs. To show how this works, lets
consider Agent 2. Now Agent 2’s original preference for
sch3 was4, as shown in Table 8. But, Agent 1 cannot at-
tend a meeting specified in this schedule, so Agent 2’s val-
uation forsch3 is reduced by 3, which is the amount that
Agent 2 values Agent 1’s presence at the meeting. The other
reductions are computed similarly.



sch1 sch2 sch3 sch4 sch5 Tax
Agent1 1 4 0 0 0 0
Agent2 5 3 1 6 1 1
Agent3 2 4 7 7 1 1
Total 8 11 8 13 2

Table 9. True preferences, including value for
others

We now choose the social welfare maximizing schedule.
Notice that the schedule chosen will be a schedule for which
Agent 1 is unavailable -sch4 since the absence of Agent 1
did not outweigh the others’ values for that time. The pay-
ments can then be computed using the normal Clarke Tax
formula. To show that this scheme maintains IC, if used
once, we first need a formal expression for the tax that is
imposed on the agents. We will define the tax as follows:

taxi(θi) =
∑
j 6=i

vj(x∗−i)− vj
′
(absent−i(x∗−i)) (3)

−
∑
j 6=i

vj(x∗)− vj
′
(absent(x∗)) (4)

wherevj
′

computes the loss in utility to agentj of the ab-
sence of unavailable agents for each meeting andx∗−i is
the outcome that would have been chosen hadi not par-
ticipated. The tax is thus, the value the other agents would
have had for the social welfare maximizing outcome hadi
not been a participant in the process at all, minus the other
agents’ valuations for the outcome chosen.

Notice that agenti can have no effect on the first sum-
mand. Thus,i wants to reportθi and his value for the pres-
ence of others such that the system chosesx∗ that maxi-
mizes the following equation:

vi(x∗)− vi
′
(absent(x∗)) +

∑
j 6=i

vj(x∗)− vj
′
(absent(x∗))

But this is exactly what the mechanism is trying to maxi-
mize since this will give the social welfare maximizing out-
come. Thus, agenti is best off reporting his true valuations.

So this system maintains IC if used once. Thus, we can
use it in either MAMS1 or MAMS2 or some other mech-
anism to handle availability. Note that we could also use a
similar method for handling availability in the mechanism
that makes payments. This scheme can still result in out-
comes that are not IR when combined with the Clarke Tax
approach, however it will happen less often as demonstrated
by the example.

6. Conclusions

The benefit of taking a mechanism design approach to
MAMS is that it gives the possibility of maximizing social
welfare with no strategic thinking required by the agents
(they can just report their true valuations). However, to
achieve this goal, we need to design a mechanism that is IC
andpractical. We have made significant progress towards
developing such a mechanism in this paper.

We have demonstrated IC problems with previous ap-
proaches and have shown ways to fix or reduce these dif-
ficulties. Furthermore, we have addressed the practical is-
sue of incorporating availability declarations into a mech-
anism. We have shown that it reduces the sorts of mecha-
nisms available to us. Nonetheless, we have discussed two
mechanisms that incorporate availability and have shown
how IR problems can be reduced in the Clarke Tax ver-
sion. Our results demonstrate that making mechanism de-
sign work in real-world multi-agent systems is a theoreti-
cally challenging problem.

The problem of designing online IC mechanisms or
mechanisms that are IC when used repeatedly is an im-
portant problem for further study. Such mechanisms would
have applications to multiple domains including meeting
scheduling. Finally, the feasibility of any mechanism for
MAMS relies on the existence of software agents that can
learn people’s scheduling preferences. As such, exploring
this learning task is also an important direction for future
research.
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