Real-Time, Adaptive Color-based Robot Visiont

Brett Browning and Manuela Veloso
School of Computer Science
Carnegie Mellon University
5000 Forbes Avenue, Pittsburgh, PA, USA, 15213

{brettb,mnmv} @cs.cmu.edu

Abstract — With the wide availability, high information
content, and suitability for human environments of low-cost
color cameras, machine vision is an appealing sensor for many
robot platforms. For researchers interested in autonomous
robot teams operating in highly dynamic environments
performing complex tasks, such as robot soccer, fast color-
based object recognition is very desirable. Indeed, there are a
number of existing algorithms that have been developed
within the community to achieve this goal. Many of these
algorithms, however, do not adapt for variation in lighting
intensity, thereby limiting their use to statically and uniformly
lit indoor environments. In this paper, we present a new
technique for color object recognition that can adapt to
changesin illumination but remains computationally efficient.
We present empirical results demonstrating the performance
of our technique for both indoor and outdoor environments on
a robot platform performing tasks drawn from the robot
soccer domain. Additionally, we compare the computational
speed of our new approach against CMVision, a fast open-
source color segmentation library. Our performance results
show that our technique is able to adapt to lighting variations
without requiring significant additional CPU resour ces.

Index Terms — Robot vision, adaptation, object recognition.

|. INTRODUCTION

For many robot domains, vision provides the ided
sensor for robots due to its low cost, wide availability, high
data content and information rate. For highly dynamic
adversarial tasks, such as robot soccer, being able to extract
significant information about the world is crucia to
operating effectively, making vision an appealing sensor.
Additionally, the presence of adversaries mean that it is
essential to process the sensory information in minimum
time. Consequently, for vision-based autonomous robots in
dynamic domains it is crucial that vision processing
algorithms are fast in addition to being robust.

Color-based object recognition, where objects of interest
are colored in a uniquely identifiable and known way, is a
technique that has found wide use in the robotics
community. Correspondingly, there are now a number of
fast color segmentation vision libraries that are available
such as CMVision [3,4]. However, to date, the available
algorithms are unable to adapt to lighting variations. Clearly
the ability to adapt is a key factor to improving robustness
and is crucia in outdoor environments where lighting
variation is unavoidable.

In our work with the Segway RMP platform (see figure
1 and [9]), we have been exploring techniques to enable a
vision-centric robot to be able to play soccer in outdoor
environments where illuminat is variable [5]. The Segway

robots are able to reach speeds of 3.5m/s and can kick the
ball at just under 4m/s. Asthetask is adversarial and highly
dynamic, the cobmination of robot speed and ball speed
means that it is essential that the vision agorithms be both
robust, and extremely efficient. Indeed, only a fraction of
the CPU resources can be devoted to vision processing as
the remainder of the CPU resources must be used for
cognition in order to get low-latency robot behaviors.

We have developed a new technique for fast color-
object recognition that is suitable for use in robot platforms
like the Segway. The key contribution of our new approach
is that it is able to adapt its segmentation process to
different lighting conditions, within reason. In addition to
being adaptive, this new technique requires only moderate
additional computational resources beyond existing fast
color vision algorithms. In this paper, we present our new
technique and provide empirica evidence of its
performance using Segway RMP robot bases. We present
these results as a step towards useful, but fast color-based
robot vision techniques.

This paper is structured in the following way. In the
ensuing section we motivate the problem and describe
relevant algorithms that have been established in the
literature. In section 111, we present our new algorithm
followed by its performance results drawn from
experiments with our Segway RMP robot soccer platforms
in section 1V. Section V concludes the paper.

Figure 1. The segway robot, and atypical view from the cameralocated on
apan-tilt unit on top of the robot.

Il. ProBLEM DEescripTiON

In this paper, we focus on the problem of robot vision
for arobot operating in a highly dynamic world filled with a
small set of fast moving, but visualy distinctive objects.
Each object is color coded from a finite set of distinctive
colorsin a unique way. Concretely, the objects are the ball,

1 This work was supported by United States Army under Grant No. DABT63-99-1-0013. The content of the information in this publication does not
necessarily reflect the position or policy of the Defense Advanced Research Projects Agency (DARPA), US Army, US Government, and no official

endorsement should be inferred.

the field surface, field markers, two types of goal markers,
teammates, opponent robots and opponent humans. The
field is a mostly uniform colored surface of either grass,
concrete, carpet or astro turf. The ball is orange, while the
field markers are white, with a blue-yellow-blue band at the
top. The god markers are white with a yellow-red band at
the top, where one pair has yellow on top while the other
has red on top. The teammates and opponents wear colored
shirts (usualy cyan, red, green, or yellow), where the color
is different for each team.

\ 4 a & -

=0 =1

Mo T

=4
o

Er i ;i
g . .

. o
ik

e AP
g e

= ¥=5 ¥=6 Sfe=ch

Figure 2. An example histogram from an outdoor image similar to figure 11.
Each squareis aslice of the histogram along the UV plane with constant Y
vaue. The Y value increases across each row, and down the columns.

The goadl for robot perception is, therefore, to be able to
quickly and robustly identify each object using a monocular
color camera and estimate its range and bearing. Given the
dynamic nature of the task, and that the robot is fully
autonomous, identification must happen as quickly as
possible meaning al vision agorithms must be extremely
parsimonious of computational resources.

While there has been considerable research into general
purpose object recognition, such as [10,11,12], these
algorithms are invariably not fast enough for use in this
setting where only a fraction of the CPU resources are
available for vision processing. In contrast, there are a
number of techniques that have been developed that provide
very fast color blob tracking from which object recognition
algorithms for simple, pre-defined objects can be
developed. Examples include CMVision [3,4], the Newton
Labs Cognachrome [2], and various region growing
techniques [1, 6]. Such techniques have found use in robot
research, particularly in robot soccer, as well as
commercial applications[5].

The key to the speed of these approaches is the use of
lookup tables to classify each pixel according to which
symbolic color class it appears to belong to. While these
techniques are extremely fast, the use of a lookup table for
classification is fragile to changes in illumination. For an
indoor environment, this is less of a limitation than that it
seems. For an outdoor environment, this is a severe
limitation as variable lighting is a fact of life even in open
fields. In addition to illumination variations, there is the
additional problem of non-diffuse lighting causing specular
reflections, shadows, and large variations in color from the
sun-side to the shade-side.

Although outdoor environments are very chalenging,
we believe that for the constrained environment of an open
soccer field with color coded objects vision is still a
tractable problem. The motivation for our belief stems from
the observation that although colors can vary, they do so in

aconstrained way given the restrictions above. In particular,
as the general illumination level increases or decreases, a
colored pixel prescribes a constrained trajectory in color
space. Moreover, nearby colors move in a continuous
fashion so that the color space does not fold at any point. In
other words, the color red is always more 'red' than say any
green surface.

* | W

¥=0 =L ¥=2 ¥=3

e

¥=4 ¥=5 ¥Y=& M=

Figure 3. Another histogram drawn from a similar scene on a different day
with lots of cloud cover. Note there is no red object in thisimage.

For this discussion, let us focus on the YUV color space.
Figure 2 shows an example of part of the YUV histogram
for an outdoor scene much like that shown in figure 6. The
ball is a orange object, which contributes to the collection
of dots in the bottom half of the UV plane, blue is up
towards the right hand corner, gray colors are in the middle.
Figure 3 shows a different histogram drawn from a similar
scene but under differing lighting conditions. Note that the
two histograms are different, however, much of the
structure remains. The blue objects in the image occupy the
upper right hand side in the same way. The red objects in
the image (lower left hand streak) moves in towards the
center. A hard labelling scheme such as alookup table, fails
to capture such changes, however. We propose that a soft-
labeling scheme with an adaptive threshold is the key to
overcoming such dynamic changes, as discussed in the next
section.

e A e

I1l. AN ADAPTIVE SEGMENTATION APPROACH

Our segmentation technique is motivated by the
observation that for most of the domains of interest here
changes in illumination lead to small changesin color value
and that these changes are relatively uniform across al
colors. In other words, with modern cameras with automatic
shutters and gain control red pixels may vary in color but
will stay in the same region of color space. Therefore, we
propose that if pixel classificiation thresholds are able to
adapt by small amounts, it should become possible to
robustly classify pixel colors across moderate changes in
illumination. Our goal is to achieve such a robust, adaptive
system but without significantly increasing computational
reguirements.

Vision Algorithm(image):
segmentlmage(image)
buildHistograms()
adaptThreshol ds()
findObjects()

Figure 4. The main algorithm.

Figure 4 shows the main components of the approach.
The key idea is to use a soft labeling of pixel class,
followed by a hard decision using an adaptive threshold.

The combination of soft-labeling and adaptive thresholding
provides the plasticity for lighting variation. Following this,
connected pixels can be conglomerated using a connected
component analysis. Objects are detected and recognized by
searching for nearby regions that match apriori models,
with soft-comparisons to account for variations in shape,
size, and missing features. We now describe each of these
components in greater detail.

A. Pixel Classification

To label pixels according to which symbolic class they
belong to, we use a soft-labeling scheme followed by a hard
decision based on adaptive thresholds. Essentially, we
examine each, p, pixel in the image and estimate the
likelihood, P(peC) of it belongingto acolor class, j. The
pixel is assigned to the highest priority color class for which
its likelihood is above the threshold for that color class,

0, . The priority for each color class, defined as Pr())

isdefined apriori and isfixed. Thus, we have:

Segment:
for each pinimage
for each classj
if P(peC)>0,
S=Su{j}

s=max(S)
Pr(j)

Figure 5. The segmentation algorithm.

Figure 6 shows a typical outdoor image, the raw
labeling for 'red' and the resulting segmentation. There is
the question of where the likelihoods for each color class
comes from. In the work described in this paper, the
likelihood mappings are defined apriori by generating a
lookup table for the mapping from a hand-calibrated table
using a GUI tool, as described in section 1V.

L= T = ; Lr ek |
Figure 6. The top figure shows araw image, while the bottom image shows
the corresponding probability value for each pixel for the red color.

B. Threshold Adaptation

A histogram based approach is used to adapt the
threshold from frame to frame. Following the use of
histogram techniques for monochrome images [7], the key
assumption here is that pixels in the image are drawn from
two different underlying distributions. pixels that belong to
the color class of interest and pixels that do not. Thus, the
key assumption translates to a histogram of likelihood
values consisting of two, clearly distinguishable Gaussian
peaks centered around likehood values of 1, and O,
respectively.

While the presence of conflicting colors, and lighting
variations, will introduce additional peaks and complicate
the histogram, the basic assumption should hold. Therefore,
our approach is as follows. Firt, the histogram is smoothed
by convolution with a zero-mean Gaussian kernel operator,
where the width of the kernel is chosen a priori and is a
parameter to the system. With a suitably chosen kernel, this
smoothing operation produces a histogram with a small
number of clearly distinguishable peaks and valleys. It is a
relatively straightfoward exercise to search for each
stationary point in the smoothed histogram and label it as an
inflection, peak, or trough. With a sufficiently large
Gaussian kernel, the smoothing operation ensures that
peaks and valleys are clearly distinguishable.

The peak with the highest likelihood value corresponds
to the pixels of interest. Thus, the target threshold is
selected corresponding to the trough that fully captures the
peak and both its sides. If the target threshold is above a
minimum value, the actual threshold is stepped part way
towards this target threshold. The minimum value acts to
rule out setting bad thresholds when there is no color of
interest in the image. The partial step acts as a first-order
filter to smooth out rapid changes in threshold value. Figure
7 shows the adaptation agorithm. This agorithm is
executed once per frame for each color class. Figure 10
shows atypica histogram after smoothing.

Adapt Threshold:
for each classj
h'=conv(h,gauss j)
sp = stationaryPoints();
dt = arg max (sp.trough)
if (dt > minv)
t' = alpha* (dt-t) + t;

Figure 7. The histogram-based threshold adaptation algorithm.

C. Region Extraction

Once the image has been segmented, regions of
similarly labelled pixels are found using connected
component analysis. For this, we make use of the publicly
available Open Source software CMVision [2,3]. CMVision
provides fast connected components using a combination of
run length encoding and run conglomeration. Given thisisa
standard agorithm, we will not discuss it further other than
to note that it produces a list of regions for each color class,
sorted by number of pixels. Additionaly, simple region
statistics of centroid, and bounding box are calcul ated.

D. Object Recognition

Once an image has been segmented and colored regions
extracted, high-level vison must attempt to detect and
recognize relevant objects in the image if any are present.

Given that regions are the features available for object
recognition, all objects will consist of one or more colored
regions. Each of these regions is constrained by geometry
and can be recognized to some degree by its size, shape,
average color, and so on. The relative position between
regions on an object are also constrianed by geometry.
Therefore, our approach to object recognition is to exploit
these constraintsin an efficient manner.

Our agorithm for recognizing objects is drawn initially
from [8]. The agorithm works by first filtering out
unrecognized regions based on a probablistic template
match over a set of features calculated from the region
properties. Concretely, we define a set of features for each
different region, where the features are functions of the
region properties of area, bounding box width and height,
density within the bounding box, and expected size and area
given its position in the image or relation to neighbor
regions. We model each feature with a Gaussian uncertainty
model with hand-calibrated mean and variance. Lastly, the
uncertainty or noise in each feature is assumed to be
independent. Based on these assumptions, the likelihood of
aregion being one of interest is given by:

-1 2, 2
ix-x, 107,
P(reobject,)=]] ! 2

——€
w N2moy,

Regions with too low a likelihood value are rejected.
The threshold for the combination of these likelihoods is set
apriori. Table 1 lists the features we have made use of.

Feature Description

Shape Ratio of width to height

Area Number of pixelsin region

Density Ratio of pixelsto bounding box area

Expected Comparison between observed

width/height width/height and expected
width/height given position inimage
and camera geometry

PCA Principle Components of pixelsusing

SVD to determine long axis/short axis
Table 1. The features used to filter regions.

Once each region is filtered, the graph of regions that
make up the object are matched against a set of templates
describing the object in question, again using a probablistic
matching technique. Here knowledge of the expected graph
for an object is used to limit the search space for comparing
regions. We use the same approach of assuming that
features can be matched probabilisticaly, and have a
Gaussian uncertainty distribution. We also assume that each
feature is independent, alowing a multiplicative approach
to work as above. The features used to evaluate the match
are calculated from region statistics across two or more
regions in the connected graph. The features describe either
relative bounding box dimensions, relative locations of the
regions compared to some expectation, and relative area of
two regions. Lastly, a sanity check is applied based on size
in image against expected size given the calculated location.
Table 2 lists the features we have made use of.

Feature Description
Histogram Local histogram of classified colors
to meet specified constraints
Distance Distance between regions
Direction Direction vector between regions
Dimensiona Comparison in area, width, height

between regions

Table 2. Features for graph recognition. Note the histogram feature is
boolean and acts as a gate on whether the regions are acceptable.

The location of an object relative to the robot, one of the
major outputs for vision, is calculated using one of two
approaches. If the object has a known height or width, a
pin-hole camera model combined with the knowledge of the
camera geometry relative to the ground surface is used. If
such informaiton is unavailable, the distance is estimated by
projecting aray and intersecting it with a known fixed plane
paralel to the ground surface at some offset z. The ray is
projected through the known part of the object that
intersects the z-plane using a pin-hole camera model and
the known camera geometry.

IV. ImpLEMENTATION DETAILS

For the task required, robot vision, having a good
algorithm is not sufficient to produce a good working
system. Robots operating in highly dynamic environments
require minimal delay in responding to changes in the
world. For vision processing, this translates into
maintaining a high frame rate and ensuring that the time to
process a single image is as rapid as possible. Hence,
algorithms must be encoded efficiently. In this section, we
present the implementation details for our specific system.

A. Vision Implementation

The pixel classification step is the most time intensive
part of the agorithm. Even for a 320x240 image, 72,000
pixels must be processed just to classify the frame. Thus,
the key step isto convert the probability distribution of each
color belonging to a class into a lookup table. That is, to
compute the probability assignment quickly a lookup table
approximating P(psC) isgenerated for each color class.

For the application discussed in this paper, images are
available in YUV 420 planar format a 320x240
resolution. Each pixel consists of a vector

p=(y,u,v)', y,u,vel0,255 where the vector elements
can take on any value between 0 and 255. To limit the size
of the lookup table, to prevent overloading the cache, each
lookup table is stored as a 16KB, 3 dimensional array with
6 bitsfor each of U and V, and 4 bitsfor Y.

The histograms for each color class are recaculated
while processing the image. To maintain speed, threshold
adaptation is a pipelined process whereby thresholds from
the current frame are selected for use in the the following
frame. There is a key assumption here that sequential
frames are similar in appearance and lighting levels. While
not strictly true, it is a reasonable assumption. As described
earlier, CMVision [34] is used for the connected
component analysis to extract regions from the image.

Object detection is coded specifically for each known
object in question. The general structure for each object is

identical — identify a seed region, attempt to match the
graph template from this seed. As described each step
consists of calculating features from the region statistics or
the relationship between different region statistics. Given
the relatively small number of matching regions, these
algorithms do not have the same emphasis on utilizing CPU
resources efficiently asimage classification.

B. Calibration

The last implementation detail concerns the parameters
for the system. At the highest level, the graph templates
used to identify each object are hand-coded as seperate
algorithms. We are currently examining ways to extend this
to amore general purpose system, but this remains as future
work. Similarly, each of the features that are used to
evaluate regions, or region neighbors are hand-coded. The
expected value and variance for al of these features are
obtained from parameter files, loaded at boot time, or
calculated from other region parameters (e.g. expected size
of two regions on the one object). Typicaly, these
parameters once set are rarely modified again. However, in
some cases these parameters provide a mechanism for
tuning the agorithm performance. In practice, these
parameters are relatively robust to small-scale change.
Hence, the system has only moderate to low sensitivity to
these parameters.

Figure 8 . A typical outdoor scene showing two markers. The recognized
markers are shown with an X located at the centroid of the marker bands.
The color probability tables are generated using a GUI-
based tool. The tool, called colortrain, allows a user to label
parts of the color space as belonging with probability 1 to
the color class in question. Additionaly, the user can
sample pixels from the image to help aid this process. Once,
the user is satisfied with the labelling, he or she can
generate the probability tables, whereby the table is
smoothed through convolution with a zero-mean Gaussian
kernel in YUV space. The kernel is modelled as three
Gaussians, one in each color channel of YUV respectively.
The variance for each channel is provided as a parameter to
the system, although this is certainly alearnable value from
pre-labelled images.

V. PerrormANCE ResuLTs anD Discussion

In this section we examine the performance of the vision
system under different lighting regimes.

A. Basic Results

Figure 8 shows an outdoor scene with the output of the
vision algorithm is shown, while the final segmentation is
shown in figure 9. The identification of both markers is
shown by the X and bounding box for the color bands on
the markers. For the red-yellow marker (the right one), the

X should appear at the intersection of the two colored
bands. For the blue-yellow-blue marker, the X should
appear in the middle of the yellow marker. The distance to
these markers is estimated from the vertical seperation
between the two furthest colored regions.

i

Figure 9. The segmentation output for figure 8.

Clearly, the agorithm is able to segment the image
reliably if calibrated even though part of the left hand side
of the image is in the shade. The speckles of white occur
because the ground is not a uniform color, however these
regions are all quite small and therefore are easily filtered.
In outdoor scenes, such speckles are common. They impact
upon the running time of the CMVision agorithm
marginaly, but not to any significant degree. We have
experimented with morphological processes of eroding and
dilating, although this also affects the desirable regions and
istherefore of questionable value.

Figure 10 shows the histogram generated for the 'blue
color after smoothing. The various stationary points after
smoothing are clear in the image. The peak on the right
hand side corresponds to the group of pixels that we wish to
be labelled as of that color class. This is the peak that the
algorithm searches for by finding the trough to the left of
this pesk.

Smoothed Histogram

-
EI:EIZ / \
0m / \/\

1] 64 128 1492

Figure 10. The blue histogram after smoothing. The first peak on the right-
hand side which is difficult to see corresponds to the desired peak threshold.

B. Adaptation Results

To examine adaptation we use two approaches. First, we
examine how well a calibration carries from one outdoor
environment to another. Using the calibration for the above
image sequences, we ran the vision system on an image
sequence recorded on a different day, with different
lighting. Rather than being a cloudy day, as in the first
images, the image below is drawn from a sequence on a
bright sunny day with small patches of clouds. Figure 11
and 12 show an image from the second test set. Note that
the ground is grass instead of cement, hence it is a different
color and matches poorly. In contrast, the red, yellow,
white, and blue colors adapted successfully to the different
lighting conditions without any recalibration required.

Figure 11. A second test-set movie wquenc under outdoor lighting
conditions on a different day. Note, the ground is a different surface.

Figure 13 shows a graph of the threshold values for this
second sequence. Here the robot drove around in a circle
with the focus of the circle on the human. As it was sunny,
the thresholds adapted to the changes that occurred as the
robot moved from the shadow side, to the sunny side.
Additionally, the presence of a cloud caused significant
changes in the camera gain settings towards the end of the
seguence. The algorithm was able to adapt and continue to
recognize the objects despite the lighting variation.

Figure 12. The classification performance corresponding to Figure 11, but
with the calibrations developed for the image sequence shown in figure 8.

C. Benchmarking

Table 3 provides the performance benchmark
comparison between the new algorithm with adaptation and
segmentation with a CMVision lookup table. The results are
shown for an outdoor movie sequence, with both systems
calibrated, running on a 1.2GHz Pentium Il processor
laptop over approximately 30s. The images are 320x240
YUV 420 planar format and arrive at 30Hz. Clearly, the
additional cost of using the soft-labelling technique is on
the order of 2ms. This is certainly worth the cost at the
benefit of adaptation across lighting changes.

Algorithm Step Adaptation CMVision
mean (stdev.) mean (stdev.)

Segmentation 7.37(0.91) 5.10 (0.60)

Threshold update 0.10(0.01) 0.07 (0.09)

CMVision 0.97 (0.14) 1.21 (0.1

High Level Vision 0.22 (0.02) 0.16 (0.08)

Total 8.66 (0.87) 6.55 (0.62)

Table 3. Shows the processor usage for the new algorithm and CMVision on
a1.2GHz Pentium 111 Iaptop machine for an outdoor scene (approximately 2
minutes of data or 3600 frames. All values are in milliseconds.

VII. ConcLusions AND FuTure WoRk

In this paper, we have presented a new technique for fast
color vision agorithm for use in robot domains where
lighting levels may vary. The key to our approach residesin
the soft-labeling of pixels with an adaptive threshold
technique. We have fully implemented this algorithm on a
Segway RMP platform, and presented results showing its
segmentation performance. Additionally, we have
compared the computational requirements of the algorithm
against CMVision as a benchmark and demonstrated that
the additional computaitonal load for the soft-labeling
processis sufficiently small to be negligible.

Our future work will focus on extending this approach
to provide automated calibration of the probability tables, as
well as further generalizing the high-level graph matching
technique for use on awide range of objects.

Threshold values vstime
f - ' T eI T
L I b ——1 ' M
a2 | ‘ E I 1‘ 'T[pLA N i H" g
128 red
M| === blue
o el
0 1o 20 30 40] 50
Time (4

Figure 13. Threshold values varying over time for red, blue, and yellow.
Note the red corresponds to a ball which has arounded surface and therefore
agreater spread of colors making it more sensitive to lighitng variation.

RerFerences

[1] Hundelshausen, F., Rojas, R. An omnidirectional Vision System that
finds and tracks color edges and blobs. RoboCup-01: Robot Soccer
World Cup V, Springer, 2001.

[2] Newton Labs Cognachrome
http: //mww.newtonl abs.com/cognachrome/

[3] Bruce, J, Bach, T. and Veloso, M. Fast and Inexpensive Color Image
Segmentation for Interactive Robots. In Proceedings of IROS-2000,
Japan, October 2000.

[4] CMVision web page http://mww.cs.cmu.edu/~jbruce/cmvision

[5] Browning, B., Rybski, P., Searock, J., and Veloso, M. Development of
a soccer-playing dynamically-balancing mobile robot. In Proceedings
of International Conference on Robotics and Automation (ICRA'04),
May 2004.

[6] Weigell, T.and Nebell, B. KiRo — An Autonomous Table Soccer
Player. RoboCup 2002: Robot Soccer World Cup VI. Gal A. Kaminka,
Pedro U. Lima, Raul Rojas (eds). Lecture Notesin Computer Science,
vol. 2752 / 2003, Springer-Verlag Heidelberg, 2003.

[7] Fu, K., Gonzaez, R., Lee, C. Robotics: Control, Sensing, Vision, and
Intelligence. McGraw-Hill, NY, 1987.

[8] Lenser, S, Bruce, J., and Veloso, M. CMPack: A Complete Software
System for Autonomous L egged Soccer Robots. In Proceedings of the
Fifth International Conference on Autonomous Agents, May 2001.

[9] Nguyen, H. G., Morrell, J., Mullens, K., Burmeister, A., Miles, S,
Thomas, K., and Gage, D. W. Segway Robotic Mobility Platform,
SPIE Mobile Robots XVI1, Philadelphia, PA; 26-28 October, 2004.

[10] Schneiderman, H. Learning arestricted Bayesian network for object
detection. Proceedings of the |IEEE Conference on Computer Vision
and Pattern Recognition, June 2004.

[11] Huber, D., Kapuria, A., Donamukkala, R. R., Hebert, M. Parts-based
3D object classification. Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR04), June, 2004.

[12] Lowe, D. G. Object recognition from local scale-invariant features.
Proceedings of the International Conference on Computer Vision
(ICVPR99), 1999.

