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Abstract –  With the  wide availability,  high  information
content,  and suitability for human environments of low-cost
color cameras, machine vision is an appealing sensor for many
robot  platforms.  For  researchers  interested  in  autonomous
robot  teams  operating  in  highly  dynamic  environments
performing complex  tasks,  such as  robot  soccer,  fast  color-
based object recognition is very desirable. Indeed, there are a
number  of  existing  algorithms  that  have  been  developed
within  the  community  to  achieve  this  goal.  Many  of  these
algorithms,  however,  do  not  adapt  for  variation  in  lighting
intensity, thereby limiting their use to statically and uniformly
lit  indoor  environments.  In  this  paper,  we  present  a  new
technique  for  color  object  recognition  that  can  adapt  to
changes in illumination but remains computationally efficient.
We present empirical results demonstrating the performance
of our technique for both indoor and outdoor environments on
a  robot  platform  performing  tasks  drawn  from  the  robot
soccer domain. Additionally,  we compare the computational
speed of  our new approach against  CMVision,  a  fast  open-
source  color  segmentation  library.  Our performance results
show that our technique is able to adapt to lighting variations
without requiring significant additional CPU resources.

Index Terms – Robot vision, adaptation, object recognition.

I.  INTRODUCTION

For  many  robot  domains,  vision  provides  the  ideal
sensor for robots due to its low cost, wide availability, high
data  content  and  information  rate.  For  highly  dynamic
adversarial tasks, such as robot soccer, being able to extract
significant  information  about  the  world  is  crucial  to
operating effectively,  making vision an appealing sensor.
Additionally,  the  presence  of  adversaries  mean  that  it  is
essential  to  process  the  sensory  information  in  minimum
time. Consequently, for vision-based autonomous robots in
dynamic  domains  it  is  crucial  that  vision  processing
algorithms are fast in addition to being robust. 

Color-based object recognition, where objects of interest
are colored in a uniquely identifiable and known way, is a
technique  that  has  found  wide  use  in  the  robotics
community.  Correspondingly,  there  are now a number  of
fast  color  segmentation  vision libraries  that  are  available
such as CMVision [3,4].  However,  to  date,  the  available
algorithms are unable to adapt to lighting variations. Clearly
the ability to adapt is a key factor to improving robustness
and  is  crucial  in  outdoor  environments  where  lighting
variation is unavoidable. 

In our work with the Segway RMP platform (see figure
1 and [9]), we have been exploring techniques to enable a
vision-centric  robot  to  be  able  to  play  soccer  in  outdoor
environments where illuminat is variable [5]. The Segway

robots are able to reach speeds of 3.5m/s and can kick the
ball at just under 4m/s. As the task is adversarial and highly
dynamic,  the  cobmination of  robot  speed and  ball  speed
means that it is essential that the vision algorithms be both
robust, and extremely efficient. Indeed, only a fraction of
the CPU resources can be devoted to vision processing as
the  remainder  of  the  CPU  resources  must  be  used  for
cognition in order to get low-latency robot behaviors. 

We  have  developed  a  new  technique  for  fast  color-
object recognition that is suitable for use in robot platforms
like the Segway. The key contribution of our new approach
is  that  it  is  able  to  adapt  its  segmentation  process  to
different lighting conditions, within reason. In addition to
being adaptive, this new technique requires only moderate
additional  computational  resources  beyond  existing  fast
color vision algorithms. In this paper, we present our new
technique  and  provide  empirical  evidence  of  its
performance using Segway RMP robot bases. We present
these results as a step towards useful, but fast color-based
robot vision techniques.

This  paper  is  structured  in  the  following  way.  In  the
ensuing  section  we  motivate  the  problem  and  describe
relevant  algorithms  that  have  been  established  in  the
literature.  In  section  III,  we  present  our  new  algorithm
followed  by  its  performance  results  drawn  from
experiments with our Segway RMP robot soccer platforms
in section IV. Section V concludes the paper. 

II.  PROBLEM DESCRIPTION

In this paper, we focus on the problem of robot vision
for a robot operating in a highly dynamic world filled with a
small  set  of  fast  moving,  but  visually distinctive objects.
Each object is color coded from a finite set of distinctive
colors in a unique way. Concretely, the objects are the ball,
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Figure 1. The segway robot, and a typical view  from the camera located on
a pan-tilt unit on top of the robot.



the field surface, field markers, two types of goal markers,
teammates,  opponent  robots  and  opponent  humans.  The
field is  a  mostly uniform colored surface of either grass,
concrete, carpet or astro turf. The ball is orange, while the
field markers are white, with a blue-yellow-blue band at the
top. The goal markers are white with a yellow-red band at
the top, where one pair has yellow on top while the other
has red on top. The teammates and opponents wear colored
shirts (usually cyan, red, green, or yellow), where the color
is different for each team.

The goal for robot perception is, therefore, to be able to
quickly and robustly identify each object using a monocular
color camera and estimate its range and bearing. Given the
dynamic  nature  of  the  task,  and  that  the  robot  is  fully
autonomous,  identification  must  happen  as  quickly  as
possible meaning all vision algorithms must be extremely
parsimonious of computational resources. 

While there has been considerable research into general
purpose  object  recognition,  such  as  [10,11,12],  these
algorithms are  invariably  not  fast  enough for  use in  this
setting  where  only  a  fraction  of  the  CPU  resources  are
available  for  vision  processing.  In  contrast,  there  are  a
number of techniques that have been developed that provide
very fast color blob tracking from which object recognition
algorithms  for  simple,  pre-defined  objects  can  be
developed. Examples include CMVision [3,4], the Newton
Labs  Cognachrome  [2],  and  various  region  growing
techniques [1, 6]. Such techniques have found use in robot
research,  particularly  in  robot  soccer,  as  well  as
commercial applications [5].

The key to the speed of these approaches is the use of
lookup  tables  to  classify  each  pixel  according  to  which
symbolic color class it  appears to belong to. While these
techniques are extremely fast, the use of a lookup table for
classification is fragile to changes in illumination. For an
indoor environment, this is less of a limitation than that it
seems.  For  an  outdoor  environment,  this  is  a  severe
limitation as variable lighting is a fact of life even in open
fields.  In  addition  to  illumination  variations,  there  is  the
additional problem of non-diffuse lighting causing specular
reflections, shadows, and large variations in color from the
sun-side to the shade-side.

Although  outdoor  environments  are  very  challenging,
we believe that for the constrained environment of an open
soccer  field  with  color  coded  objects  vision  is  still  a
tractable problem. The motivation for our belief stems from
the observation that although colors can vary, they do so in

a constrained way given the restrictions above. In particular,
as the general illumination level increases or decreases, a
colored  pixel  prescribes  a  constrained  trajectory  in  color
space.  Moreover,  nearby  colors  move  in  a  continuous
fashion so that the color space does not fold at any point. In
other words, the color red is always more 'red' than say any
green surface. 

For this discussion, let us focus on the YUV color space.
Figure 2 shows an example of part of the YUV histogram
for an outdoor scene much like that shown in figure 6. The
ball is a orange object, which contributes to the collection
of  dots  in  the  bottom half  of  the  UV plane,  blue  is  up
towards the right hand corner, gray colors are in the middle.
Figure 3 shows a different histogram drawn from a similar
scene but under differing lighting conditions. Note that the
two  histograms  are  different,  however,  much  of  the
structure remains. The blue objects in the image occupy the
upper right hand side in the same way. The red objects in
the image (lower  left  hand streak)  moves  in  towards  the
center. A hard labelling scheme such as a lookup table, fails
to capture such changes, however. We propose that a soft-
labeling scheme with an adaptive threshold is the key to
overcoming such dynamic changes, as discussed in the next
section.

III.  AN ADAPTIVE SEGMENTATION APPROACH

Our  segmentation  technique  is  motivated  by  the
observation that for most of the domains of interest  here
changes in illumination lead to small changes in color value
and  that  these  changes  are  relatively  uniform  across  all
colors. In other words, with modern cameras with automatic
shutters and gain control red pixels may vary in color but
will stay in the same region of color space. Therefore, we
propose that  if  pixel classificiation thresholds are  able to
adapt  by  small  amounts,  it  should  become  possible  to
robustly classify pixel  colors  across moderate  changes in
illumination. Our goal is to achieve such a robust, adaptive
system but without  significantly increasing computational
requirements. 

Figure 4. The main algorithm.

Figure 4 shows the main components of the approach.
The  key  idea  is  to  use  a  soft  labeling  of  pixel  class,
followed by a hard  decision using an adaptive threshold.

Vision Algorithm(image):
segmentImage(image)
buildHistograms()
adaptThresholds()
findObjects()

Figure 2. An example histogram from an outdoor image similar to figure 11.
Each square is a slice of the histogram along the UV plane with constant Y

value. The Y value increases across each row, and down the columns.

Figure 3. Another histogram drawn from a similar scene on a different day
with lots of cloud cover. Note there is no red object in this image.
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The combination of soft-labeling and adaptive thresholding
provides the plasticity for lighting variation. Following this,
connected pixels can be conglomerated using a connected
component analysis. Objects are detected and recognized by
searching  for  nearby  regions  that  match  apriori  models,
with soft-comparisons to account  for  variations in shape,
size, and missing features. We now describe each of these
components in greater detail. 

A. Pixel Classification 
To label pixels according to which symbolic class they

belong to, we use a soft-labeling scheme followed by a hard
decision  based  on  adaptive  thresholds.  Essentially,  we
examine  each,  p,  pixel  in  the  image  and  estimate  the
likelihood, Pp∈C j of it belonging to a color class, j. The
pixel is assigned to the highest priority color class for which
its  likelihood is  above  the  threshold  for  that  color  class,

 j . The priority for each color class, defined as Pr  j
is defined a priori and is fixed. Thus, we have:

Figure 5. The segmentation algorithm.

Figure  6  shows  a  typical  outdoor  image,  the  raw
labeling for 'red' and the resulting segmentation. There is
the question of where the likelihoods for each color class
comes  from.  In  the  work  described  in  this  paper,  the
likelihood  mappings  are  defined  apriori  by  generating  a
lookup table for the mapping from a hand-calibrated table
using a GUI tool, as described in section IV.

B. Threshold Adaptation
A  histogram  based  approach  is  used  to  adapt  the

threshold  from  frame  to  frame.  Following  the  use  of
histogram techniques for monochrome images [7], the key
assumption here is that pixels in the image are drawn from
two different underlying distributions: pixels that belong to
the color class of interest and pixels that do not. Thus, the
key  assumption  translates  to  a  histogram  of  likelihood
values consisting of two, clearly distinguishable Gaussian
peaks  centered  around  likehood  values  of  1,  and  0,
respectively. 

While  the presence of  conflicting colors,  and lighting
variations, will introduce additional peaks and complicate
the histogram, the basic assumption should hold. Therefore,
our approach is as follows. First, the histogram is smoothed
by convolution with a zero-mean Gaussian kernel operator,
where the width of the kernel is chosen a priori and is a
parameter to the system. With a suitably chosen kernel, this
smoothing  operation  produces  a  histogram  with  a  small
number of clearly distinguishable peaks and valleys. It is a
relatively  straightfoward  exercise  to  search  for  each
stationary point in the smoothed histogram and label it as an
inflection,  peak,  or  trough.  With  a  sufficiently  large
Gaussian  kernel,  the  smoothing  operation  ensures  that
peaks and valleys are clearly distinguishable.

The peak with the highest likelihood value corresponds
to  the  pixels  of  interest.  Thus,  the  target  threshold  is
selected corresponding to the trough that fully captures the
peak and both its sides. If the target threshold is above a
minimum value,  the  actual  threshold  is  stepped part  way
towards this target threshold. The minimum value acts to
rule out setting bad thresholds when there is no color of
interest in the image. The partial step acts as a first-order
filter to smooth out rapid changes in threshold value. Figure
7  shows  the  adaptation  algorithm.  This  algorithm  is
executed once  per  frame for  each color  class.  Figure  10
shows a typical histogram after smoothing. 

Figure 7. The histogram-based threshold adaptation algorithm.

C. Region Extraction
Once  the  image  has  been  segmented,  regions  of

similarly  labelled  pixels  are  found  using  connected
component analysis. For this, we make use of the publicly
available Open Source software CMVision [2,3]. CMVision
provides fast connected components using a combination of
run length encoding and run conglomeration. Given this is a
standard algorithm, we will not discuss it further other than
to note that it produces a list of regions for each color class,
sorted  by  number  of  pixels.  Additionally,  simple  region
statistics of centroid, and bounding box are calculated.

D. Object Recognition
Once an image has been segmented and colored regions

extracted,  high-level  vision  must  attempt  to  detect  and
recognize relevant objects in the image if any are present.

Segment:
for each p in image

for each class j
if Pp∈C j j

S=S∪{ j}
s=max

Pr  j
S

Adapt Threshold:
for each class j

h'=conv(h,gauss_j)
sp = stationaryPoints();
dt = arg max (sp.trough)
if (dt > minv)

t' = alpha * (dt-t) + t;

Figure 6. The top figure shows a raw image, while the bottom image shows
the corresponding probability value for each pixel for the red color.



Given  that  regions  are  the  features  available  for  object
recognition, all objects will consist of one or more colored
regions. Each of these regions is constrained by geometry
and can be recognized to some degree by its size, shape,
average  color,  and  so  on.  The  relative  position  between
regions  on  an  object  are  also  constrianed  by  geometry.
Therefore, our approach to object recognition is to exploit
these constraints in an efficient manner. 

Our algorithm for recognizing objects is drawn initially
from  [8].  The  algorithm  works  by  first  filtering  out
unrecognized  regions  based  on  a  probablistic  template
match  over  a  set  of  features  calculated  from  the  region
properties. Concretely, we define a set of features for each
different  region,  where  the  features  are  functions  of  the
region properties of area, bounding box width and height,
density within the bounding box, and expected size and area
given  its  position  in  the  image  or  relation  to  neighbor
regions. We model each feature with a Gaussian uncertainty
model with hand-calibrated mean and variance. Lastly, the
uncertainty  or  noise  in  each  feature  is  assumed  to  be
independent. Based on these assumptions, the likelihood of
a region being one of interest is given by:

P r∈objectk=∏


1

2k

e
−1
2

∥x−xk∥
2/k

2

Regions with too low a likelihood value are  rejected.
The threshold for the combination of these likelihoods is set
a priori. Table 1 lists the features we have made use of. 

Feature Description

Shape Ratio of width to height

Area Number of pixels in region

Density Ratio of pixels to bounding box area

Expected
width/height

Comparison between observed
width/height and expected
width/height given position in image
and camera geometry

PCA Principle Components of pixels using
SVD to determine long axis/short axis

Table 1. The features used to filter regions.

Once each region is filtered, the graph of regions that
make up the object are matched against a set of templates
describing the object in question, again using a probablistic
matching technique. Here knowledge of the expected graph
for an object is used to limit the search space for comparing
regions.  We  use  the  same  approach  of  assuming  that
features  can  be  matched  probabilistically,  and  have  a
Gaussian uncertainty distribution. We also assume that each
feature is independent, allowing a multiplicative approach
to work as above. The features used to evaluate the match
are  calculated  from region  statistics  across  two  or  more
regions in the connected graph. The features describe either
relative bounding box dimensions, relative locations of the
regions compared to some expectation, and relative area of
two regions. Lastly, a sanity check is applied based on size
in image against expected size given the calculated location.
Table 2 lists the features we have made use of.

Feature Description

Histogram Local histogram of classified colors
to meet specified constraints

Distance Distance between regions

Direction Direction vector between regions

Dimensional Comparison in area, width, height
between regions

Table 2. Features for graph recognition. Note the histogram feature is
boolean and acts as a gate on whether the regions are acceptable.

The location of an object relative to the robot, one of the
major  outputs  for  vision,  is  calculated  using  one  of  two
approaches.  If  the object has a known height or width, a
pin-hole camera model combined with the knowledge of the
camera geometry relative to the ground surface is used. If
such informaiton is unavailable, the distance is estimated by
projecting a ray and intersecting it with a known fixed plane
parallel to the ground surface at some offset  z. The ray is
projected  through  the  known  part  of  the  object  that
intersects the  z-plane using a  pin-hole camera model and
the known camera geometry.

IV.  IMPLEMENTATION DETAILS

For  the  task  required,  robot  vision,  having  a  good
algorithm  is  not  sufficient  to  produce  a  good  working
system. Robots operating in highly dynamic environments
require  minimal  delay  in  responding  to  changes  in  the
world.  For  vision  processing,  this  translates  into
maintaining a high frame rate and ensuring that the time to
process  a  single  image  is  as  rapid  as  possible.  Hence,
algorithms must be encoded efficiently. In this section, we
present the implementation details for our specific system.

A. Vision Implementation
The pixel classification step is the most time intensive

part of the algorithm. Even for a 320x240 image, 72,000
pixels must be processed just to classify the frame. Thus,
the key step is to convert the probability distribution of each
color belonging to a class into a lookup table. That is, to
compute the probability assignment quickly a lookup table
approximating Pp∈C j  is generated for each color class.

For the application discussed in this paper, images are
available  in  YUV  4:2:0  planar  format  at  320x240
resolution.  Each  pixel  consists  of  a  vector
pi=y ,u,v T , y ,u,v∈[0,255] where  the  vector  elements

can take on any value between 0 and 255. To limit the size
of the lookup table, to prevent overloading the cache, each
lookup table is stored as a 16KB, 3 dimensional array with
6 bits for each of U and V, and 4 bits for Y.

The  histograms  for  each  color  class  are  recalculated
while processing the image. To maintain speed, threshold
adaptation is a pipelined process whereby thresholds from
the current frame are selected for use in the the following
frame.  There  is  a  key  assumption  here  that  sequential
frames are similar in appearance and lighting levels. While
not strictly true, it is a reasonable assumption. As described
earlier,  CMVision  [3,4]  is  used  for  the  connected
component analysis to extract regions from the image. 

Object detection is coded specifically for each known
object in question. The general structure for each object is



identical  –  identify  a  seed  region,  attempt  to  match  the
graph  template  from  this  seed.  As  described  each  step
consists of calculating features from the region statistics or
the  relationship  between different  region statistics.  Given
the  relatively  small  number  of  matching  regions,  these
algorithms do not have the same emphasis on utilizing CPU
resources efficiently as image classification.

B. Calibration
The last implementation detail concerns the parameters

for  the system. At  the highest  level,  the  graph templates
used  to  identify  each  object  are  hand-coded  as  seperate
algorithms. We are currently examining ways to extend this
to a more general purpose system, but this remains as future
work.  Similarly,  each  of  the  features  that  are  used  to
evaluate regions, or region neighbors are hand-coded. The
expected value  and variance for  all  of  these features  are
obtained  from  parameter  files,  loaded  at  boot  time,  or
calculated from other region parameters (e.g. expected size
of  two  regions  on  the  one  object).  Typically,  these
parameters once set are rarely modified again. However, in
some  cases  these  parameters  provide  a  mechanism  for
tuning  the  algorithm  performance.  In  practice,  these
parameters  are  relatively  robust  to  small-scale  change.
Hence, the system has only moderate to low sensitivity to
these parameters.

The color probability tables are generated using a GUI-
based tool. The tool, called colortrain, allows a user to label
parts of the color space as belonging with probability 1 to
the  color  class  in  question.  Additionally,  the  user  can
sample pixels from the image to help aid this process. Once,
the  user  is  satisfied  with  the  labelling,  he  or  she  can
generate  the  probability  tables,  whereby  the  table  is
smoothed through convolution with a zero-mean Gaussian
kernel  in  YUV  space.  The  kernel  is  modelled  as  three
Gaussians, one in each color channel of YUV respectively.
The variance for each channel is provided as a parameter to
the system, although this is certainly a learnable value from
pre-labelled images.

V. PERFORMANCE RESULTS AND DISCUSSION

In this section we examine the performance of the vision
system under different lighting regimes. 

A. Basic Results
Figure 8 shows an outdoor scene with the output of the

vision algorithm is shown, while the final segmentation is
shown in  figure  9.  The identification of  both  markers  is
shown by the X and bounding box for the color bands on
the markers.  For the red-yellow marker (the right one), the

X  should  appear  at  the  intersection  of  the  two  colored
bands.  For  the  blue-yellow-blue  marker,  the  X  should
appear in the middle of the yellow marker. The distance to
these  markers  is  estimated  from  the  vertical  seperation
between the two furthest colored regions. 

Clearly,  the  algorithm  is  able  to  segment  the  image
reliably if calibrated even though part of the left hand side
of the image is in the shade. The speckles of white occur
because the ground is not a uniform color, however these
regions are all quite small and therefore are easily filtered.
In outdoor scenes, such speckles are common. They impact
upon  the  running  time  of  the  CMVision  algorithm
marginally,  but  not  to  any  significant  degree.  We  have
experimented with morphological processes of eroding and
dilating, although this also affects the desirable regions and
is therefore of questionable value.

Figure 10 shows the histogram generated for the 'blue'
color after  smoothing.  The various stationary points  after
smoothing are clear in the image. The  peak on the right
hand side corresponds to the group of pixels that we wish to
be labelled as of that color class. This is the peak that the
algorithm searches for by finding the trough to the left of
this peak.

B. Adaptation Results
To examine adaptation we use two approaches. First, we

examine how well  a calibration carries from one outdoor
environment to another. Using the calibration for the above
image  sequences,  we ran the  vision system on an image
sequence  recorded  on  a  different  day,  with  different
lighting.  Rather  than  being  a  cloudy  day,  as  in  the  first
images,  the image below is drawn from a sequence on a
bright sunny day with small patches of clouds. Figure 11
and 12 show an image from the second test set. Note that
the ground is grass instead of cement, hence it is a different
color  and  matches  poorly.  In  contrast,  the  red,  yellow,
white, and blue colors adapted successfully to the different
lighting conditions without any recalibration required. 

Figure 10. The blue histogram after smoothing. The first peak on the right-
hand side which is difficult to see corresponds to the desired peak threshold.

Figure 8 . A typical outdoor scene showing two markers. The recognized
markers are shown with an X located at the centroid of the marker bands. 

Figure 9. The segmentation output for figure 8. 



Figure 13 shows a graph of the threshold values for this
second sequence. Here the robot drove around in a circle
with the focus of the circle on the human. As it was sunny,
the thresholds adapted to the changes that occurred as the
robot  moved  from  the  shadow  side,  to  the  sunny  side.
Additionally,  the  presence  of  a  cloud  caused  significant
changes in the camera gain settings towards the end of the
sequence. The algorithm was able to adapt and continue to
recognize the objects despite the lighting variation.

C. Benchmarking
Table  3  provides  the  performance  benchmark

comparison between the new algorithm with adaptation and
segmentation with a CMVision lookup table. The results are
shown for an outdoor movie sequence, with both systems
calibrated,  running  on  a  1.2GHz  Pentium  III  processor
laptop  over  approximately  30s.  The  images  are  320x240
YUV 420 planar format  and arrive at  30Hz.  Clearly,  the
additional cost of  using the soft-labelling technique is on
the order  of 2ms.  This  is  certainly worth the cost  at  the
benefit of adaptation across lighting changes.

Algorithm Step Adaptation
mean (stdev.)

CMVision
mean (stdev.)

Segmentation 7.37 (0.91) 5.10 (0.60)

Threshold update 0.10 (0.01) 0.07 (0.09)

CMVision 0.97 (0.14) 1.21 (0.11)

High Level Vision 0.22 (0.02) 0.16 (0.08)

Total 8.66 (0.87) 6.55 (0.62)

Table 3. Shows the processor usage for the new algorithm and CMVision on
a 1.2GHz Pentium III laptop machine for an outdoor scene (approximately 2

minutes of data or 3600 frames. All values are in milliseconds. 

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a new technique for fast
color  vision  algorithm  for  use  in  robot  domains  where
lighting levels may vary. The key to our approach resides in
the  soft-labeling  of  pixels  with  an  adaptive  threshold
technique. We have fully implemented this algorithm on a
Segway RMP platform, and presented results showing its
segmentation  performance.  Additionally,  we  have
compared the computational requirements of the algorithm
against  CMVision as a benchmark and demonstrated that
the  additional  computaitonal  load  for  the  soft-labeling
process is sufficiently small to be negligible.

Our future work will focus on extending this approach
to provide automated calibration of the probability tables, as
well as further generalizing the high-level graph matching
technique for use on a wide range of objects.

REFERENCES

[1] Hundelshausen, F., Rojas, R. An omnidirectional Vision System that
finds and tracks color edges and blobs. RoboCup-01: Robot Soccer
World Cup V, Springer, 2001.

[2] Newton Labs Cognachrome
http://www.newtonlabs.com/cognachrome/

[3] Bruce, J., Balch, T. and Veloso, M. Fast and Inexpensive Color Image
Segmentation for Interactive Robots. In Proceedings of IROS-2000,
Japan, October 2000.

[4] CMVision web page http://www.cs.cmu.edu/~jbruce/cmvision

[5] Browning, B., Rybski, P., Searock, J., and Veloso, M. Development of
a soccer-playing dynamically-balancing mobile robot. In Proceedings
of International Conference on Robotics and Automation (ICRA'04),
May 2004.

[6] Weigel1, T. and Nebel1, B. KiRo – An Autonomous Table Soccer
Player. RoboCup 2002: Robot Soccer World Cup VI. Gal A. Kaminka,
Pedro U. Lima, Raul Rojas (eds). Lecture Notes in Computer Science,
vol. 2752 / 2003, Springer-Verlag Heidelberg, 2003. 

[7] Fu, K., Gonzalez, R., Lee, C. Robotics: Control, Sensing, Vision, and
Intelligence. McGraw-Hill, NY, 1987.

[8] Lenser, S., Bruce, J., and Veloso, M. CMPack: A Complete Software
System for Autonomous Legged Soccer Robots. In Proceedings of the
Fifth International Conference on Autonomous Agents, May 2001.

[9] Nguyen, H. G., Morrell, J., Mullens, K., Burmeister, A., Miles, S,
Thomas, K., and Gage, D. W. Segway Robotic Mobility Platform,
SPIE Mobile Robots XVII, Philadelphia, PA; 26-28 October, 2004.

[10] Schneiderman, H. Learning a restricted Bayesian network for object
detection. Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, June 2004. 

[11] Huber, D., Kapuria, A., Donamukkala, R. R., Hebert, M. Parts-based
3D object classification. Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR'04), June, 2004.

[12] Lowe, D. G. Object recognition from local scale-invariant features.
Proceedings of the International Conference on Computer Vision
(ICVPR'99), 1999.

Figure 11. A second test-set movie sequence under outdoor lighting
conditions on a different day. Note, the ground is a different surface.

Figure 12. The classification performance corresponding to Figure 11, but
with the calibrations developed for the image sequence shown in figure 8. 

Figure 13. Threshold values varying over time for red, blue, and yellow.
Note the red corresponds to a ball which has a rounded surface and therefore

a greater spread of colors making it more sensitive to lighitng variation.


