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Abstract— We present an improved state-based prediction
algorithm for time series. Given time series produced by a
process composed of different underlying states, the algorithm
predicts future time series values based on past time series
values for each state. Unlike many algorithms, this algorithm
predicts a multi-modal distribution over future values. This
prediction forms the basis for labelling part of a time
series with the underlying state that created it given some
labelled example signals. The algorithm is robust to a wide
variety of possible types of changes in signals including
changes in mean, amplitude, amount of noise, and period.
We show results demonstrating that the algorithm successfully
segments signals from several robotic sensors generated while
performing a variety of simple tasks.

Index Terms— time series, probabilistic models, sensors,
Markov models

I. I NTRODUCTION

Segmentation of time series into discrete classes is an
important problem in many fields. We approach the prob-
lem from the field of robotics where time series generated
by sensors are readily available. We are interested in using
these signals to identify sudden changes in the robot’s
environment allowing the robot to respond intelligently. For
this application, the signal segmentation must be performed
in real time and on line, which requires algorithms that are
amenable to on-line use. Usually a mathematical model of
the process that generates the sensor signal is unavailable as
are the number of possible states in this process. Therefore,
we focus on techniques that require little a priori knowledge
and few assumptions.

In previous work [1], [2], we developed a technique
for segmenting a time series into different classes given
labelled example time series. In [1], we showed that our
algorithm can successfully segment signals from robotic
sensors. In this work, we improve on our previous tech-
nique by replacing a windowed approach to signal classifi-
cation with a recursive solution based on a simple HMM.

We have named our new algorithm for classifying time
series the Probable Series Classifier (PSC). It is based on
a time series prediction component which we will refer to
as the Probable Series Predictor (PSP). Unlike many other
methods, PSP predicts amulti-model probability density
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over next values. PSC uses several PSP modules to classify
a time series into one of a set number of pre-trained states.
PSC uses one PSP module per state. Each PSP module is
pre-trained from an example time series generated by one
state. PSP uses an internal non-parametric model trained
from an example time series to make its predictions PSC
runs each PSP module on a time series to be classified
and uses the one which best predicts the time series as the
classification of the unknown time series.

There has been much interest in time series analysis
in the literature due to the broad applicability of time
series techniques. There have also been many approaches
to time series predictions, most of which are focused on
producing a single predicted value. For example, time
series prediction has been done using AR, ARMA, IMA,
and ARIMA models (e.g. [3] ) and neural networks (NNs).
All of these techniques produce a single estimated next
value in the time series. These techniques can be converted
into predicting a distribution over values by assuming
a Gaussian deviation around the predicted value. This
approach is used by Petridis and Kehagias for NNs [4],
[5] and Penny and Roberts for HMM-AR models [6]. A
related approach is that of using Gaussian Processes [7]
for prediction. Unfortunately, this technique requires the
inversion of annxn matrix which takesO(n3) time for n
observations. In contrast, our approach takesO(n log(n))
time in our current implementation. The chief advantages
of our approach over these previous approaches are that we
are capable of predicting a multi-modal distribution over
values and that our method is amenable to on-line training
as more data from a particular state becomes available.
While there are many methods from HMM research that
predict a multi-modal distribution over values, we are not
aware of any that condition on the previous time series
value at the same time.

There are a wide variety of algorithms based on change
detection, particularly in the domain of fault detection and
identification (FDI). These FDI algorithms (e.g. [8], [9])
are usually specialized for the case of two states, one for
normal system operation and one for failure cases. Because
data can only be collected about the normal state of the
system, these algorithms are attempting to solve a different
problem and are generally more specialized for this task.
We take a very general approach where we detect a wide
variety of types of changes to the signal which sets PSC



apart from these other techniques.
There has also been a lot of interest in HMMs and

switching state-space models, e.g. [6], [10]. These tech-
niques require an a priori knowledge of the underlying
structure of the system or extensive off-line training. PSC
requires no knowledge about the system structure, as we
only require labelled time series examples. PSC also re-
quires negligible training time since almost all of the work
is done at query time.

II. PROBABLE SERIESCLASSIFIER ALGORITHM

Consider a time series of values~x0, ~x1, . . . , ~xt created by
a generator withk distinct states. At each point in time, one
of the states is active and generates the next data value in
the time series based upon the previous time series values.
Also assume that the frequency of switching between states
is relatively low, such that sequential values are likely to
be from the same state. We are interested in using the time
series of values to recover which state was active at each
point in time using only example time series created by
each state.

The belief state at timej for statei is the probability of
it being active at timej:

B(sj = i) = P (sj = i|~xj , ~xj−1, . . . , ~x0)

=
P (~xj |~xj−1, . . . , ~x0, sj = i)P (sj = i|~xj−1, . . . , ~x0)

P (~xj |~xj−1, . . . , ~x0)

We are interested in finding the statei that maximizes
this probability. Note thatP (~xj |~xj−1, . . . , ~x0) is just a
normalizing constant and thus doesn’t affect whichs = i
has the maximum likelihood. Furthermore, we will make
the mth-order Markov assumption that values> m time
steps ago are negligible, given more current readings.
This assumption simplifiesP (~xj |~xj−1, . . . , ~x0, sj = i) to
P (~xj |~xj−1, . . . , ~xj−m, sj = i).

P (sj = i|~xj−1, . . . , ~x0)

=
∑

l

P (sj = i, sj−1 = l|~xj−1, . . . , ~x0)

=
∑

l

P (sj = i|sj−1 = l, ~xj−1 . . . ~x0) ·

P (sj−1 = l|~xj−1 . . . ~x0)

=
∑

l

P (sj = i|sj−1 = l)B(sj−1 = l)

Here we have assumed the current state is independent of
old observations (before timej) given the previous state.
These assumptions simplify the problem to finding the
state i that maximizes the following equations providing
a recursive solution:

B(sj = i)
∝ P (~xj |~xj−1, . . . , ~x0, sj = i)P (sj = i|~xj−1, . . . , ~x0)
≈ P (~xj |~xj−1, . . . , ~xj−m, sj = i)P (sj = i|~xj−1, . . . , ~x0)
= P (~xj |~xj−1 . . . ~xj−m, sj = i) ·∑

l

P (sj = i|sj−1 = l)B(sj−1 = l)
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Fig. 1. Data prediction. The dots in the main graph show the data
available for use in prediction. The grey bar shows the range of values
used in the prediction. The bottom graph shows the weight assigned to
each model point. The left graph shows the contribution of each point to
the predicted probability of a value at time t as dotted curves. The final
probability assigned to each possible value at time t is shown as a solid
curve.

This belief update equation is useful for segmentation
and classification. Our Probable Series Classifier algorithm
uses the update equation for classification by finding the
state that maximizes the probability of an unknown time
series (using PSP for some key probability calculations).
We assume a uniform distribution over the initial state of
the generator. We also assume thatP (sj = i|sj−1 = l) =
.999 if i = l and a uniform distribution of the remaining
probability over other states. The transition probability does
not effect the most likely state at any given time much since
the probability is dominated by the sensor readings. Our
algorithm runs in real time on a Athlon XP 2700 processing
data at 125Hz.

III. PROBABLE SERIESPREDICTORALGORITHM

We need a prediction of the likelihood of new time series
values based upon previous values and the current statei.

P (~xj |~xj−1, . . . , ~xj−m, sj = i)

Note, that statei is known in this case, so we know what
state we are predicting for. Assume we have previous time
series values generated by this state. We can use these
previous examples to generate an estimate at timej given
the previous values of the time series. We will focus on the
case wherem = 1 and~x is a single dimensional value.

We have: a set of value pairs~xi,~xi−1 and a value at time
j−1 (~xj−1). We need to generate a probability for each
possible~xj . We can use non-parametric techniques with
a locally weighted approach. The problem is visualized in
Fig. 1. We need to introduce some terminology to more
easily discuss the problem.



base value(s)Those value(s) used in generating a pre-
dicted value. These are the time series values on which
the output is conditioned. In the case ofm = 1,
this is just ~xj−1. The conditioning on the state is
accomplished by having a separate model for each
state.

output value The value output by prediction.
model points Points in base/output space in the train-
ing data for a state. These points form the model for
this state. Each point is a pair of values: an output
value~xj and associated base value(s)~xj−1, . . . , ~xj−m.

prediction query A query of the model which pro-
vides~xj−1, . . . , ~xj−m as input and generates a prob-
ability density over~xj as output.

We will generate a probability density by generating
a weighted set of output value predictions, one from
each model point. A kernel is used that assigns more
weight to model points with base value(s) near the query
base value(s). The predicted output values must then be
smoothed to form a continuous probability density.

We use a bandwidth limited kernel over base value(s) to
weight model points for speed reasons. The kernel used is
the tri-weight kernel:

Kt(x, h) =
{

(1− (x/h)2)3 if |x/h| <= 1,
0 otherwise

This kernel is a close approximation to a Gaussian but
is much cheaper to compute and reaches zero in a finite
bandwidth. The finite bandwidth allows some points to
be eliminated from further processing after this step. The
bandwidthh is a smoothing parameter that must be selected
that controls the amount of generalization performed. From
non-parametric statistics, it is known that in order for the
prediction to converge to the true function, asn →∞ (the
number of model points), the following two properties must
hold: h → 0 and nh → ∞. These properties ensure that
each estimate uses more data from a narrower window as
we gather more data. We use a ballooning bandwidth for
our bandwidth selection. A ballooning bandwidth chooses
the bandwidth as a function of the distance to thekth

nearest neighbor. Since the average distance between neigh-
bors grows as1/n, we choose a bandwidth equal to the
distance to the

√
n nearest neighbor, ensuring that the

bandwidth grows as1/
√

n which satisfies the required
statistical properties. Each model point is assigned a weight
by the base kernelKt which is used to scale its prediction
in the next stage.

Fig. 1 illustrates the PSP algorithm. The dark circles
represent model points that have already been seen. The
x axis shows the base value. The y axis shows the output
value. The dark vertical line shows the query base value.
The grey bar shows the range of values that fall within the
non-zero range of the base kernel. The graph underneath
the main graph shows the weight assigned to each model
point based on its distance from the query base value. A
prediction is made based on each model point that is simply
equal to its output value (we will refine this estimate later).
The dotted lines leading from each model point used in

TABLE I

PROBABLE SERIESPREDICTOR ALGORITHM.

Procedure PredictOutput(generatormodel,basevalues)
let OP ← generatormodel.modelpoints
let D ← dist(OP.basevalues,basevalues)
Choosebasedist equal to thed

√
neth smallestd ∈ D.

let hb ← basedist+ noisebase
let pred ← {z.output value | z ∈ OP ∧

dist(z.basevalues, basevalues) < hb}
Perform correlation correction onpred.
let base ← {z.basevalues| z ∈ OP ∧

dist(z.basevalues, basevalues) < hb}
Choosehi,o ∝ distance(d

√
neth) nearest prediction.

Return probability density equal to
pdf(z) =

P
i Kg(predi − z, hi,o)∗

Kt(basei − basevalues, hb)

the prediction shows these predicted output values. PSP is
described in pseudo-code in Table I.

We need to smooth the predicted output values to get
a continuous probability density. We will once again turn
to non-parametric techniques and use a tri-weight kernel
centered over each point. Because this kernel has a finite
bandwidth, it may assign a zero probability to some points.
This assignment is undesirable since we never have enough
training data to be absolutely sure the data could not have
occurred in this state. Hence, we assign a .0001 probability
that the time series value is generated from a uniform
distribution and a .9999 probability that it is generated
according to the estimated distribution.

We need a method for selecting a bandwidth forKg, the
output kernel. We use a modified form of the ballooning
method. For each output value prediction, we assign a
bandwidth proportional to the distance to the

√
n

th nearest
output value with a minimum bandwidth. We used a
proportionality constant of 0.5. We also experimented with
selecting a bandwidth using the pseudo-likelihood cross
validation measure [11], [12]. This alternative bandwidth
selection had similar performance but took about 10 times
as long to run.

As exemplified in Fig. 1, there is usually a strong
correlation between the time series value at timet and the
value at timet−1. This correlation causes a natural bias in
predictions. Model points with base values below the query
base value tend to predict an output value which is too low
and model points with base values above the query base
value tend to predict an output value which is too high. We
can correct for this bias by compensating for the correlation
betweenxt andxt−1. We calculate a standard least squares
linear fit betweenxt−1 and xt. Using the slope of this
linear fit, we can remove the bias in the predicted output
values by shifting each prediction in both base value and
output value until the base value matches the query base
value. This process can shift the predicted output value a
substantial amount, particularly when using points far from
the query base value. This process improves the accuracy
of the algorithm slightly. This correlation removal was used



in all the tests performed in this paper.

IV. EVALUATION

We evaluated the Probable Series Classifier (PSC) using
data logged by our robot as it performed various tasks.
The data was hand classified as a baseline for comparison
with the automatic classification. We used a standard Sony
AIBO ERS-210 for gathering all of our data.

A. Methodology

We generated a set of data series from the sensors on our
robot. We used two different sensors, a CMOS camera and
an accelerometer. Since our PSC implementation currently
only supports single dimensional data, we reduced each
data series down to a single dimensional data series. Each
camera image was reduced to an average luminance value
(a measure of brightness), resulting in a 25Hz luminance
signal. The accelerometer data is inherently three dimen-
sional with accelerations along three axes. We chose to use
the axis oriented towards the front of the robot (the other
axes gave similar results). The accelerometer data has a
frequency of 125Hz. For each task, PSC was trained on a
segment of data for each possible class. PSC used a window
of data to generate each classification starting at the data
item to be classified and extending backwards in time, i.e.
only data that would be available in an on-line scenario
was used for classification. The PSC generated label was
compared to a hand generated label to ascertain accuracy.
In some of the signals, there were segments of the test
signal that did not correspond to any of the trained classes.
These segments were not used in calculating accuracy. We
considered a total of five different classification tasks.

B. Results

Each figure show the results from one task. The bottom
part of each figure shows the raw data signal used for
testing. Each of the other figures corresponds to one of the
trained classes. The class to which it corresponds is labelled
to the left of each graph. The thick black line running
through parts of each class graph indicates when this class
is the correct class according to the human generated
labelling. The small black dots show the probability that
PSC assigned to this class at each point in time (based
on a window of data prior to this time point). Ideally,
the probability would be 1.0 when the thick black bar is
present and 0.0 otherwise. In sections where the test data
series does not correspond to any of the trained classes,
the indicator bar is absent and the output of PSC for
each class is irrelevant. Table II summarizes the results
achieved by PSC. The column labeled “Windowed” shows
the performance of our previous window based approach.
The column labelled “PSC Accuracy” shows the accuracy
of our new Markov model based approach. As the table
shows, we see a significant reduction in errors by employ-
ing the Markov model.

Figure 2 shows the results from the first accelerometer
task distinguishing between walking down a metal ramp,
across a soft carpet, and into a low wooden wall. This
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Fig. 2. Use of accelerometer data to distinguish between walking down
a ramp, walking across a carpet, and walking into a wall.

TABLE II

ACCURACY OFPSCIN VARIOUS TEST CLASSIFICATION TASKS.

Task Sensor Windowed PSC Accuracy
Walk stability Accelerometer 99.19% 99.13%
Walk floors Accelerometer N/A 91.75%

Walk interference Accelerometer 78.49% 82.92%
Lights playing Camera 64.69% 74.02%
Lights standing Camera 93.77% 99.11%

task is labelled as “walk stability” in the results summary
table. PSC was trained on one example sequence and tested
on a completely separate sequence. Each class was trained
using 500 examples, except 400 examples were used for
training the “ramp” class. As the graphs show, PSC does
an excellent job of distinguishing between these different
walking conditions achieving and accuracy of 99.13%.

Figure 3 shows the results from the second accelerometer
task distinguishing between walking in place on cement,
hard carpet, and soft carpet.. This task is labelled as “walk
floors” in the results summary table. PSC was trained on
one example sequence and tested on a completely separate
sequence. As the graphs show, PSC does an excellent job of
distinguishing between these different walking conditions
achieving and accuracy of 91.75% despite the similarity
between the two types of carpet.

Figure 4 shows the results from the third accelerometer
task distinguishing between playing soccer, walking into
a wall, walking with one leg hooked on an obstacle, and
standing still. The playing class includes a wide variety of
signals including walks in several different directions and
full body kicking motions such as diving on the ball. Small
portions of the playing class, include standing in place
making these sections look like the standing state. This task
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Fig. 3. Use of accelerometer data to distinguish between walking in
place on cement, hard carpet, and soft carpet.
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Fig. 4. Use of accelerometer data to distinguish between playing soccer,
walking into a wall, walking with one leg caught on an obstacles, and
standing still.
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Fig. 5. Use of average luminance from images to distinguish between
bright, medium, dim, and off lights while playing soccer.

is labelled as “walk interference” in the results summary
table. PSC was trained on example sequences from the test
sequence. In other tests, we did not observe a noticeable
difference between testing on training data and testing on
separate testing data. Each class was trained using 5000
examples. PSC performed well overall, correctly classify-
ing 82.92% of the data points. PSC performed perfectly on
the standing still data. It had the most problems identifying
hooked on an obstacle, often confusing it with playing.

Figure 5 shows the results from the first camera task
distinguishing between bright, medium, dim, and off lights
while the robot is playing soccer. This task is labelled
as “lights playing” in the results summary table. PSC
was trained on one example sequence and tested on a
completely separate sequence. Each class was trained using
1000 examples. PSC performed fairly well overall, cor-
rectly classifying 74.02% of the data points. Most of the
errors were due to problems distinguishing between bright
lights and medium lights.

Figure 6 shows the results from the second camera task
distinguishing between bright, medium, dim, and off lights
while the robot is standing still. The robot moved its head
to look at different objects. This task is labelled as “lights
standing” in the results summary table. PSC was trained on
one example sequence and tested on a completely separate
sequence. Each class was trained using 150–200 examples.
Although this is an easy classification task, it is important
to test that the algorithm works on both easy and difficult
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Fig. 6. Use of average luminance from images to distinguish between
bright, medium, dim, and off lights while standing still.

tasks to ensure practicality of the algorithm. PSC passes
easily achieving 99.11% accuracy.

V. CONCLUSION

We have presented an algorithm for generating predic-
tions of future values of time series. We have shown how to
use that algorithm as the basis for a classification algorithm
for time series. We proved through testing that the resulting
classification algorithm robustly classifies a wide variety of
robotic sensor signals. We verified the performance of the
algorithm for a variety of sensors and robot tasks. The
algorithm runs in real-time and is amenable to on-line
training.
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