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Abstract—We present an improved state-based prediction over next values. PSC uses several PSP modules to classify
algorithm for time series. Given time series produced by a g time series into one of a set number of pre-trained states.
process composed of different underlying states, the algorithm PSC uses one PSP module per state. Each PSP module is

predicts future time series values based on past time series trained f le . ted b
values for each state. Unlike many algorithms, this algorithm ~ Pré-trained irom an exampie ime series generated by one

predicts a multi-modal distribution over future values. This  State. PSP uses an internal non-parametric model trained
prediction forms the basis for labelling part of a time  from an example time series to make its predictions PSC
series with the underlying state that created it given some runs each PSP module on a time series to be classified

labelled example signals. The algorithm is robust to a wide 5, ses the one which best predicts the time series as the
variety of possible types of changes in signals including | ificati f th K i .
changes in mean, amplitude, amount of noise, and period. classincation or the unknown time series.

We show results demonstrating that the algorithm successfully There has been much interest in time series analysis
segments signals from several robotic sensors generated while in the literature due to the broad applicability of time
performing a variety of simple tasks. series techniques. There have also been many approaches
Index Terms—time series, probabilistic models, sensors, 5 time series predictions, most of which are focused on
Markov models . ; . )
producing a single predicted value. For example, time
|. INTRODUCTION series prediction has been done using AR, ARMA, IMA,

and ARIMA models (e.g. [3] ) and neural networks (NNs).

Segmentation of time series into discrete classes is a : . .
9 All of these techniques produce a single estimated next

important problem in many fields. W? appro{:lch the pro (_yalue in the time series. These techniques can be converted

. . . . - Into predicting a distribution over values by assuming
by sensors are readily available. We are interested in usin . e : )

) . . . ,& Gaussian deviation around the predicted value. This
these signals to identify sudden changes in the robot's

environment allowing the robot to respond intelligently. Forapproach is used by Petridis and Kehagias for NNs [4],

. - . . ] and Penny and Roberts for HMM-AR models [6]. A
this application, the signal segmentation must be performe&iIateol approach is that of using Gaussian Processes [7]

in real time and on line, which requires algorithms that aref r prediction. Unfortunately, this technique requires the

amenable to on-line use. Usually a mathematical model o’ Pre . , 3\ b
. ; ' Inversion of annxn matrix which takesO(n?) time for n
the process that generates the sensor signal is unavallableoags

are the number of possible states in this process. Thereforﬁmseezxagﬁ:]i'uIrrr]e(r:l(t)?rtr:afet’m oeunrt;:ijopnro‘:"r(;]g t?ﬁ? ;)dgv(grz'za os
we focus on techniques that require little a priori knowledgeOf our approach over tEese revioué apbroaches are thgt e
and few assumptions. pp p pp

In previous work [1], [2], we developed a technique are capable of predicting a multi-modal distribution over

for segmenting a time series into different classes giveﬁ’alues and that our method is amenable to on-line training

labelled example time series. In [1], we showed that ou s more data from a particular state becomes available.

algorithm can successfully segment signals from robotic h"? there are many .mej[hO(?is from HMM research that
sensors. In this work, we improve on our previous teCh_predlct a multi-modal distribution over values, we are not
. ) . . . aware of any that condition on the previous time series
nigue by replacing a windowed approach to signal CIaSSIfIVaIue at the same time
cation with a recursive solution based on a simple HMM. . : .
We have named our new algorithm for classifying time There are a wide variety of algorithms based on change

series the Probable Series Classifier (PSC). It is based édetectlon, particularly in the domain of fault detection and

a time series prediction component which we will refer to'gent'f'cat'on (FDI). These FDI algorithms (e.g. [8], [3])

5 e Probabe Srs redi (). Unike many ndf (Sl specalzed for e case of o stes, o for
methods, PSP predicts raulti-model probability density Y P :
data can only be collected about the normal state of the
This research was sponsored by the United States Army under Grargystem, these algorithms are attempting to solve a different
No. DABT63-99-1-0013. The content of the information in this publica- hroblem and are generally more specialized for this task.
tion does not necessarily reflect the position or the policy of the Defens%\/ tak | h wh detect id
Advanced Research Projects Agency (DARPA), the US Army or the US e_ ake a very general approac W_ ere we ) etect a wiae
Government, and no official endorsement should be inferred. variety of types of changes to the signal which sets PSC



apart from these other techniques.

There has also been a lot of interest in HMMs and
switching state-space models, e.g. [6], [10]. These tech-
nigues require an a priori knowledge of the underlying
structure of the system or extensive off-line training. PSC
requires no knowledge about the system structure, as we
only require labelled time series examples. PSC also re
quires negligible training time since almost all of the work
is done at query time.

output value

Il. PROBABLE SERIESCLASSIFIERALGORITHM

Consider a time series of valugg, 71, . . ., ; created by
a generator wittk distinct states. At each point in time, one
of the states is active and generates the next data value in__ 1§
the time series based upon the previous time series valuesgrer®iiy base value |
Also assume that the frequency of switching between states 1
is relatively low, such that sequential values are likely to
be from the same state. We are interested in using the time |
series of values to recover which state was active at each base value

weight

point in time using only example time series created by
each state. Fig. 1. Data prediction. The dots in the main graph show the data

The belief state at timg for state: is the probability of available for use in prediction. The grey bar shows the range of values
it being active at timei: used in the prediction. The bottom graph shows the weight assigned to
g g each model point. The left graph shows the contribution of each point to

o T . the predicted probability of a value at time t as dotted curves. The final
B<S] - Z)_’_ f)(s-? - Zlaij’ Lj-1 o ’xo) - . probability assigned to each possible value at time t is shown as a solid
_ P(l’j|lﬂj,1,...,$0,8j :Z)P(Sj :Z|£L'j,1,..‘,l'o) curve.
P(fj|.f7‘_1, e ,fo)
We are interested in finding the statethat maximizes  This belief update equation is useful for segmentation
this probability. Note thatP(z;|%;-1,...,20) is just @ and classification. Our Probable Series Classifier algorithm

normalizing constant and thus doesn't affect whick- i uses the update equation for classification by finding the
has the maximum likelihood. Furthermore, we will makestate that maximizes the probability of an unknown time
the m™-order Markov assumption that values m time  series (using PSP for some key probability calculations).
steps ago are negligible, given more current readingsye assume a uniform distribution over the initial state of

This assumption simplifie?(fj\fj_l, ., ®0,85 = i) to the generator. We also assume tMtgj — ’L'|5j71 =)=
P(Z|Z-1, - Tjom, 85 = 1). 999 if 4 = [ and a uniform distribution of the remaining
probability over other states. The transition probability does
Pls: — il@: - not effect the most likely state at any given time much since
(s; =1i|&j-1,...,70) N ) .
) . . the probability is dominated by the sensor readings. Our
= Z P(sj = 1,851 =T, ..., %0) algorithm runs in real time on a Athlon XP 2700 processing
!

data at 125Hz.

— Pls: —ilsi 1 =12 1...2)-
zl: (55 = ilsj 1 i1 o) IIl. PROBABLE SERIESPREDICTORALGORITHM
P(sj—1 =1|Tj_1...7) We need a prediction of the likelihood of new time series
. values based upon previous values and the current state
= Y P(sj=ilsj-1=1)B(s;—1 =) pon p
l P(fjlfj_l,...,fj_m,Sj ZZ)

Here we have assumed the current state is independent I%te that staté is known in this case. so we know what
old observations (before timg) given the previous state. g, e are predicting for. Assume we have previous time

Thesg assumptjops simplify the. problem'to findin.g.theseries values generated by this state. We can use these
states that maximizes the following equations providing previous examples to generate an estimate at firgwen

a recursive solution: the previous values of the time series. We will focus on the

B(s; = 1) case wheren = 1 and 7 is a single dimensional value.
& P(&|Fj1,...,T0,5; = )P(s; = i|Tj_1,..., &) . We rlave: a set of value paif§,r;_1 and a va_IL_Je at time
2 R ; o . j—1(Z;-1). We need to generate a probability for each
~ P(EG|T1s - T, sy = )P (sy = i1, Do) possible#;. We can use non-parametric techniques with
= P(@|Tj-1... Tjm,s; = 1) a locally weighted approach. The problem is visualized in
ZP(SJ' —ils; 1 =1)B(s;_1 =) Fig. 1. We need to introduce some terminology to more
l

easily discuss the problem.



base value(s)Those value(s) used in generating a pre-

dicted value. These are the time series values on which

the output is conditioned. In the case of = 1,

this is just Z;_;. The conditioning on the state is
accomplished by having a separate model for each
State.
output value The value output by prediction.

model points Points in base/output space in the train-
ing data for a state. These points form the model for

TABLE |
PROBABLE SERIESPREDICTOR ALGORITHM.

Procedure PredictOutputeneratormodelbasevalueg

let OP «— generatormodelmodelpoints

let D < dist(OP.basevaluesbasevaluey

Choosebasedist equal to the[\/n|th smallestd € D.

let h, <« basedist-+ noisebase

let pred — {z.outputvalue| z € OP A
dist(z.basevaluesbasevalueg < hy}

Perform correlation correction gored

let base < {z.basevalues| z € OP A
dist(z.basevaluesbasevalueg < hy}
Chooseh; ,  distancé[/n]™) nearest prediction.
Return probability density equal to
pdf(z) = >, Ky(pred — z,h; o)«
K¢(base — basevalueshy)

this state. Each point is a pair of values: an output
valueZ; and associated base valuegs) 1, . .
prediction query A query of the model which pro-
videsZ;_1,...,Z;_n as input and generates a prob-
ability density overZ; as output.

We will generate a probability density by generating
a weighted set of output value predictions, one from
each model point. A kernel is used that assigns more
weight to model points with base value(s) near the queryhe prediction shows these predicted output values. PSP is
base value(s). The predicted output values must then Bgscribed in pseudo-code in Table I.
smoothed to form a continuous probability density.

We use a bandwidth limited kernel over base value(s) t%
weight model points for speed reasons. The kernel used B

the tri-weight kernel:
[ (1= (z/R)*)? if [x/h| <=1, bandwidth, it may assign a zero probability to some points.
0 otherwise This assignment is undesirable since we never have enough

This kernel is a close approximation to a Gaussian bufr@ining data to be absolutely sure the data could not have
is much cheaper to compute and reaches zero in a finigccurred in this state. Hence, we assign a .0001 probability
bandwidth. The finite bandwidth allows some points tothat the time series value is generated from a uniform
be eliminated from further processing after this step. Thélistribution and a .9999 probability that it is generated
bandwidth, is a smoothing parameter that must be selecte@ccording to the estimated distribution.
that controls the amount of generalization performed. From We need a method for selecting a bandwidth Ay, the
non-parametric statistics, it is known that in order for theoutput kernel. We use a modified form of the ballooning
prediction to converge to the true function,ias~ oo (the =~ method. For each output value prediction, we assign a
number of model points), the following two properties mustbandwidth proportional to the distance to th&'" nearest
hold: » — 0 andnh — oc. These properties ensure that output value with a minimum bandwidth. We used a
each estimate uses more data from a narrower window g¥oportionality constant of 0.5. We also experimented with
we gather more data. We use a ballooning bandwidth fogelecting a bandwidth using the pseudo-likelihood cross
our bandwidth selection. A ballooning bandwidth choosegalidation measure [11], [12]. This alternative bandwidth
the bandwidth as a function of the distance to ttie  selection had similar performance but took about 10 times
nearest neighbor. Since the average distance between neig$ long to run.
bors grows asl/n, we choose a bandwidth equal to the As exemplified in Fig. 1, there is usually a strong
distance to the,/n nearest neighbor, ensuring that the correlation between the time series value at tinand the
bandwidth grows asl/\/n which satisfies the required value at timet—1. This correlation causes a natural bias in
statistical properties. Each model point is assigned a weighgredictions. Model points with base values below the query
by the base kernek; which is used to scale its prediction base value tend to predict an output value which is too low
in the next stage. and model points with base values above the query base
Fig. 1 illustrates the PSP algorithm. The dark circlesvalue tend to predict an output value which is too high. We
represent model points that have already been seen. Tlean correct for this bias by compensating for the correlation
x axis shows the base value. The y axis shows the outpittetweernx; andx; ;. We calculate a standard least squares
value. The dark vertical line shows the query base valudinear fit betweenz; _; and x;. Using the slope of this
The grey bar shows the range of values that fall within thdinear fit, we can remove the bias in the predicted output
non-zero range of the base kernel. The graph underneatfalues by shifting each prediction in both base value and
the main graph shows the weight assigned to each modeutput value until the base value matches the query base
point based on its distance from the query base value. Aalue. This process can shift the predicted output value a
prediction is made based on each model point that is simplgubstantial amount, particularly when using points far from
equal to its output value (we will refine this estimate later).the query base value. This process improves the accuracy
The dotted lines leading from each model point used irof the algorithm slightly. This correlation removal was used

yLj—m-

We need to smooth the predicted output values to get
continuous probability density. We will once again turn

non-parametric techniques and use a tri-weight kernel
centered over each point. Because this kernel has a finite



in all the tests performed in this paper. o8
o4
We evaluated the Probable Series Classifier (PSC) using 0'5

data logged by our robot as it performed various tasks. 0;

The data was hand classified as a baseline for comparisog o

with the automatic classification. We used a standard SonyE 2‘2‘

AIBO ERS-210 for gathering all of our data. 0

IV. EVALUATION

A. Methodology 08

= 06
We generated a set of data series from the sensors on odr o4

robot. We used two different sensors, a CMOS camera and °? : ,,
an accelerometer. Since our PSC implementation currently < ' ' ' ' ' '
only supports single dimensional data, we reduced each 'r
data series down to a single dimensional data series. Each osr
camera image was reduced to an average luminance valug os |
(a measure of brightness), resulting in a 25Hz Iummance6 04 x‘
signal. The accelerometer data is inherently three dimen$ ,, |
sional with accelerations along three axes. We chose to use
the axis oriented towards the front of the robot (the other | ) ) ) ) ) \

axes gave similar results). The accelerometer data has a  ° 500 1000 15°°“me 2000 2500 3000
frequency of 125Hz. For each task, PSC was trained On 2. Use of accelerometer data to distinguish between walking down
segment of data for each possible class. PSC used awmdcy\?amp, walking across a carpet, and walking into a wall.

of data to generate each classification starting at the data

item to be classified and extending backwards in time, i.e. TABLE Il

only data that would be available in an on-line scenario ACCURACY OFPSCIN VARIOUS TEST CLASSIFICATION TASKS

was used for classification. The PSC generated label was

ramp
vvvvvtvvvvvvvvivv;{

eratj

. Task Sensor Windowed | PSC Accuracy

compared to a hand generated label to ascertain accuragy—ak Stability | Accelerometer|  99.19% 99.13%
In some of the signals, there were segments of the test Walk floors Accelerometer N/A 91.75%
signal that did not correspond to any of the trained classeg. Walk interference| Accelerometer|  78.49% 82.92%
. . Lights playing Camera 64.69% 74.02%

These segments were not used in calculating accuracy. We | ights standing Camera 93.77% 99.11%

considered a total of five different classification tasks.

B. Results

Each figure show the results from one task. The bottontask is labelled as “walk stability” in the results summary
part of each figure shows the raw data signal used fotable. PSC was trained on one example sequence and tested
testing. Each of the other figures corresponds to one of then a completely separate sequence. Each class was trained
trained classes. The class to which it corresponds is labellggsing 500 examples, except 400 examples were used for
to the left of each graph. The thick black line running training the “ramp” class. As the graphs show, PSC does
through parts of each class graph indicates when this clag# excellent job of distinguishing between these different
is the correct class according to the human generatedalking conditions achieving and accuracy of 99.13%.
labelling. The small black dots show the probability that Figure 3 shows the results from the second accelerometer
PSC assigned to this class at each point in time (base@sk distinguishing between walking in place on cement,
on a window of data prior to this time point). Ideally, hard carpet, and soft carpet.. This task is labelled as “walk
the probability would be 1.0 when the thick black bar isfloors” in the results summary table. PSC was trained on
present and 0.0 otherwise. In sections where the test datme example sequence and tested on a completely separate
series does not correspond to any of the trained classesequence. As the graphs show, PSC does an excellent job of
the indicator bar is absent and the output of PSC fodistinguishing between these different walking conditions
each class is irrelevant. Table Il summarizes the resultachieving and accuracy of 91.75% despite the similarity
achieved by PSC. The column labeled “Windowed” showsbetween the two types of carpet.
the performance of our previous window based approach. Figure 4 shows the results from the third accelerometer
The column labelled “PSC Accuracy” shows the accuracytask distinguishing between playing soccer, walking into
of our new Markov model based approach. As the table wall, walking with one leg hooked on an obstacle, and
shows, we see a significant reduction in errors by employstanding still. The playing class includes a wide variety of
ing the Markov model. signals including walks in several different directions and

Figure 2 shows the results from the first accelerometefull body kicking motions such as diving on the ball. Small
task distinguishing between walking down a metal rampportions of the playing class, include standing in place
across a soft carpet, and into a low wooden wall. Thismaking these sections look like the standing state. This task
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Fig. 5. Use of average luminance from images to distinguish between
bright, medium, dim, and off lights while playing soccer.

is labelled as “walk interference” in the results summary
table. PSC was trained on example sequences from the test
sequence. In other tests, we did not observe a noticeable
difference between testing on training data and testing on
separate testing data. Each class was trained using 5000
examples. PSC performed well overall, correctly classify-
ing 82.92% of the data points. PSC performed perfectly on
the standing still data. It had the most problems identifying
hooked on an obstacle, often confusing it with playing.

Figure 5 shows the results from the first camera task
distinguishing between bright, medium, dim, and off lights
while the robot is playing soccer. This task is labelled
as ‘lights playing” in the results summary table. PSC
was trained on one example sequence and tested on a
completely separate sequence. Each class was trained using
1000 examples. PSC performed fairly well overall, cor-
rectly classifying 74.02% of the data points. Most of the
errors were due to problems distinguishing between bright
lights and medium lights.

Figure 6 shows the results from the second camera task
distinguishing between bright, medium, dim, and off lights
while the robot is standing still. The robot moved its head
to look at different objects. This task is labelled as “lights
standing” in the results summary table. PSC was trained on

Fig. 4. Use of accelerometer data to distinguish between playing soccegne example sequence and tested on a completely separate

walking into a wall, walking with one leg caught on an obstacles, and

standing still.

sequence. Each class was trained using 150-200 examples.
Although this is an easy classification task, it is important
to test that the algorithm works on both easy and difficult
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Use of average luminance from images to distinguish between
medium, dim, and off lights while standing still.

tasks to ensure practicality of the algorithm. PSC passes
easily achieving 99.11% accuracy.

V. CONCLUSION

We have presented an algorithm for generating predic-
tions of future values of time series. We have shown how to
use that algorithm as the basis for a classification algorithm
for time series. We proved through testing that the resulting
classification algorithm robustly classifies a wide variety of
robotic sensor signals. We verified the performance of the
algorithm for a variety of sensors and robot tasks. The
algorithm runs in real-time and is amenable to on-line
training.
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