
Learning to Select Negotiation Strategies in Multi-Agent
Meeting Scheduling

Elisabeth Crawford and Manuela Veloso?

Computer Science Department,
Carnegie Mellon University,
Pittsburgh PA 15213, USA

{ehc,mmv}@cs.cmu.edu

Abstract. In this paper, we look at the Multi-Agent Meeting Schedulingproblem
where distributed agents negotiate meeting times on behalfof their users. While
many negotiation approaches have been proposed for scheduling meetings, it is
not well understood how agents can negotiate strategicallyin order to maximize
their users’ utility. To negotiate strategically, agents need to learn to pick good
strategies for negotiating with other agents. We show how theplaybook approach,
introduced by [1] for team plan selection in small-size robot soccer, can be used to
select strategies. Selecting strategies in this way gives some theoretical guarantees
about regret. We also show experimental results demonstrating the effectiveness
of the approach.

1 Introduction

Personalized software agents for meeting scheduling have the potential to reduce the
daily cognitive load on computer users. Scheduling meetings can be a time consuming
process requiring many email messages to be exchanged, and often existing meetings
need to be moved to make room for new ones. Potentially, software agents can remove
this burden entirely by communicating with each other to schedule meetings. Since
user’s have ownership of their own calendars, and private preferences about meeting
scheduling, it makes sense to approach this problem in a distributed manner. Automated
negotiation has been proposed as a method for multiple agents to reach agreement on
meeting times. Negotiation approaches have many advantages over the open calendar
approach taken by Microsoft Outlook (see [2] for a discussion).

Typically negotiation protocols feature a meeting initiator that proposes meeting
times and collects the proposals of other participants. Consider, for instance, the fol-
lowing simplified protocol:

– while there is no intersection in proposals

? Thanks to the reviewers and Michael Bowling for helpful comments and suggestions. This
material is based upon work supported by the Defense Advanced Research Projects Agency
(DARPA) under Contract No. NBCHD030010. Any opinions, findings and conclusions or
recommendations expressed in this material are those of theauthor(s) and do not necessar-
ily reflect the views of the Defense Advanced Research Projects Agency (DARPA), or the
Department of Interior-National Business Center (DOI-NBC).

• the initiator proposes some times to the other agents

• each agent proposes some times to the initiator

In this context, a negotiation strategy is a set of rules for deciding what times to propose
at each point in the process. The space of possible negotiation strategies is extremely
large. Even if we restrict the space in some way, e.g. to strategies that offer a fixed
number,x, of new times per negotiation round, there are still a huge number of options.
In particular, there is a different strategy for each possible value ofx, and then there
are all the ways of combining these values ofx with rules for deciding what particular
times to offer. In developing software agents for meeting scheduling, we are faced with
the problem of: (i) deciding which negotiation strategies agents should consider, and
(ii) designing methods that agents can use to choose betweenthese strategies when
negotiating a particular meeting.

In order to most effectively satisfy user preferences, we would like our agents to
adapt their behavior to each of the agents they negotiate with. There is a wide range
of important ways in which agents can differ. For instance, agents can represent users
of different importance and busyness, use very different negotiation strategies, and can
have users with very different preferences. Clearly a strategy that works well for ne-
gotiating with one agent may work very poorly with another. Poor strategy choice can
lead to meetings being scheduled at times the user does not like, or to the negotiation
process taking a very long time. In general, we would like an agent to trade-off satisfy-
ing its user’s preferences, with minimizing the length of the negotiations, in a way that
maximizes its user’s utility.

One method for deciding what strategy to use when negotiating with a particular
agent is to use a model based approach that tries to constructa model of the agent and
then based on this model select a strategy. There are a numberof reasons why this
approach would be difficult to use in practice. Firstly, obtaining an accurate enough
model of another agent is a very difficult learning problem, since the only interaction
agents have is through the exchange of times when they negotiate meetings. From this
information, it is hard to make accurate conclusions about what times an agent prefers,
how busy the agent is, what negotiation strategy it is employing etc. Secondly, to build
a model of another agent, many training examples are required. It would be preferable
if an agent was able to learn to negotiate, while actually negotiating.

In this paper, we show how an agent can learn online which strategies to use by
observing its own rewards, as opposed to trying to model the other agents. Our approach
is based on the idea ofplays introduced by Bowling, Browning and Veloso [1]. Bowling
et al. focus on the domain of robot soccer (small-size league) where they equip a team
with a series of multi-agent plans called aplaybook. The team plan to use at a given
point in time is selected according to a no-regret learning algorithm. We show how
we can apply these ideas to the problem of learning how to negotiate with different
agents. Our experimental results demonstrate that this approach allows a learning agent
to converge to sensible strategies for negotiation with different fixed strategy agents.
We also show that an agent learning online using this approach can perform well in
comparison to the best (in hindsight) fixed strategy.

2 Related Work

A variety of methods for reaching agreements on meeting times have been proposed
in the last ten years, including negotiation based approaches, e.g. [3, 4], Distributed
Constraint Reasoning (DCR) approaches [5], and market based approaches [6]. In this
section, we describe work on the first two methods, looking inparticular at how user
preferences are dealt with.

Sen and Durfee [4] conducted a probabilistic and simulationbased analysis of ne-
gotiation strategies. The basic framework they consideredwas:

1. Host announces meeting
2. Host offers some times
3. Agents send host some availability information
4. Repeat 2 and 3 until an intersection is found.

Similar protocols have been looked at by other researchers,for example, [3], and
[7], while [8] looked at a more complex protocol. These negotiation approaches have
handled user preferences for meeting times in quite different ways. Shintaniet al. [8]
propose a persuasion based approach. The persuasion mechanism involves compromis-
ing agents adjusting their preferences so that their most preferred times are the persuad-
ing agent’s most preferred times. This method relies strongly on the agents complying
with the protocol.

Garrido and Sycara [7] and Jennings and Jackson [3] take the approach of allowing
agents to not only propose meeting times, but also to quantify their preferences for
proposals. The agent that is collecting the proposals, thenmakes decisions based on the
reported utilities of all the meeting participants. This style of approach involves a lot of
trust, since for the procedure to work well all the agents must report their preferences
truthfully.

While the approaches outlined are all concerned with user preferences they differ
from the work described here in that we are interested inhow an agent can negotiate
strategically in order to satisfy its user’s preferences.

Distributed Constraint Reasoning (DCR) approaches have also been applied to multi-
agent meeting scheduling. For example Modi and Veloso [5] model the meeting schedul-
ing problem according to the DCR paradigm and evaluate strategies for makingbump-
ing decisions. The way in which agent’s decide when tobump (i.e., move an existing
meeting to accommodate a new meeting) can have implicationsfor the efficiency of the
meeting scheduling process. Intuitively, if the agents want the scheduling process to fin-
ish quickly, they should try to bump meetings that will be easy to reschedule. Similarly
to the negotiation approaches, the work on DCR has not focused on how agents can act
strategically, rather the agents have been assumed to be cooperative.

3 Plays for Meeting Negotiation

In the context of small-size robot soccer (where an overheadcamera and an off-board
computer allow for coordinated team planning) Bowlinget al. [1] introduce the notion
of a play as a team plan. Each play must assign a role to each of the robots, e.g. one

robot is instructed to shoot, another to guard the team’s owngoal, and so forth. Each
play also has an applicability condition that determines inwhich scenarios it applies,
and a termination condition that is used to decide when the play finished and a new one
needs to be selected. An offensive play, for example, might be applicable whenever the
ball is in the opponent’s half of the field, and terminate either when a goal is scored, or
the applicability condition is violated.

The playbook, captures all the plays that are available to the team. Bowling et al.
provide a simple language that a human expert can use to add new plays. During the
course of a game, plays are weighted according to their levelof success or failure, and
the play to use at each decision point is selected based on these weights. The weights
on plays are adapted in such away that regret (difference between how well the team
did and how well it could have done had it used the best, in hindsight, fixed play) about
play selection goes to zero in the limit.

The meeting negotiation problem has a number of important features in common
with small-size robot soccer. In both domains, the space of available strategies is huge.
It is not possible for agents to adapt online if they must consider the entire space. Fur-
thermore, the environment in both domains is dynamic, the models of the ‘opponents’
are unknown, and online learning is required for good performance. In this section,
we will discuss how we adapt the plays formulation to the problem of learning how to
negotiate with different agents.

We can map the plays terminology, from robot soccer, to the meeting scheduling
problem. The plays correspond to complete negotiation strategies, the opponent corre-
sponds to the agent the learning agent is negotiating with, and the playbook is simply
the set of negotiation strategies available to the learningagent. Unlike in robot soccer,
in the meeting scheduling problem, we are playing with multiple ‘opponent’ agents at
the same time. As such, the learning agent must adapt strategy selection for each of the
different agents it negotiates with simultaneously.

We let a negotiation strategy consist of 4 elements: (i) an applicability condition, (ii)
a rule for deciding at each negotiation round what times (if any) to offer independent of
the exact proposals received, (iii) a rule for deciding which times (if any) to offer based
on the proposals received, and (iv) a rule for deciding when to give up1. Fig. 1. shows
an example strategy, Offer-k-b, that offersk new available times each round, and after
b rounds starts taking into account the proposals it has received. If necessary, Offer-
k-b will offer times that would require an already scheduledmeeting to be bumped.
Depending on the values ofk and b this strategy can be very selfish and cause the
negotiation to take a long time. As such, if the ‘opponent’ agent is very important, the
strategy is only applicable if the value ofk is large and the value ofb is small.

Each time a new meeting needs to be scheduled, if the learningagent is an attendee,
it selects which strategy to use according to the adapted playbook for the initiator agent.
If the learning agent is initiating the meeting, it selects apossibly different negotiation
strategy for communicating with each attendee according tothe adapted playbook for
that attendee. The learning agent considers the execution of a strategy to be complete
when (i) the meeting it was selected to schedule has been added to the agent’s calen-
dar and (ii) any meetings that the learning agent is involvedin that have been bumped

1 The distinction between (ii) and (iii) is unnecessary. It ismade to assist the exposition.

1. APPLICABILITY : if the other agent is very-important and (k < 20 andb > 5) return
false; else return true.

2. INDEPENDENT OFFER : in any negotiation round offer my k most preferred, avail-
able, un-offered times.

3. DEPENDENT OFFER: if negotiation round> b. Apply the simple compromiser sub-
strategy which works as follows:

– If I am an attendee of the meeting, search for any times proposed by the initiator
that I have free but have not offered. If one or more such timesexist offer my
most preferred time. Else, offer the time proposed by the initiator that contains the
meeting with the fewest participants.

– If I am the initiator rank all the times proposed by other agents according to the
number of agents that have proposed that time. Out of all the times with the highest
number of proposals if any of these times are available, offer my most preferred
such time, otherwise offer the unavailable time containingthe meeting with the
fewest participants.

4. ABANDON : if negotiation round> 50 return true.

Fig. 1. Offer-k-b negotiator

have been rescheduled for new times. A strategy is also considered to have been com-
pletely executed, if the learning agent has given up on scheduling the new meeting,
or on rescheduling a bumped meeting. Each time a strategy terminates, the playbook
weights are updated according to the success of the strategy.

4 Adapting Weights and Selecting Strategies for Negotiating with
Different Agents

For each ‘opponent’ agent, the learning agent must learn which strategies to select. The
learning algorithm has the following key components, (i) a rule for updating the weights
on strategies in the playbook and (ii) a rule for selecting the strategy to apply based on
these weights. Bowlinget al. [1] used results in the literature onexperts problems (also
commonly referred to ask-armed bandits problems) to derive the rules required. We are
able to use these rules for adapting weights on negotiation strategies. In this section, we
briefly describe the approach and its basis in the experts literature. For a more complete
treatment we refer to the reader to [1].

In the experts problem, an agent choses actions or options repeatedly based on the
instructions it receives from a set ofexperts. Each time the agent needs to make a choice
it selects which expert to listen to. In the traditional formulation, once the action or
option has been selected, the agent receives a pay-off from that action. In addition, the
pay-offs it would have received had it followed the advice ofeach of the other experts
are revealed. The performance of the agent is measured by thenotion of regret. Let the
reward received from following the advice of experti at choice pointp ber

p
i . The regret

of the agent afterk choices have been made is given by the following formula:

regretk = max
over experts i

k
∑

p=0

r
p
i −

k
∑

p=0

rp
xp

wherexp denotes the expert the agent chose at choice pointp. Regret is simply the
award achievable by always asking the best expert minus the reward actually achieved.
A desirable property of an experts algorithm is that averageregret goes to zero as the
number of choices approaches infinity. There exist algorithms for various formulations
of the problem that achieve no-regret in the limit e.g. [9, 10]

Bowling et al. [1] show how algorithms for selecting experts with no regretcan be
used to select plays. In the context of plays (and in the context of selecting strategies
for negotiation), we need to use a different formulation of regret that takes into account
the fact that not all plays (or strategies) are applicable ateach choice point. This can be
done by using the notion ofSleeping Experts developed by Freund et. al [11]. We say an
expert is awake when it is applicable at a particular choice point, and asleep otherwise.
Following the notation used in [1], we letap

i = 1 if expert i is awake at choice point
p, anda

p
i = 0 otherwise. Then if∆(n) is the set of probability distributions over alln

experts, we get the following formula for sleeping regret (SR) afterk choices:

SRk =

(

max
x∈∆(n)

k
∑

p=1

n
∑

i=1

a
p
i

(

x(i)
∑n

j=1 x(j)ap
j

)

r
p
i

)

−

k
∑

p=0

rp
xp

The first half of the formula simply quantifies the reward the agent could have re-
ceived if the best possible distribution over awake expertshad been selected at each
choice point.

In the context of plays, and negotiation strategies, there is one final difficulty. Unlike
in the traditional experts problem, agents only find out the reward of the action they
actually take. In order to account for this, Bowlinget al. [1] combine elements of the
Exp3 algorithm proposed by Auer et al [10] (which handles theproblem of unknown
rewards) with the sleeping regret approach of [11]. We describe their approach here,
and use it to adapt playbook weights for each ‘opponent’ agent, and select the strategy
to use according to these weights.

Let Rk
i =

∑k
p=0 r̂

p
i . Wherer̂

p
i = 0 if i not selected at pointp and r

p

i

Pr(xp=i) other-

wise. We call the weight for strategyi at decision pointp, w
p
i , and we letwp

i = eR
p

i .
The valueer

p

i is denoted asmp
i , and we refer to this value as the multiplier and use it to

adjust the weights according to the reward received from carrying out the negotiation
strategy (or play). The probability that the strategy chosen at pointp, denotedxp, is
strategyi is given by the following equation:

Pr(xp = i) =
a

p
i w

p
i

∑

j a
p
jw

p
j

Once strategyxp has been executed, and the rewardr
p
xp received, we update the

weights as follows:

wt
i = ŵ

p
i .N

p
i

whereŵ
p
i = w

p−1
i for i not selected, but fori selected:

ŵ
p
i = w

p−1
i (mp

i)
1

Pr(xp=i)

TheN
p
i term is used to ensure that sleeping does not affect a strategy’s probability

of being chosen.Np
i = 1 if a

p
i = 0 and otherwise:

N
p
i =

∑

j a
p
jw

p−1
j

∑

j a
p
j ŵ

p
j

To apply the approach to negotiation we need to decide how we are going to set
the multipliers. The multipliers specify the degree to which the success or failure of a
strategy affects the weight. We base the multipliers on a model of user utility. We let
the utility a user derives from a negotiation strategy take into account three elements:

1. the user’s preference for the time-of-day (tod) the new meeting is scheduled for –
val(tod).

2. the increase (or decrease) in utility from moving other meetings, i.e., for all meet-
ings that were moved, the agent’s utility is increased by

∑

moved val(todnew) −
∑

moved val(todold).
3. the number of negotiation roundsr required to schedule the new meeting and move

any old meetings.

The user’s utility function is parametrized by two constantsα andβ which specify the
relative importance of time-of-day valuations and negotiation cost. Formally a user’s
utility for the outcome of a negotiation strategy is modeledas:

U(i) = α(val(tod) +
∑

moved

val(todnew) −
∑

moved

val(todold)) − βr

We use the user’s utility function and highest time-of-day value to estimate the max-
imum possible utility a negotiation strategy can achieve. We then set the multiplier
according to how the reward actually achieved relates to this maximum. The multiplier
is set according to the first row of Table 1 that applies. Also note that if the negotiation
strategy fails to schedule the new meeting, or to rescheduleany bumped meetings, a
failure has occurred. Currently we use a multiplier of 0.25 for this case.

The bounds on regret obtained by using the plays approach arestrongest if the ‘op-
ponent’ agent is using a fixed strategy and we assume that changes to the environment
(i.e., the calendars) are not affecting the rewards. If the other agent is also learning, then
in the terminology of [10], we are dealing with anon-oblivious adversary. As such, since
the playbook approach builds on Exp3, the theoretical bounds on regret are weaker.

5 Evaluation

In this section, we describe how we have evaluated the effectiveness of using a plays
approach to selecting negotiation strategies.

U(i) > 0.75 ∗ maxU 1.75
U(i) > 0.5 ∗ maxU 1.5
U(i) > 0.25 ∗ maxU 1.25
U(i) > 0 1
U(i) > 0 − 0.25 ∗ maxU 0.75
U(i) > 0 − 0.5 ∗ maxU 0.5
U(i) > 0 − 0.75 ∗ maxU 0.25

Table 1.The multiplier is given by the first row for which the left handentry evaluates to true

5.1 Communication Protocol

We have created a simulation environment consisting of a setof agents equipped with
a common protocol for communicating about meetings. The protocol has three basic
stages: a negotiation phase, in which agents exchange proposals, a pending stage, in
which a time proposed by all the agents is agreed upon, and a confirmation stage, after
which the meeting is entered into the agents’ calendars. Support is also provided for
bumping (canceling and rescheduling) meetings. There are a number of different types
of messages that the agents exchange:

– meeting time proposals
– requests to bump meetings
– cancellation notices for meetings
– pending requests for times – when a meeting initiator finds anintersection in pro-

posals, it sends a pending request for one of the times in the intersection to each of
the participants.

– pending responses – when an attendee receives a pending request it responds with
either:

• a pending acceptance and marks the meeting as pending, or
• a pending rejection (if the time is pending for another meeting, we require that

the agent rejects the request).

– confirmation notices – sent out by the initiator when all attendees reply to a pending
request with a pending acceptance.

5.2 Negotiation Strategies

We have implemented a number of negotiation strategies thatcomply with the protocol
outlined. We use two of these strategies in our experiments in this paper. The first strat-
egy – Offer-k-b was previously described (see Fig. 1.). Thisstrategy is parametrized,
and hence it covers a large number of distinct strategies. The second strategy we use
is called Availability-Declarer (Fig. 2.). This strategy can be very useful in practice,
particularly in situations where the agents are very busy. The key feature of this strat-
egy is that it offers all the available times in the first week straight away. In subsequent
negotiation rounds it does the same for later weeks.

1. APPLICABILITY : if importance(other-agent)>= moderately-important return true.
2. INDEPENDENT OFFER : in the first round offer all available times for the current

week, in second round offer all available times for the following week and so on until all
available times up until the last possible time for the meeting have been offered.

3. DEPENDENT OFFER: if negotiation round> 5, apply the simple compromiser sub-
strategy described in Fig. 1.

4. ABANDON : if negotiation round> 50 return true.

Fig. 2.Availability Declaring Negotiator

5.3 Preferences

We use a simple model of time-of-day preferences. Each agenthas a preference ordering
over morning times, middle of the day times and afternoon times. For example, if an
agent prefers the morning, then the middle of the day, and then the afternoon, times in
the morning are assigned a value of 3, times in the middle of the day a value of 2 and
times in the afternoon, a value of 1.

5.4 Experiments and Results

We have empirically evaluated the effectiveness of using a plays approach to select
negotiation strategies. The experiments we describe consist of one learning agent, which
we are evaluating, and three fixed strategy agents of varyingpreferences and busyness.
We also look at the effect of adding another learning agent into the mix. The learning
agents have three strategies in their playbooks – Availability-Declarer, Offer-10-5 and
Offer-3-5. In the experiments discussed, these strategiesare always applicable.

Convergence In each experiment, the agents schedule approximately 80 new two per-
son meetings (we restrict our attention to two-person meetings to simplify the discus-
sion). The learning agent is an attendee (not an initiator) of each of these 80 meetings.
We show how the learning agent’s playbook weights converge to sensible strategies for
each of the fixed strategy agents.

In our first experiment the learning agent’s time preferenceis morning, then midday
and then afternoon. Theα andβ values of the learning agent’s utility function are 4 and
0.1 respectively. The agent’s calendar is approximately 25% full when the experiment
is started. Unlike the meetings we schedule in the testing phase, the initial meetings in
the calendar can involve any number of the agents.

Fig. 3. shows how the learning agent’s playbook weights adapt for Agent2. Agent2
starts out with a similar number of initial meetings to the learning agent, uses the
Availability-Declarer strategy, and has the same time preferences as the learning agent.
Fig. 3. shows how the playbook weights quickly converge to towards the Availability-
Declarer strategy. While the other two strategies are also likely to work well in this
instance, the Availability Declarer strategy offers the possibility resolving the negotia-
tion faster. Since the learning agent and Agent2 have the same preferences, there is no
strategic advantage to the learning agent only releasing its availability slowly.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5 10 15 20 25 30

S
tr

at
eg

y
w

ei
gh

ts

Number of meetings negotiated with Agent 2

Playbook weights over time for use with Agent 2

Availability Declarer
Offer-3-Negotiator

Offer-10-Negotiator

Fig. 3.Weights adaptation for Agent2

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5 10 15 20 25 30

S
tr

at
eg

y
w

ei
gh

ts

Number of meetings negotiated with Agent 3

Playbook weights over time for use with Agent 3

Availability Declarer
Offer-3-Negotiator

Offer-10-Negotiator

Fig. 4. Weight adaptation for Agent3

Fig. 4. shows the weight adaptation for Agent3. Agent3 uses the Availability-Declarer
strategy and starts out with a similar calendar density to the learning agent, but with op-
posite preferences. Agent3 most prefers afternoons, then the middle of the day, and
then the morning. Fig. 4. shows that the learning agent quickly establishes that the
Availability-Declarer strategy is less useful for negotiating with Agent3 than the Offer-
10-5 and Offer-3-5 strategies. After about 25 meetings havebeen scheduled the weights
converge on the the Offer-3-5 strategy. Note that the Availability-Declarer strategy is a
poor choice for use with Agent3. When both agents negotiate with this strategy, the ini-
tiator (always Agent3 in these experiments) is likely to quickly find a large intersection
of available times. The initiator can choose its most preferred time in this intersection
and since Agent3’s and the learning agent’s preferences clash, the time chosen will
likely be bad for the learning agent. The learning agent has aclear strategic incentive
to declare its available times more slowly and in order of preference. Since the learning
agent’s utility function rates achieving good times-of-day much higher than minimiz-
ing the number of negotiation rounds, it converges on the Offer-3-5 strategy rather than
the Offer-10-5. This is despite the learning agent’s calendar being quite full (93%), and
hence mutally available slots fairly rare, by the time the experiment concludes.

Fig. 5. shows the weight adaptation for Agent4. Agent4 has similar preferences
(midday, morning, then afternoon) to the learning agent. Agent4 uses the Offer-10-5 ne-
gotiator and starts with a dense calendar (about 80% full). Fig. 5. shows that the learning
Agent quickly determines that the Offer-3-5 strategy is notvery effective when dealing
with a very busy agent that has similar preferences. After approximately 15 meetings
have been scheduled, the learning agent converges on the Availability-Declarer strategy.

We ran the same experiment described above but with a different utility function for
the learning agent and different initial calendars. The utility function hadα as 4, andβ
as 1. This change caused the weights to converge on Availability-Declarer for each of
the agents, since the negative effect of negotiation lengthwas greatly increased.

Performance No regret algorithms bound the average difference between the perfor-
mance of the learning algorithm, and the best fixed strategy in the limit. However, since
a learning agent does not schedule an infinite number of meetings with each other agent,
it is important to examine how well the learning algorithm performs in practice.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5 10 15 20 25 30

S
tr

at
eg

y
w

ei
gh

ts

Number of meetings negotiated with Agent 4

Playbook weights over time for use with Agent 4

Availability Declarer
Offer-3-Negotiator

Offer-10-Negotiator

Fig. 5. Weight adaptation for Agent4

We used the 4 agents previously described (the play learningagent and the three
fixed agents) and ran 10 trials. In each trial the agents’ calendars were randomly ini-
tialized with 160 meetings. 200 new meetings were scheduledin each trial, but the cal-
endars were cleared to their initial state after every 20 meetings were scheduled. This
reflects the common scenario where people have a set of meetings that occur weekly
and new meetings that arise over time. Fig. 6. shows the learning algorithm achieving
higher utility than playing a random strategy or using any fixed strategy.

 1600

 1700

 1800

 1900

 2000

 2100

 2200

 2300

Learner Random Availability Declarer Offer-3-5 Offer-10-5

U
til

ity
 A

ch
ie

ve
d

Strategy

Performance Comparison

Fig. 6. Performance against only fixed agents.

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 2600

Learner Random Availability Declarer Offer-3-5 Offer-10-5

U
til

ity
 A

ch
ie

ve
d

Strategy

Performance Comparison

Fig. 7. Performance when another learning
agent is added.

The learning algorithm used gives the strongest regret guarantees when the other
agents are fixed. Fig. 7. shows that the learning algorithm also performs reasonably
well when we add a learning agent (that uses the same algorithm), to the three fixed
agents. These results are typical of a variety of experimental configurations.

Discussion Using a small number of alternative strategies and agents, we were able
to show that the learning converged in a sensible way. We werealso able to show that
when the other agents used fixed strategies, the learning algorithm performed better
than using the best fixed strategy. It is important to remember that the theoretical results
only bound the regret between the pay-off from using the learning algorithm, versus the
best fixed strategy that isin the playbook. This means that the strategies that appear in

the playbook must be carefully selected by a human expert. Itis also worth noting that
a large playbook would make learning impractical. As such, it might be worthwhile, in
practice, to use a hierarchy of playbooks. For instance, initially a very diverse playbook
might be used to decide which was the best class of strategies. A playbook containing
different strategies from that class could then be used to tune parameters. This seems a
promising avenue for future research.

Another avenue for future research is improving the performance results for the case
where more than one agent is learning. In the future, we wouldlike to experiment with
a variety of no-regret style algorithms that are more specifically designed for this case.

6 Conclusions

We introduced the idea of using aplaybook approach for learning to select the best
strategies for negotiating with different agents. The space of negotiation strategies is
huge, and thus it is not possible for an agent to learn how to negotiate in the complete
space. The plays-based approach cuts the strategy space down to a set of strategies that
are effective in different situations, allowing an agent tolearn which of these strategies
work best with different fixed-strategy agents. This approach provides some theoretical
bounds on the regret the learning agent can experience. We have demonstrated experi-
mentally that using a plays-based approach leads to good performance.

References

1. Bowling, M., Browning, B., Veloso, M.: Plays as effectivemultiagent plans enabling
opponent-adaptive play selection. In: Proceedings of International Conference on Automated
Planning and Scheduling (ICAPS’04). (2004)

2. Crawford, E., Veloso, M.: Opportunities for learning in multi-agent meeting scheduling. In:
Proceedings of the AAAI Symposium on Artificial Multiagent Learning. (2004)

3. Jennings, N.R., Jackson, A.J.: Agent based meeting scheduling: A design and implementa-
tion. IEE Electronics Letters31 (1995) 350–352

4. Sen, S., Durfee, E.: A formal study of distributed meetingscheduling. Group Decision and
Negotiation7 (1998) 265–289

5. Modi, P.J., Veloso, M.: Bumping strategies for the private incremental multiagent agreement
problem. In: AAAI Spring Symposium on Persistant Agents. (2005)

6. Ephrati, E., Zlotkin, G., Rosenschein, J.: A non–manipulable meeting scheduling system.
In: Proc. International Workshop on Distributed ArtificialIntelligence, Seatle, WA (1994)

7. Garrido, L., Sycara, K.: Multi-agent meeting scheduling: Preliminary experimental results.
In: Proceedings of the First International Conference on Multi-Agent Systems. (1995)

8. Shintani, T., Ito, T., Sycara, K.: Multiple negotiationsamong agents for a distributed meeting
scheduler. In: Proceedings of the Fourth International Conference on MultiAgent Systems.
(2000) 435 – 436

9. Littlestone, N., Warmuth, M.: The weighted majority algorithm. In: IEEE Symposium on
Foundations of Computer Science. (1989) 256–261

10. Auer, P., Cesa-Bianchi, N., Freund, Y., Schapire, R.: Gambling in a rigged casino: the adver-
sarial multi-armed bandit problem. In: Proceedings of the 36th Annual FOCS. (1995)

11. Freund, Y., Schapire, R., Singer, Y., Warmuth, M.: Usingand combining predictors that
specialize. In: STOC. (1997)

