Learning to Select Negotiation Strategies in Multi-Agent
Meeting Scheduling

Elisabeth Crawford and Manuela Veloso

Computer Science Department,
Carnegie Mellon University,
Pittsburgh PA 15213, USA
{ehc, mv}@s. cnu. edu

Abstract. Inthis paper, we look at the Multi-Agent Meeting Schedulargblem
where distributed agents negotiate meeting times on behétkir users. While
many negotiation approaches have been proposed for saingpdutetings, it is
not well understood how agents can negotiate strategitatlyder to maximize
their users’ utility. To negotiate strategically, agenéed to learn to pick good
strategies for negotiating with other agents. We show heplthybook approach,
introduced by [1] for team plan selection in small-size rtdmecer, can be used to
select strategies. Selecting strategies in this way gme®gheoretical guarantees
about regret. We also show experimental results demomgtréite effectiveness
of the approach.

1 Introduction

Personalized software agents for meeting scheduling levedtential to reduce the
daily cognitive load on computer users. Scheduling mestaamn be a time consuming
process requiring many email messages to be exchangedftancesisting meetings
need to be moved to make room for new ones. Potentially, soft@gents can remove
this burden entirely by communicating with each other toesithe meetings. Since
user’s have ownership of their own calendars, and privatéepences about meeting
scheduling, it makes sense to approach this problem inrdistd manner. Automated
negotiation has been proposed as a method for multiple sig@néach agreement on
meeting times. Negotiation approaches have many advantage the open calendar
approach taken by Microsoft Outlook (see [2] for a discuskio

Typically negotiation protocols feature a meeting iniiathat proposes meeting
times and collects the proposals of other participants.s@en, for instance, the fol-
lowing simplified protocol:

— while there is no intersection in proposals

* Thanks to the reviewers and Michael Bowling for helpful coemts and suggestions. This
material is based upon work supported by the Defense AddaResearch Projects Agency
(DARPA) under Contract No. NBCHD030010. Any opinions, fimgs and conclusions or
recommendations expressed in this material are those dafuth®r(s) and do not necessar-
ily reflect the views of the Defense Advanced Research Pmojagency (DARPA), or the
Department of Interior-National Business Center (DOI-NBC

¢ the initiator proposes some times to the other agents
e each agent proposes some times to the initiator

In this context, a negotiation strategy is a set of rules &miding what times to propose
at each point in the process. The space of possible negotistiiategies is extremely
large. Even if we restrict the space in some way, e.g. toeglies that offer a fixed
number;, of new times per negotiation round, there are still a hugaber of options.
In particular, there is a different strategy for each pdssialue ofz, and then there
are all the ways of combining these valuescofith rules for deciding what particular
times to offer. In developing software agents for meetirteesielling, we are faced with
the problem of: (i) deciding which negotiation strategigests should consider, and
(ii) designing methods that agents can use to choose betthesr strategies when
negotiating a particular meeting.

In order to most effectively satisfy user preferences, wealldidike our agents to
adapt their behavior to each of the agents they negotiate Witere is a wide range
of important ways in which agents can differ. For instanggrds can represent users
of differentimportance and busyness, use very differegbtiation strategies, and can
have users with very different preferences. Clearly aedrathat works well for ne-
gotiating with one agent may work very poorly with anotheyoPstrategy choice can
lead to meetings being scheduled at times the user doeskapblito the negotiation
process taking a very long time. In general, we would like gerdito trade-off satisfy-
ing its user’s preferences, with minimizing the length o ttegotiations, in a way that
maximizes its user’s utility.

One method for deciding what strategy to use when negagiatith a particular
agent is to use a model based approach that tries to conatmiatlel of the agent and
then based on this model select a strategy. There are a nwhbeasons why this
approach would be difficult to use in practice. Firstly, abitag an accurate enough
model of another agent is a very difficult learning problem¢s the only interaction
agents have is through the exchange of times when they atgatieetings. From this
information, it is hard to make accurate conclusions abdgttimes an agent prefers,
how busy the agent is, what negotiation strategy it is enmiptpgtc. Secondly, to build
a model of another agent, many training examples are ratjutrevould be preferable
if an agent was able to learn to negotiate, while actuallytiaging.

In this paper, we show how an agent can learn online whichegfies to use by
observing its own rewards, as opposed to trying to modeltiner@gents. Our approach
is based on the idea pfaysintroduced by Bowling, Browning and Veloso [1]. Bowling
et al. focus on the domain of robot soccer (small-size league) avtiay equip a team
with a series of multi-agent plans callegoaybook. The team plan to use at a given
point in time is selected according to a no-regret learnilggrithm. We show how
we can apply these ideas to the problem of learning how totisgaowith different
agents. Our experimental results demonstrate that thimapp allows a learning agent
to converge to sensible strategies for negotiation witfedght fixed strategy agents.
We also show that an agent learning online using this approan perform well in
comparison to the best (in hindsight) fixed strategy.

2 Related Work

A variety of methods for reaching agreements on meetinggihae been proposed
in the last ten years, including negotiation based appemob.g. [3,4], Distributed
Constraint Reasoning (DCR) approaches [5], and markettssgroaches [6]. In this
section, we describe work on the first two methods, lookingarticular at how user
preferences are dealt with.

Sen and Durfee [4] conducted a probabilistic and simuldbiased analysis of ne-
gotiation strategies. The basic framework they considesesi

1. Host announces meeting

2. Host offers some times

3. Agents send host some availability information
4. Repeat 2 and 3 until an intersection is found.

Similar protocols have been looked at by other researcfargxample, [3], and
[7], while [8] looked at a more complex protocol. These nég@n approaches have
handled user preferences for meeting times in quite diftanays. Shintanét al. [8]
propose a persuasion based approach. The persuasion nsetiamwlves compromis-
ing agents adjusting their preferences so that their me$ped times are the persuad-
ing agent’'s most preferred times. This method relies styooy the agents complying
with the protocol.

Garrido and Sycara [7] and Jennings and Jackson [3] takepttv@ach of allowing
agents to not only propose meeting times, but also to quattidir preferences for
proposals. The agent that is collecting the proposals,itredes decisions based on the
reported utilities of all the meeting participants. Thigstof approach involves a lot of
trust, since for the procedure to work well all the agentstmeysort their preferences
truthfully.

While the approaches outlined are all concerned with usefiepences they differ
from the work described here in that we are interestelabin an agent can negotiate
strategically in order to satisfy its user’s preferences.

Distributed Constraint Reasoning (DCR) approaches haededen applied to multi-
agent meeting scheduling. For example Modi and Veloso [S]ehthe meeting schedul-
ing problem according to the DCR paradigm and evaluatesgfied for makindpump-
ing decisions. The way in which agent’'s decide whenliomp (i.e., move an existing
meeting to accommodate a new meeting) can have implicdionise efficiency of the
meeting scheduling process. Intuitively, if the agentsttlam scheduling process to fin-
ish quickly, they should try to bump meetings that will beyesreschedule. Similarly
to the negotiation approaches, the work on DCR has not foomisénow agents can act
strategically, rather the agents have been assumed to perative.

3 Plays for Meeting Negotiation

In the context of small-size robot soccer (where an overleaatera and an off-board
computer allow for coordinated team planning) Bowl@@l. [1] introduce the notion
of a play as a team plan. Each play must assign a role to eatte ebbots, e.g. one

robot is instructed to shoot, another to guard the team’s goai, and so forth. Each
play also has an applicability condition that determinew/ich scenarios it applies,
and a termination condition that is used to decide when tagfplished and a new one
needs to be selected. An offensive play, for example, miglagplicable whenever the
ball is in the opponent’s half of the field, and terminate @ittwvhen a goal is scored, or
the applicability condition is violated.

The playbook, captures all the plays that are available to the team. Baoydi al.
provide a simple language that a human expert can use to ad@lags. During the
course of a game, plays are weighted according to their tévaliccess or failure, and
the play to use at each decision point is selected based se #&ights. The weights
on plays are adapted in such away that regret (differencedeet how well the team
did and how well it could have done had it used the best, indigid, fixed play) about
play selection goes to zero in the limit.

The meeting negotiation problem has a number of importattifes in common
with small-size robot soccer. In both domains, the spaceaifable strategies is huge.
It is not possible for agents to adapt online if they must @ersthe entire space. Fur-
thermore, the environment in both domains is dynamic, thdetsoof the ‘opponents’
are unknown, and online learning is required for good pemnforce. In this section,
we will discuss how we adapt the plays formulation to the fwbof learning how to
negotiate with different agents.

We can map the plays terminology, from robot soccer, to thetimg scheduling
problem. The plays correspond to complete negotiatioregfi@s, the opponent corre-
sponds to the agent the learning agent is negotiating wiith tlee playbook is simply
the set of negotiation strategies available to the learagent. Unlike in robot soccer,
in the meeting scheduling problem, we are playing with rpldtiopponent’ agents at
the same time. As such, the learning agent must adapt streeéertion for each of the
different agents it negotiates with simultaneously.

We let a negotiation strategy consist of 4 elements: (i) qutiegbility condition, (ii)

a rule for deciding at each negotiation round what timesn§f)@o offer independent of
the exact proposals received, (iii) a rule for deciding atimes (if any) to offer based
on the proposals received, and (iv) a rule for deciding wieegie ug. Fig. 1. shows

an example strategy, Offer-k-b, that offdreiew available times each round, and after
b rounds starts taking into account the proposals it haswedeif necessary, Offer-
k-b will offer times that would require an already schedumedeting to be bumped.
Depending on the values @&f and b this strategy can be very selfish and cause the
negotiation to take a long time. As such, if the ‘opponengratgs very important, the
strategy is only applicable if the value kbfis large and the value éfis small.

Each time a new meeting needs to be scheduled, if the leaagigf is an attendee,
it selects which strategy to use according to the adaptgthptk for the initiator agent.
If the learning agent is initiating the meeting, it selecpoasibly different negotiation
strategy for communicating with each attendee accordinbeadapted playbook for
that attendee. The learning agent considers the execut@stoategy to be complete
when (i) the meeting it was selected to schedule has beerddaddke agent’s calen-
dar and (ii) any meetings that the learning agent is involnetiat have been bumped

! The distinction between (ii) and (iii) is unnecessary. Itiade to assist the exposition.

1. APPLICABILITY :if the other agent is very-important ankl € 20 andb > 5) return
false; else return true.

2. INDEPENDENT OFFER: in any negotiation round offer my k most preferred, avai
able, un-offered times.

3. DEPENDENT OFFER: if negotiation round> b. Apply the simple compromiser subj
strategy which works as follows:

— If I am an attendee of the meeting, search for any times pegpby the initiator
that | have free but have not offered. If one or more such timdst offer my
most preferred time. Else, offer the time proposed by th&ior that contains the
meeting with the fewest participants.

— If I am the initiator rank all the times proposed by other @geasccording to the
number of agents that have proposed that time. Out of alittestwith the highest
number of proposals if any of these times are availabley offg most preferred
such time, otherwise offer the unavailable time contairting meeting with the
fewest participants.

4. ABANDON': if negotiation round> 50 return true.

Fig. 1. Offer-k-b negotiator

have been rescheduled for new times. A strategy is alsoaeres to have been com-
pletely executed, if the learning agent has given up on sdhefthe new meeting,

or on rescheduling a bumped meeting. Each time a strategynates, the playbook
weights are updated according to the success of the strategy

4 Adapting Weights and Selecting Strategies for Negotiatig with
Different Agents

For each ‘opponent’ agent, the learning agent must learolwgtrategies to select. The
learning algorithm has the following key components, (il for updating the weights
on strategies in the playbook and (i) a rule for selectirgydtrategy to apply based on
these weights. Bowlingt al. [1] used results in the literature @rperts problems (also
commonly referred to dsarmed bandits problems) to derive the rules required. We are
able to use these rules for adapting weights on negotidtiategies. In this section, we
briefly describe the approach and its basis in the expegtatiire. For a more complete
treatment we refer to the reader to [1].

In the experts problem, an agent choses actions or optipestedly based on the
instructions it receives from a set@fperts. Each time the agent needs to make a choice
it selects which expert to listen to. In the traditional fafiation, once the action or
option has been selected, the agent receives a pay-off franattion. In addition, the
pay-offs it would have received had it followed the adviceeath of the other experts
are revealed. The performance of the agent is measured Ioptiom of regret. Let the
reward received from following the advice of expeat choice poinp ber?. The regret

of the agent aftek: choices have been made is given by the following formula:

k k
regrety, = max E r?— E rb
over experts i P

p=0 p=0

wherex, denotes the expert the agent chose at choice poiRegret is simply the
award achievable by always asking the best expert minusthard actually achieved.
A desirable property of an experts algorithm is that averageet goes to zero as the
number of choices approaches infinity. There exist algoritfor various formulations
of the problem that achieve no-regretin the limit e.g. [9, 10

Bowling et al. [1] show how algorithms for selecting experts with no regat be
used to select plays. In the context of plays (and in the sbmtieselecting strategies
for negotiation), we need to use a different formulationeafret that takes into account
the fact that not all plays (or strategies) are applicab&aah choice point. This can be
done by using the notion &eeping Expertsdeveloped by Freund et. al [11]. We say an
expert is awake when it is applicable at a particular choaiatpand asleep otherwise.
Following the notation used in [1], we lef = 1 if expert: is awake at choice point
p, anda? = 0 otherwise. Then ifA(n) is the set of probability distributions over ail
experts, we get the following formula for sleeping regrd®) &fterk choices:

k n . k
— p I(Z) VY p

St (ﬁ@ 22 (z;_l x(j)a”>) 2

The first half of the formula simply quantifies the reward tigemst could have re-
ceived if the best possible distribution over awake explesis been selected at each
choice point.

In the context of plays, and negotiation strategies, treoaé final difficulty. Unlike
in the traditional experts problem, agents only find out taward of the action they
actually take. In order to account for this, Bowliegal. [1] combine elements of the
Exp3 algorithm proposed by Auer et al [10] (which handlesphablem of unknown
rewards) with the sleeping regret approach of [11]. We desdheir approach here,
and use it to adapt playbook weights for each ‘opponent’ gar select the strategy
to use according to these weights.

Let RF = Z];:o 7. Where#? = 0 if i not selected at point and#i:i) other-

wise. We call the weight for strategyat decision poinp, w?, and we letw? = el
The valuee™ is denoted as:”, and we refer to this value as the multiplier and use it to
adjust the weights according to the reward received fromytag out the negotiation
strategy (or play). The probability that the strategy cimoakepointp, denotedr,, is
strategyi is given by the following equation:

alw?
P"’(ZCP = Z) = %

A

Once strategy:,, has been executed, and the rewaffd received, we update the
weights as follows:

t_ D ATP
w; = w; .N;

wherew!” = w? ™" for i not selected, but farselected:

1
af = wf ™! (mf) PO

The N? term is used to ensure that sleeping does not affect a sgimfEgbability
of being chosenN? = 1if ¥’ = 0 and otherwise:
p, p—1
NP — 2 45w
[PP
25 4505
To apply the approach to negotiation we need to decide howrevgaing to set
the multipliers. The multipliers specify the degree to whibe success or failure of a
strategy affects the weight. We base the multipliers on aghofluser utility. We let
the utility a user derives from a negotiation strategy taite account three elements:

1. the user’s preference for the time-of-day (tod) the newting is scheduled for —
val(tod).

2. the increase (or decrease) in utility from moving otheetimgs, i.e., for all meet-
ings that were moved, the agent’s utility is increasedBy, . ., val(todpew) —
Zmoved val(tOdOld)'

3. the number of negotiation roundsequired to schedule the new meeting and move
any old meetings.

The user’s utility function is parametrized by two conssamiand 3 which specify the
relative importance of time-of-day valuations and nedmtiacost. Formally a user’s
utility for the outcome of a negotiation strategy is modedsd

U (i) = a(val(tod) + Z val(todpew) — Z val(todoiq)) — Br
moved moved

We use the user’s utility function and highest time-of-dajue to estimate the max-
imum possible utility a negotiation strategy can achieve. fen set the multiplier

according to how the reward actually achieved relates wrttaximum. The multiplier

is set according to the first row of Table 1 that applies. Alsterthat if the negotiation

strategy fails to schedule the new meeting, or to rescheatyfebumped meetings, a
failure has occurred. Currently we use a multiplier of 0.@5this case.

The bounds on regret obtained by using the plays approadtrarggest if the ‘op-
ponent’ agent is using a fixed strategy and we assume thagebdo the environment
(i.e., the calendars) are not affecting the rewards. If theragent is also learning, then
in the terminology of [10], we are dealing witman-obliviousadversary. As such, since
the playbook approach builds on Exp3, the theoretical bswmdegret are weaker.

5 Evaluation

In this section, we describe how we have evaluated the eféewss of using a plays
approach to selecting negotiation strategies.

(i) > 0.75 * maxU 1.7
(2) > 0.5 * mazU 15
(1) > 0 25 x mazU 1.25
(1) > 1
()>0 0.25 * maxzU|0.75
(1) >0—0.5*mazU [0.5
U(i) > 0—0.75 * mazU|0.2

Table 1. The multiplier is given by the first row for which the left haedtry evaluates to true

K3

U
U
U
U
U
U

5.1 Communication Protocol

We have created a simulation environment consisting of afsagents equipped with
a common protocol for communicating about meetings. Théopa has three basic
stages: a negotiation phase, in which agents exchangegaispa pending stage, in
which a time proposed by all the agents is agreed upon, andfaroation stage, after
which the meeting is entered into the agents’ calendarsp&@ujs also provided for
bumping (canceling and rescheduling) meetings. There are a nuniliéferent types
of messages that the agents exchange:

meeting time proposals

requests to bump meetings

cancellation notices for meetings

pending requests for times — when a meeting initiator findsm#arsection in pro-
posals, it sends a pending request for one of the times imthesiection to each of
the participants.

— pending responses — when an attendee receives a pendimgtréqesponds with
either:

e a pending acceptance and marks the meeting as pending, or
e a pending rejection (if the time is pending for another nregtive require that
the agent rejects the request).

— confirmation notices — sent out by the initiator when allrades reply to a pending
request with a pending acceptance.

5.2 Negotiation Strategies

We have implemented a number of negotiation strategiextimaply with the protocol
outlined. We use two of these strategies in our experimeritss paper. The first strat-
egy — Offer-k-b was previously described (see Fig. 1.). Blviategy is parametrized,
and hence it covers a large number of distinct strategies.sEleond strategy we use
is called Availability-Declarer (Fig. 2.). This strateggrc be very useful in practice,
particularly in situations where the agents are very bubg Rey feature of this strat-
egy is that it offers all the available times in the first wetkight away. In subsequent
negotiation rounds it does the same for later weeks.

[EEY

. APPLICABILITY :if importance(other-agent} = moderately-important return true.

2. INDEPENDENT OFFER: in the first round offer all available times for the current
week, in second round offer all available times for the fwitog week and so on until all
available times up until the last possible time for the nreptiave been offered.

3. DEPENDENT OFFER: if negotiation round> 5, apply the simple compromiser sulj
strategy described in Fig. 1.

4. ABANDON:': if negotiation round> 50 return true.

Fig. 2. Availability Declaring Negotiator

5.3 Preferences

We use a simple model of time-of-day preferences. Each &gera preference ordering
over morning times, middle of the day times and afternoores$intor example, if an

agent prefers the morning, then the middle of the day, amlttie afternoon, times in

the morning are assigned a value of 3, times in the middleefitly a value of 2 and

times in the afternoon, a value of 1.

5.4 Experiments and Results

We have empirically evaluated the effectiveness of usindagispapproach to select
negotiation strategies. The experiments we describestmfsine learning agent, which
we are evaluating, and three fixed strategy agents of vapfiefgrences and busyness.
We also look at the effect of adding another learning agenottime mix. The learning
agents have three strategies in their playbooks — Avaiitediileclarer, Offer-10-5 and
Offer-3-5. In the experiments discussed, these strategéealways applicable.

ConvergenceIn each experiment, the agents schedule approximately\8@we per-
son meetings (we restrict our attention to two-person mgstio simplify the discus-
sion). The learning agent is an attendee (not an initiatbeaoh of these 80 meetings.
We show how the learning agent’s playbook weights convergemsible strategies for
each of the fixed strategy agents.

In our first experiment the learning agent’s time preferéaoaorning, then midday
and then afternoon. Theand(values of the learning agent’s utility function are 4 and
0.1 respectively. The agent’s calendar is approximatedp A5l when the experiment
is started. Unlike the meetings we schedule in the testirg@fthe initial meetings in
the calendar can involve any number of the agents.

Fig. 3. shows how the learning agent’s playbook weights tfteg\gent2. Agent2
starts out with a similar number of initial meetings to tharling agent, uses the
Availability-Declarer strategy, and has the same timegregices as the learning agent.
Fig. 3. shows how the playbook weights quickly converge watals the Availability-
Declarer strategy. While the other two strategies are d@ksdylto work well in this
instance, the Availability Declarer strategy offers thegibility resolving the negotia-
tion faster. Since the learning agent and Agent2 have the gmeferences, there is no
strategic advantage to the learning agent only releasiraydilability slowly.

Playbook weights over time for use with Agent 2 Playbook weights over time for use with Agent 3

) — ‘Avalabilty Declarer Avalabilty O
Offer-10-Negoiator
25| 25|

Strategy weights
Strategy weights

10 15 20 10 15 20
Number of meetings negotiated with Agent 2 Number of meetings negotiated with Agent 3

Fig. 3. Weights adaptation for Agent2 Fig. 4. Weight adaptation for Agent3

Fig. 4. shows the weight adaptation for Agent3. Agent3 usegwvailability-Declarer
strategy and starts out with a similar calendar densityedehrning agent, but with op-
posite preferences. Agent3 most prefers afternoons, tieemiddle of the day, and
then the morning. Fig. 4. shows that the learning agent dyiektablishes that the
Availability-Declarer strategy is less useful for negttig with Agent3 than the Offer-
10-5 and Offer-3-5 strategies. After about 25 meetings baen scheduled the weights
converge on the the Offer-3-5 strategy. Note that the Abditg-Declarer strategy is a
poor choice for use with Agent3. When both agents negotidtethis strategy, the ini-
tiator (always Agent3 in these experiments) is likely toaly find a large intersection
of available times. The initiator can choose its most prefétime in this intersection
and since Agent3's and the learning agent’s preference ctae time chosen will
likely be bad for the learning agent. The learning agent helea strategic incentive
to declare its available times more slowly and in order ofgnence. Since the learning
agent’s utility function rates achieving good times-oftdauch higher than minimiz-
ing the number of negotiation rounds, it converges on thercBt5 strategy rather than
the Offer-10-5. This is despite the learning agent’s cadeheing quite full (93%), and
hence mutally available slots fairly rare, by the time thpexment concludes.

Fig. 5. shows the weight adaptation for Agent4. Agent4 haslai preferences
(midday, morning, then afternoon) to the learning agenemtg uses the Offer-10-5 ne-
gotiator and starts with a dense calendar (about 80% fudj) 5 shows that the learning
Agent quickly determines that the Offer-3-5 strategy isvet effective when dealing
with a very busy agent that has similar preferences. Aftpr@pmately 15 meetings
have been scheduled, the learning agent converges on tilallty-Declarer strategy.

We ran the same experiment described above but with a diffatiity function for
the learning agent and different initial calendars. Thityfunction hada as 4, and3
as 1. This change caused the weights to converge on Aviyabiéclarer for each of
the agents, since the negative effect of negotiation lewgthgreatly increased.

Performance No regret algorithms bound the average difference betweeperfor-
mance of the learning algorithm, and the best fixed strategjyd limit. However, since
alearning agent does not schedule an infinite number of mgsatiith each other agent,
it is important to examine how well the learning algorithnifpems in practice.

Strategy weights
~

10 15 20
Number of meetings negotiated with Agent 4

Fig. 5. Weight adaptation for Agent4

We used the 4 agents previously described (the play leaagegt and the three
fixed agents) and ran 10 trials. In each trial the agentsncles were randomly ini-
tialized with 160 meetings. 200 new meetings were schednledch trial, but the cal-
endars were cleared to their initial state after every 20timge were scheduled. This
reflects the common scenario where people have a set of medtiat occur weekly
and new meetings that arise over time. Fig. 6. shows theitepaigorithm achieving
higher utility than playing a random strategy or using angdistrategy.

Performance Comparison Performance Comparison
2300 2600

2200 2400

2200

2000

1800

Uty Achieved
Uty Achieved

1900

1800

1700

1600
eeeeeee Random Availability Declarer Offer-3.5 Offer-105 Leamer Random Availability Declarer Offer-3.5 Offer-105
Strategy Strategy

Fig. 6. Performance against only fixed agentsig. 7. Performance when another learning
agent is added.

The learning algorithm used gives the strongest regretagi@es when the other
agents are fixed. Fig. 7. shows that the learning algorittsn performs reasonably
well when we add a learning agent (that uses the same algyritb the three fixed
agents. These results are typical of a variety of experiaiennfigurations.

Discussion Using a small number of alternative strategies and agersyere able

to show that the learning converged in a sensible way. We alspeable to show that
when the other agents used fixed strategies, the learnimgithlgp performed better
than using the best fixed strategy. It is important to remerttitad the theoretical results
only bound the regret between the pay-off from using theliegralgorithm, versus the
best fixed strategy that ia the playbook. This means that the strategies that appear in

the playbook must be carefully selected by a human expéstalso worth noting that
a large playbook would make learning impractical. As suchight be worthwhile, in
practice, to use a hierarchy of playbooks. For instanceailyi a very diverse playbook
might be used to decide which was the best class of stratelyigisybook containing
different strategies from that class could then be usedrte parameters. This seems a
promising avenue for future research.

Another avenue for future research is improving the perforece results for the case
where more than one agent is learning. In the future, we witkédo experiment with
a variety of no-regret style algorithms that are more spmalfi designed for this case.

6 Conclusions

We introduced the idea of usingphaybook approach for learning to select the best
strategies for negotiating with different agents. The spaftnegotiation strategies is
huge, and thus it is not possible for an agent to learn how gotmge in the complete
space. The plays-based approach cuts the strategy spanealawet of strategies that
are effective in different situations, allowing an agentetarn which of these strategies
work best with different fixed-strategy agents. This apphgarovides some theoretical
bounds on the regret the learning agent can experience. Véedaemonstrated experi-
mentally that using a plays-based approach leads to godarpemce.

References

1. Bowling, M., Browning, B., Veloso, M.: Plays as effectivaultiagent plans enabling
opponent-adaptive play selection. In: Proceedings ofthatitonal Conference on Automated
Planning and Scheduling (ICAPS’04). (2004)

2. Crawford, E., Veloso, M.: Opportunities for learning imiti-agent meeting scheduling. In:
Proceedings of the AAAI Symposium on Artificial Multiagen¢arning. (2004)

3. Jennings, N.R., Jackson, A.J.: Agent based meeting stthgdA design and implementa-
tion. IEE Electronics Letter81 (1995) 350-352

4. Sen, S., Durfee, E.: A formal study of distributed meesngeduling. Group Decision and
Negotiation7 (1998) 265—289

5. Modi, P.J., Veloso, M.: Bumping strategies for the peviatcremental multiagent agreement
problem. In: AAAI Spring Symposium on Persistant Agent§0%)

6. Ephrati, E., Zlotkin, G., Rosenschein, J.: A non—marapld meeting scheduling system.
In: Proc. International Workshop on Distributed Artificlatelligence, Seatle, WA (1994)

7. Garrido, L., Sycara, K.: Multi-agent meeting scheduliRgeliminary experimental results.
In: Proceedings of the First International Conference oftiMgent Systems. (1995)

8. Shintani, T., Ito, T., Sycara, K.: Multiple negotiaticasmong agents for a distributed meeting
scheduler. In: Proceedings of the Fourth Internationalf€emce on MultiAgent Systems.
(2000) 435 - 436

9. Littlestone, N., Warmuth, M.: The weighted majority aligom. In: IEEE Symposium on
Foundations of Computer Science. (1989) 256-261

10. Auer, P, Cesa-Bianchi, N., Freund, Y., Schapire, Rmiing in a rigged casino: the adver-
sarial multi-armed bandit problem. In: Proceedings of e Rnnual FOCS. (1995)

11. Freund, Y., Schapire, R., Singer, Y., Warmuth, M.: Usamgl combining predictors that
specialize. In: STOC. (1997)

