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Abstract. We are interested in the challenging scientific pursuit of how
to characterize human activities in any formal meeting situation by track-
ing people’s positions with a computer vision system. We present a hu-
man activity recognition algorithm that works within the framework of
CAMEO (the Camera Assisted Meeting Event Observer), a panoramic
vision system designed to operate in real-time and in uncalibrated en-
vironments. Human activity is difficult to characterize within the con-
straints that the CAMEO must operate, including uncalibrated deploy-
ment and unmodeled occlusions. This paper describes these challenges
and how we address them by identifying invariant features and robust
activity models. We present experimental results of our recognizer cor-
rectly classifying person data.

1 Introduction

Recognizing human activity is a very challenging task, ranging from low-level
sensing and feature extraction from sensory data to high-level inference algo-
rithms used to infer the state of the subject from the dataset. We are interested
in the scientific challenges of modeling simple activities of people who are par-
ticipating in formal meeting situations. We are also interesting in recognizing
activities of people as classified by a computer vision system.

In order to address these challenges, our group is developing a physical aware-
ness system for an agent-based electronic assistant called CAMEO (Camera
Assisted Meeting Event Observer) [1]. CAMEO is an omni-directional camera
system consisting of four FireWire cameras mounted in a 360o configuration,
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Fig. 1. The CAMEO system consists of a set of FireWire cameras arranged in a
panoramic fashion and a small-form-factor PC.

as shown in Figure 1. The individual data streams extracted from each of the
cameras are merged into a single panoramic image of the world. The cameras
are connected to a Small Form-Factor 3.0GHz Pentium 4 PC that captures the
video data and performs image processing.

The panoramic video stream is scanned for human activity by identifying
the positions of human faces found in the image. We make the assumption that
people can be recognized in the image based on the location of their face. To be
able to recognize people’s activities within any meeting scenario, the challenge is
to find appropriate features in terms of face positions without a global coordinate
system. Low-level features are extracted from the raw dataset and are modeled
as the observations for the recognition methods. The range of all possible human
activities is reduced to a small discrete set.

We successfully solve this problem by two main contributions: (i) the identifi-
cation of robust meeting features in terms of relative displacements; and (ii) the
application of Dynamic Bayesian Networks (DBNs) to this problem, extending
their use from other signal-understanding tasks.

2 Related Work

We use DBNs [2] to model the activities of people in the meetings. DBNs are
directed acyclic graphs that model stochastic time series processes. They are a
generalization of both Hidden Markov Models (HMM) [3] and linear dynamical
systems such as Kalman Filters. DBNs are used by [4] to recognize gestures such
as writing in different languages on a whiteboard, as well as activities such as
using a Glucose monitor. Our system infers body stance and motion by tracking
the user’s face in a cluttered and general background rather than attempting to
track the hands, which is difficult to do in general.

In [5], finite state machine models of gestures are constructed by learning
spatial and temporal information of the gestures separately from each other.
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Fig. 2. CAMEO maintains both an image and activity model of people in the environ-
ment. The image model is a representation off the person from CAMEO’s sensors (e.g.
the detected face). The activity model represents how the person is expected to move
about and what those movements mean in terms of actions.

However, it is assumed that the gestures are performed directly in front of the
camera and that the individual features of the face and hands can be recognized
and observed without error.

An extension to the HMM formalism called the Abstract Hidden Markov
mEmory Model (AHMEM) [6] is used to represent a hierarchy of both state-
dependent and context-free behaviors. However, this work uses a network of
cameras set up throughout the entire office space to view hand-labeled locations.

A system for using stereo cameras to infer deictic information through torso
and arm position tracking is described in [7]. Our system is essentially monocular
and is not intended to be addressed directly where it could observe the full torso
and arm positions of everyone attending the meeting.

Recognizing the behaviors of individual robotic (non-human) agents has been
studied in [8]. Robots playing soccer against other robots [9] would greatly ben-
efit by being able to classify the different behavioral patterns observed by their
opponents. In this work, robots are tracked by an overhead camera and their
actions are classified by a series of hand-crafted modified hidden Markov models
(called Behavior HMMs).

Much of the related work in activity modeling relies upon fixed cameras with
known poses with respect to the objects and people that they are tracking. Our
efforts focus very heaviliy on activity models that can be tracked and observed
by uncalibrated vision systems which do not have the luxury of knowing their
absolute position in the environment. This approach is attractive because it
minimizes the cost for setting up the system and increases its general utility.



Fig. 3. A frame of video from a typical meeting as annotated by CAMEO.

3 The CAMEO System

CAMEO is part of a larger effort called CALO (Cognitive Agent that Learns
and Organizes) to develop an enduring personalized cognitive assistant that is
capable of helping humans handle the many daily business/personal activities
in which they engage. In order to be useful in a general set of environments,
CAMEO must operate in many different meeting room configurations and should
not require any lengthy calibration for distance or lighting conditions.

Raw visual data from the multi-camera system is captured and merged into a
single consistent image mosaic [1]. People in the image are located by identifying
their faces using the detector in Intel’s OpenCV1 computer vision library. Faces
are matched between subsequent video frames by computing a distance metric
between sets of tracked faces and the new faces. Matches are those that have the
smallest distance. The metric is computed by taking the SVD of the image sets
and computing the weighted sum of the most significant eigenvectors. CAMEO
is capable of recording mpeg movies of meetings for archival purposes and off-line
analysis. All of CAMEO’s detection/inference algorithms can be run on either
live or recorded video. Finally, streams of tracked facial information are fed into
a DBN classifier that identifies the state of each person. The following sections
describe the details of CAMEO’s state inference mechanisms.

4 Meeting State Inference

As mentioned previously, CAMEO must be able to operate in uncalibrated en-
vironments and infer the activities of people in real time. Additionally, activity
models that are used in one meeting must be transferable to other meetings
with different attendees. This enforces a number of constraints on CAMEO’s
data processing, the most significant of these are shown in Figure 4. Because
the environment contains objects that are unknown and unmodeled, detecting
people’s bodies is very challenging and difficult to do properly. As a result, the
most robust feature for detecting a person becomes their face. Faces are very
unique and distinguishing features which greatly simplify the task of determin-
ing whether an object is a person or not. The face detection algorithms that we
use are a compromise between the need for accurate and robust person detection
1 http://www.intel.com/research/mrl/research/opencv/



and the needs for CAMEO to operate in real-time. The decision to process facial
data only directly affects the selection of specific features for activity recognition.
For instance, the absolute Y positions of people’s faces are not very meaningful
because CAMEO is not aware of the positions of people in the environment, nor
is it aware of its own relative distance to those people.
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Fig. 4. Unknown spatial quantities that the CAMEO activity recognition system must
contend with when attempting to infer activities from observed people.

In order to operate within these constraints, a number of simplifying assump-
tions are made about the structure of the environments and the behaviors of the
participants in the meetings. These assumptions are:

1. CAMEO will be in the center of a meeting and can see all the participants
2. When performing an action, a person is likely to remain doing that action

and not rapidly switch from one action to another
3. People’s activities are first-order Markovian (the current state can be inferred

by only considering the previous state and the current data)

4.1 Observation Model - Features

At every frame of video, all of the faces that have been found return an (x, y)
position in image coordinates. The CAMEO software tracks each face from frame
to frame and stores a history of the face positions. Because relying on absolute
(x, y) positions will be brittle due to the above constraints, we instead look
at the difference of the face positions between subsequent frames of video, e.g.
(∆x,∆y), where ∆x = xt − xt−1 and ∆y = yt − yt−1.

As an illustrative example, a single person’s face was tracked by CAMEO
and the resulting raw displacements in the horizontal and vertical direction are
shown in Figure 5. In practice, this particular choice of features has proven to
be quite robust.

4.2 Observation Model and States

In order to define a DBN, the model states must be identified and observa-
tion probabilities distributions must be assigned to those states. Initially, we
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Fig. 5. Raw data from a tracked person. The left graph shows ∆X (horizontal displace-
ment) of the face in pixels over time while the right shows ∆Y (vertical displacement)
over time. The horizontal axis is time in seconds.

were interested in the following activities: “Standing,” “Walking,” “Fidgeting,”
and “Sitting”. The observation features as previously introduced consist of real-
valued 2D vectors of face displacements (to address the challenges of general
meeting processing). To correctly define this model, we needed to perform some
empirical studies to find out how our observation features were related for these
activities that we wanted to track.

Several meetings were recorded and the actions of the people in them were
hand-annotated to generate class labels to train the DBN’s observation proba-
bility distributions. Interestingly, some of our general states could not be dis-
tinguished from one another. The stationary standing and sitting states are
indistinguishable because the face displacements (∆x,∆y) are identical given
that the person is generally immobile. To address this problem, we refined our
model to include states “Sitting down,” “Standing up,” “Stand still,” and “Sit
still”. Fidgeting and walking left or right could also not be distinguished. In our
model, the transitions through intermediate states also resolved this problem.
The final observation empirically-defined distributions are shown in Figure 6.

Note the symmetry between the observations in the states associated with
“Standing up” and “Sitting down” in Figure 6. The “Walking” and “Fidgeting”
states have very similar means, as do the “Stand still” and “Sit still” states. This
directly illustrates the uncertainties associated with the CAMEO’s observation
models, particularly because absolute values in the Y dimension are not directly
meaningful.

4.3 Person States

We have used these constraints and assumptions to define a finite state machine
which encapsulates a coarse level of possible activities that can be detected in
the image data stream. This state machine is illustrated in Figure 7.

The “Sit still” state represents instances when a person is sitting in a chair
and is stationary. The “Fidget left” and “Fidget right” states represent motion
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Fig. 6. Learned Gaussian distributions for the real-valued observation vectors corre-
sponding to the four hidden states associated with standing and walking on the left
and sitting and fidgeting on the right. The first and second standard deviations are
shown for each distribution.
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Fig. 7. Example finite state machine for a single person in a meeting.

of those people in their chairs, such as if they look around or lean to one side
to talk to someone. The “Standing up” and “Sitting down” states represent
the transitions from a “Sit still” and “Stand still” state. These are the actual
activities involved with getting up from one’s chair and taking one’s seat, re-
spectively. Finally, once a person is in the “Stand still” state, they can “Walk
left” and “Walk right”.

Conceptually, the “Standing up” and “Sitting down” states could be modeled
as transitions rather than as actual states, but from observing meeting records,
we have seen that people spend anywhere from 3-10 frames in each of these states.
This, we feel, warrants that they be treated as states of the system rather than
as some sort of transition condition.

Several of our assumptions about how people move in their environment di-
rectly dictate the structure for the DBN model. For instance, we have to assume
that once people start a particular motion, they will continue doing that mo-
tion for a few frames until the observations dictate otherwise. This is done by
manually setting the state probability transitions P (Xt = i|Xt−1 = j), or the



probability that state X at time t is i given that the state at time t− 1 is j, to:

P (Xt = i|Xt−1 = i) = 0.999999 (1)
P (Xt = i|Xt−1 = j) ≈ 0.000001(where i! = j) (2)

This probability distribution represents the shortcoming of the standard HMM
formalism for modeling timeseries data where the states may have explicit state
durations. Without these probabilities, the state transitions are much more likely
to change states and to do so very quickly. While the state transition probabilities
are set manually in this fashion, the probability of making an observation given
a particular state, P (Y |X), is learned from real data.

4.4 The Viterbi Algorithm for State Estimation

The activity recognition system models the human activity framework using
a DBN. A layer of hidden nodes represents the discrete set of activities shown
previously in Figure 7. The observed output nodes are continuous-value Gaussian
distributions over the ∆x and ∆y signal values returned from the CAMEO
system (note that lower-case x and y refer to image coordinates, while upper-
case X and Y refer to the state and observation probabilities for a DBN as
described next).

Traditionally, the Forward algorithm [3] is used to return the most likely
state given an observation sequence. The Forward algorithm computes the most
likely state at each timestep by summing the probabilities of the previous states.
However, if the state transition P (Xt = i|Xt−1 = j) = 0 at a given timestep,
the Forward algorithm can still return that the most likely state at time t− 1 is
j and the most likely state at time t is state i. This is a problem for our model
since there are numerous states that do not link to each other.

An algorithm which addresses this shortcoming and provides a more accurate
estimate of the model’s state sequence is the Viterbi algorithm [3]. Viterbi is a
dynamic programming algorithm which takes into account the state transition
probabilities to generate the most likely state sequence that could have generated
the observation sequence. This is more formally defined as:

q1:t = argmax
q1:t

P (q1:x|y1:t) (3)

where qt is the most likely state at time t. Thus, for each timestep, Viterbi
computes a term δt(j), defined as:

δt(j) = max
i

[δt−1(i)P (Xt = j|Xt−1 = i)]P (yt|Xt = j) (4)

which is initialized as:

δ0(i) = P (X0 = i)P (y0|X0 = i) (5)

Additionally, the index of the most likely state at time t − 1 to transition into
each state at time t is computed and stored in a table ψt(j) as follows:

ψt(j) = argmax
i

[δt−1(i)P (Xt = j|Xt−1 = i)] (6)



Finally, after the entire observation sequence has been analyzed in this fashion,
the state sequence is obtained by backtracking over the table of ψ values ranging
from t = 0 to t = T :

qT = argmax
i

[δT (i)]

qt = ψt+1(qt+1) (7)

4.5 Fixed-Length Backtracking Extension to Viterbi

Viterbi is a very powerful algorithm because it is able to employ the entire
observation sequence at once to correct for noise that might corrupt the obser-
vation sequence. However, because of this, Viterbi requires the full observation
sequence to be obtained before it is able to backtrack to resolve the complete
state sequence. This will not work with CAMEO when it performs inference in
real-time.

In order to achieve the benefits of Viterbi while not requiring that CAMEO
wait for the entire state sequence, we have defined a hybrid approach by which
backtracking is only done on the latest k states. Thus, when the observation
at time t is received, the state at t − k is inferred. In a real-time system, this
fixed-window approach will cause a delay in the state estimate, but as long as
the delay is not too long, the estimate may still be useful to act upon. Thus,
the value of k represents a tradeoff in accuracy and estimation lag in a real-time
system. This relationship will be explored further in the experimental results
section.

5 Experimental Results
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Fig. 8. Classified actions of a person standing up and sitting down. Of the 315 timesteps
in this dataset, only 29 of the states were misclassified. The Y-axis represents the state
where, 1=“Sit”, 2=“Sitting down”, 3=“Stand”, and 4=“Standing up”. The X-axis is
the frame count. The data was captured at 15 fps.



Figure 8 shows some results from the dynamic Bayesian network action recog-
nition system as compared to hand-labeled ground truth. Data was collected
from a short sequence of video that showed a single person standing up and
then sitting down again.

In this figure, the solid line shows the hand-labeled ground truth of the
person’s activities, the dashed line shows the estimated activities, and the circles
indicate states that were misclassified. Of the 315 images encoded with person
tracked data, only 29 of the states were misclassified. Most of these occurred
during the transitions from the “stand” state through the “sitting down” state
to the “sit” state. This is primarily due to variances in the way that people
move around. However, while the alignments of the activities were slightly off
from ground truth (their starting and stopping times), the fact that the person
stood up and sat down was not missed.

The performance of the fixed-window Viterbi algorithm with different values
of k was evaluated. Figure 9 shows the effect of the window size on the accuracy
of the inferred state sequence (the larger the window size, the more accurate
the results are). Compare this with the Forward algorithm alone which scored
only 67.95% correct. This high error rate of the Forward algorithm is caused
primarily by the inference algorithm making illegal state transitions.
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Fig. 9. Plot of the effect that the amount of backtracking in the fixed-window Viterbi
algorithm has on the accuracy of the state inference. The larger the window size, the
more accurate the state sequence from the ground truth. As a comparison, the Forward
algorithm alone was only 67.95% correct on this dataset.

For each frame of video the Viterbi algorithm uses to improve its inference,
the longer the time lag between the observation and the state inference. The full
CAMEO system, which includes face detection, tracking, and face recognition,
typically can track 5-6 people while running in real-time at approximately 3-4
frames per second. This means that each frame of video adds between 0.25-0.3



seconds of latency to the state inference. Any decision process that makes use
of CAMEO’s state estimation must always take this lag into account.

Finally, the images shown in Figure 10 graphically illustrate the state estima-
tion algorithm running on data captured from CAMEO. The panoramic images
have been truncated to only show the areas of interest. In this image sequence,
two people enter a room and sit down. Their states are successfully tracked as
transitioning through walking, stand still, sitting down, and sit still.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 10. Sample video captured from CAMEO in which the people’s motions are cap-
tured by the face detector and classified by the Viterbi algorithm.

The activity recognizer is dependent upon the ability for CAMEO to success-
fully track people. If the tracker loses a person due to occlusions, or because the
person left the room, then the data stream for the activities will be truncated
or possibly erroneous. Additionally, if the person moves very slowly, their rela-
tive displacements will be lost in the noise model for the states which represent
stationary positions. Because of this, the activity recognizer might not classify
a transition from standing to sitting (or vice versa). In this case, the activity
recognizer will be out of alignment with the person’s true position and will not
catch up until another transition occurs that the recognizer successfully detects.
Such “missed” transitions could be addressed by adding additional features to
the classifier, such as using the motions of others in the environment to dis-
ambiguate the current state of a person. We are currently looking at ways to
enhance our recognition algorithms to use this additional information.



6 Summary

CAMEO is designed to observe and infer state information about people in
meetings. To do so, it requires minimal room instrumentation and calibration
to operate. Because very little a priori information is known about the position
(and possible occlusions) of people in the meeting, CAMEO makes use of a
robust identification scheme to find and track people’s faces in the environment.
CAMEO tracks motions of faces and feeds their displacements into a Dynamic
Bayesian Network-based classification system used to infer the tracked person’s
state. This classifier uses a model of human behavior which is encoded into
the Bayesian Network’s hidden state’s conditional probability distribution. The
parameters for the observed states are learned from labeled data. A fixed-sized
backtracking implementation of Viterbi was implemented to recover the most
likely state information from the data. We have shown experimental results from
a state model illustrating how CAMEO is able to infer the state of individual
people in the meeting. We have also discussed the tradeoffs of this approach
between accuracy and real-time operation as well as describing some limitations
of the algorithm and future directions of the research.
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