
CMRoboBits: Creating an Intelligent AIBO Robot

Manuela Veloso, Paul E. Rybski, Sonia Chernova, Nidhi Kalra
Scott Lenser, Douglas Vail, James Bruce, Nick Aiwazian

Computer Science Department
Carnegie Mellon University
Pittsburgh PA, 15213-3891

Introduction
Since 1997, we have researched teams of soccer robots
using the Sony AIBO ERS-210 robots as the robot plat-
form (?; ?; ?; ?; ?). Our experience runs across several
generations of these four-legged robots and we have met
increasing success every year. In the fall of 2003, we
created a new course building upon our research expe-
rience with the AIBO robots. We have since refined the
course and taught it again in 2004. The course, which
we entitledCMRoboBits: Creating an Intelligent AIBO
Robot, introduces students to all the concepts needed to
create a complete intelligent robot. We focus on the ar-
eas of perception, cognition, and action (illustrated in
Figure??), and use the Sony AIBO robots to help the
students understand in depth the issues involved in de-
veloping such capabilities in a robot. The course has
one two-hour weekly lecture and a one-hour weekly lab
session. The course work consists of weekly home-
works and a larger final project. The homework assign-
ments include written questions about the underlying
concepts and algorithms as well as programming tasks
for the students to implement on the AIBO robots. Eval-
uation is based on the students’ written answers, as well
as their level of accomplishment on the programming
tasks. All course materials, including student solutions
to assignments, are made available on the Web. Our
goal is for our course materials to be used by other uni-
versities in their robotics and AI courses. In this paper,
we present the list of topics that were covered in the lec-
tures and include examples of homework assignments
as well as the rational behind them.

The Goals of the Course and the Schedule
The main goal of the course is to learn how to create
an intelligentrobot, using the AIBO robot as a concrete
example. We want the students to understand howto
programthe robots to perform tasks. Our aim is tode-
mystifyrobot programming so that it becomes clear and
accessible to all of our students. A parallel goal of the
course, and mainly our own goal, is to move from our

Copyright c© 2005, American Association for Artificial Intel-
ligence (www.aaai.org). All rights reserved.

Figure 1: The modules used in the complete robot.

Figure 2: Annotated AIBO ERS-210

research code in robot soccer to modular code that can
be used for any general robot task. We aim to provide
course materials that are modular and well structured so
that people at other universities can use the materials in
their own courses. We further believe that reorganizing
and cleaning up our robot soccer code will have several
additional positive effects, namely facilitating both our
own future research and the initiation of new students
in their research.

The AIBO is a remarkable piece of commercially-
available robotic hardware. An AIBO has fifteen
degrees of freedom (DOF) in its legs and head, a

color CCD camera that can process images at 25-30
frames/second, a 3-axis accelerometer for body pose
estimation, buttons on its back, head, and footpads,
LEDs for visual debugging, and a wireless ethernet
(802.11b) card for inter-robot communication. AIBOs
are programmed using a free SDK called OPEN-R
(found at http://openr.aibo.com/) which lets one com-
pile control code on a workstation with a MIPS cross-
compiler (available for GNU Linux, Microsoft Win-
dows, and Mac OSX). The AIBO’s low cost (approxi-
mately $1,600 US) allows an instructor to purchase sev-
eral of them for the price of a more traditional research
robotic platform.

We designed the 15-week course along several main
components:

Behaviors: The primary purpose of this course it to fa-
miliarize the students with the concept of behaviors
for robot control. Every component, from sensors to
localization, is caste in the framework of how a mo-
bile robot can use those techniques in its behaviors.
We teach students about behaviors at several places
in the course since behavior is a basic component of
virtually robot task. Initially, we introduce finite-state
machines and incrementally address more complex
behavioral structures, such as hierarchical behaviors
and planning. Figure?? shows an illustrative exam-
ple of decompositional and sequential behaviors used
in the class.

Figure 3: Description of a behavior hierarchy

Sensors and actuators:Robots perceive the world us-
ing their sensorsand they affect their environment
with their actuators. All interactions between the
robot and its environment are mediated by sensors
and actuators; they are equivalent to input and out-
put operators in robot programming. This component
of the course introduces students to the idea of act-
ing in the face of uncertainty. Unlike traditional pro-
gramming where input values are completely known,
robots must perform with only limited, noisy knowl-
edge of their environment. Additionally, robots must
cope with noise and uncertainty in their actions; mo-
tors do not always perform the requested movements
and factors such as friction and slip are difficult to
take into account when predicting the outcome of ac-
tions. Students must be introduced to the idea of

uncertainty, which is central to robot programming.
Figure ?? shows an example plot of the 3-axis ac-
celerometer data that students can use to determine
what “state” the robot is in.

Figure 4: 3-axis accelerometer signature for a robot that
starts on its left side, is rotated to an upright position,
and then is rotated to its right side.

Motion: The AIBO robots offer an interesting and
challenging platform for exploring robot motion. AI-
BOs are interesting because they are a legged plat-
form with fifteen degrees of freedom (DOF) in their
head and legs. Each of the four legs has three DOF
and the head has pan, tilt, and roll joints. This count
only includes the major joints. The tail, mouth, ears,
and eye LEDs can also be actuated to create more
expressive behaviors. In this unit, we introduce stu-
dents to the ideas of forward and inverse kinemat-
ics. We also include a practical introduction to our
motion system on the AIBO. We describe our pa-
rameterized walk engine which uses approximately
fifty numeric parameters to specify an entire gait for
the robot. These parameters include factors such as
robot body height, body angle, lift heights for each
leg, and timings. We also introduce students to the
idea of frame based motion where all joint angles are
specified for a fewkey framesand the robot interpo-
lates between them. This type of motion is useful for
scripting kicking motions for soccer, dance motions,
climbing, and other predefined motions.

Vision: The AIBO robots use vision as their primary
sensor. Color images in the YUV colorspace arrive
at a framerate of 25hz. The vision unit of the course
acquaints students with the basics of robot visual pro-
cessing. Students briefly learn about the YUV color
space, which is commonly used by image capture
hardware. Real time color segmentation and camera
calibration are also discussed. Finally, higher level
concepts such as object recognition from the color
segmented images, including weeding out false pos-

Figure 5: The two motion systems used in the CMRobo-
Bits code base for controlling the AIBO’s limbs.

itives is covered at length. Students also learn how
kinematics ties back to vision for calculating the real
world position of objects in the vision frames. Fig-
ure??shows an example frame of video that has been
processed by the AIBO’s real-time color segmenta-
tion algorithm.

Figure 6: An example frame of video from the AIBO’s
camera after color-segmentation post-processing.

Localization: In order to act effectively, a robot often
needs to know where it is in the environment. Lo-
calization becomes an essential component that inter-
acts with perception, decision making, and motion.
This unit introduces the ideas of probabilistic local-
ization beginning with the basic ideas of Markov lo-
calization and including different methods of repre-
senting belief such as Kalman filters and particle fil-
ters. We also cover ideas such as recovering from
errors in localization (e.g. the kidnapped robot prob-
lem) through sensor based resampling and the var-
ious tradeoffs that may be made between computa-
tional cost and resource consumption.

Multi-Robot Cooperation: Once the students under-
stand how to program a single AIBO to do interest-
ing behaviors, we teach them how to use the AIBO’s
on-board 802.11b wireless ethernet system. This al-
lows the robots to communicate between each other.
For the remainder of the course, we teach the stu-
dents how to solve problems with multi-robot behav-
iors, discussing the challenges and presenting several
approaches for multi-robot communication and coor-
dination.

Figure 7: Students learn some of the challenges with
programming behaviors for cooperative multi-robot
tasks.

Homeworks
REWRITE THIS TO BE MORE GENERAL, MORE OF
A HOWTO FOR INSTRUCTORS?

In this section, we briefly describe the rational, re-
quirements, and grading of the homework assignments
in the course. Students were typically given one to two
weeks to complete each assignment. They worked in
groups of 2 or 3 students and kept the same groups for
the entire semester. Assignments were due at the be-
ginning of the lab period each week, although we often
gave students until the next day. This allowed us to ei-
ther have a demonstration session at the beginning of
the lab or to go over the assignment with the students
where the TA could look at the students’ code and watch
the robot to diagnose problems. It was vital to have both
the robots and source code available while helping stu-
dents with problems.

HW1: Introduction to Development
The first homework served as an introduction to the
development environment and brought students up to
speed on how to access the source code from our CVS
tree, compile the code using the OPEN-R SDK (freely
available from Sony), and copy the final programs to
memory sticks for use with an AIBO. This homework
also showed students how to select which behavior runs

using our framework and allowed us to test code sub-
missions using a dropbox system. Creating a simple
first assignment allowed us to iron out the wrinkles in
how we had setup the course and student lab.

HW2: Basic Sensors

The second homework is designed to familiarize the
students with the sensors on the robot. The background
section covers how to subscribe to sensor messages,
specifically, data from the robot’s accelerometer and the
touch sensors on its feet. The students then must use
this information to set LEDs on the robots face every
time a foot contacts the ground, to detect when the robot
is lifted off the floor, and to display whether the robot is
level, tilted toward its left side, or tilted to its right.

This assignment gives the students practical expe-
rience with a sense-think-act loop. They must read
[noisy] sensor data from the robot, determine which ac-
tions to take based on this sensor data, and finally send
commands to the robot to perform these actions. This
sequence is repeated with a frequency of 25 Hz on the
robot.

HW3: Robot Motion

Robot motion involves a great deal of trial and error. In
the third homework, students learned how to build up
to a complete motion through incremental, trial and er-
ror experimentation. The assignment was broken down
into two parts. In the first part, students created a set of
walk parameters to describe a gait. Robot gaits are spec-
ified by 51 parameters that are used by a walk engine to
generate the actual trajectory that the end of each foot
follows over the course of a single step. The parameters
include limits on how high each foot can rise above the
ground, the desired angle of the robot’s body, and other
similar factors. Finding an effective walk is an opti-
mization in this 51 dimensional parameter space. Pa-
rameters are often coupled together in certain portions
of the space and there are many local minima. Typically
we optimize for speed and stability, although other fac-
tors such as a walk with a high body height are possible.

The second part of the assignment required students
to create a new motion from scratch using a key frame
animation based approach. Specifically, students cre-
ated a motion that made the robot perform a com-
plete rollover and then climb back onto its feet. They
learned how to convert between the positions of the
robot’s limbs in space and the corresponding angles of
the robot’s joints in their own coordinate frame. Since
rolling over is a dynamic activity that depends on build-
ing up momentum and moving different legs in concert,
the students also learned how to coordinate different
joints simultaneously. An incremental, experimentation
based approach was also important for being successful
with this portion of the assignment.

HW4: Calibrating Vision
Since the focus of this course was to give students
the practical knowledge that they’d need to program a
working robot, we included an assignment on vision
calibration. In this homework, students used the robot’s
camera to capture images of the environment. They
transfered these images to a workstation and used stan-
dard image editing software to label the colors in the
images. In other words, they would draw over the or-
ange regions of an image with a solid orange, replac-
ing the large set of YUV values that appear as orange
with a single, predefined value for that color. These
labeled images serve as training data for a supervised
learning algorithm that learns a mapping between YUV
color values and symbolic color values such asyellow,
orange, or blue.

Part of the value from this assignment was showing
students how much work goes into calibration. Taken
with the fact that fast color segmentation algorithms that
rely on mapping directly from pixel values to symbolic
colors are brittle in the face of changing lighting con-
ditions, this provides strong motivation to try other ap-
proaches; recalibrating vision for new lighting is a lot of
work! Students also learned the tradeoff between taking
more sample photos to improve accuracy versus the in-
crease time spent labeling the photos. They learned that
this type of lookup based segmentation is unable to dis-
ambiguate between colors that look different to humans
but have the same YUV values to the camera. Students
also learned how to adjust the weights assigned to the
examples for different symbolic colors. For example,
training images often contain fewer examples of col-
ors associated with small objects and many pixels from
larger objects. This creates a bias in learning where the
end classifier wants to say everything is the same color
as large objects. Finally, students learned to evaluate
the final, learned mapping from pixel values to symbolic
colors against a test set of images rather than against the
training set. Realistic evaluation of how well algorithms
will perform is important.

HW5: Object Recognition
Once students understand low level vision concepts
such as color segmentation, they need to learn how to
perform higher level tasks such as object recognition.
This was the focus of the fifth assignment. Students
learned to detect a bright orange ball, a colored bulls-
eye, a small scooter, and a tower built from colored
cylinders using color segmented images. The wheels
of the scooter were the same shade of orange as the ball
and additional towers built from colored cylinders were
present so students needed to filter out false positives as
well as avoid false negatives.

Although the training data was gathered using the
robot’s camera, this assignment was completed entirely
on workstations using the same code that runs on the
robots with an abstraction layer to allow it to run un-
der Linux. The exact same vision processing is done

starting with a raw YUV image, but the entire process
can be observed using standard debugging tools. This
allowed students to get under the hood of the vision pro-
cess and try many more approaches than embedded de-
velopment would; the turnaround time to try new code
is much lower on a workstation and the running pro-
gram is much easier to observe. Once the algorithms are
fine tuned, they can be ported to the robot by simply re-
compiling for a different target platform. This practical
lesson is perhaps as important as teaching the students
how to create heuristics for object detection.

HW6: Mounting a Charging Station

The sixth assignment built on the previous vision as-
signments. Students used object detection code to find
the colored bullseye and tower beacon where were po-
sitioned on either end of a charging station. They pro-
grammed the robot to search and then climb onto the
charging station before sitting down and shutting off.

This assignment brought together many of the past
assignments and tied them together into a unified whole.
The robot needed to sequence searching, seeking, and
charging behaviors together relying on vision for sens-
ing. The provided walk for the robots was too low to
step onto the station so students needed to create cus-
tom motions to move the robot into position over the
charger and settle themselves onto the contacts. This
assignment tied vision, behaviors, and motion together
into a coherent whole.

HW7: Maze Traversal

Students continued to create unified systems that rely
on several basic components in the seventh assignment.
In this assignment, students used a [provided] egocen-
tric world model to track regions of free space around
the robot. They created a behavior to traverse a convo-
luted path while controlling the robot’s head to ensure
that the local model contained accurate and up to date
information. The path was not a true maze as it had no
dead ends, but the robots did need to navigate through
several turns without touching walls.

HW8: Written Localization

Localization requires more formal mathematical mate-
rial than the rest of the material in the course. In order to
give students experience with manipulating probability
distributions this assignment consisted solely of written
work. Students were given a uniform prior distribution
of robot poses in a grid world and calculated the poste-
rior probability after several moves through the world.
The movements were nondeterministic and the students
wrote out the complete prior and posterior distributions
following each step. Several markers spaced across the
grid gave the students a chance to incorporate observa-
tions using a sensor model as well as use a movement
model to propagate belief forward through time.

HW9: Hands on Localization

Hands on experience with localization is also important.
Students created a behavior where the robots avoided a
large square in the center of a carpet. When grading,
the robot was first moved to a home position and told
to memorize its position with a button press. Then the
robot was picked up and moved to a new position (typi-
cally on the other side of the carpet) and replaced on the
carpet. Evaluation was based on the robot detecting that
it had moved and returning to its original position while
avoiding the square in the center of the carpet by us-
ing localization. Six colored markers around the carpet
were used for localization. Students needed to create
behaviors to control the head to seek out and fixate on
these markers in order for the robot to be well local-
ized. Additionally, students experimented with varying
the number of samples used by the particle filter for lo-
calization. They made observations about the quality of
the position estimates and convergence speed.

Example Assignment: Mastermind
This section provides provides the text for an actual
homework that was assigned in the Fall 2004 CMRobo-
Bits class. This homework gave the students an oppor-
tunity to work with vision and motions, and required
them to reason about complex behaviors that involved
interacting/communicating with a human in a determin-
istic fashion.

The homework was to program the AIBOs to play
the game of Mastermind with a human and do so with
either the robot as player and the human as moderator,
or vice versa. Mastermind is a guessing game where
the player has to guess an ordered sequence of colors
that the moderator has chosen in secret. The moderator
provides simple but ambiguous clues to the player that
must be used to infer the correct colored sequence.

Rules for Mastermind

Initialization

• Moderator randomly determines a sequence of
length ’n’ drawn from a set of ’m’ possible col-
ors (with repeated colors allowed)

Play

• Player guesses a sequence

• Moderator tells player how many colors are:

– Correct and in the right position
– Correct but in the wrong position

• Continue until the player has guessed the right
pattern of colors

In the following homework description, a program
by the name of “chokechain” is mentioned. This is a
Linux-based console debugging tool which connects to
an AIBO via TCP/IP. Students can use this program to
view debug print statements (referred to in the home-
work as “pprintf”), as well as color-thresholded frames
of AIBO video.

Introduction
This homework is geared towards switching between
different behaviors (state machines in state machines)
and also contains an opportunity to experiment with
learning. There will also be some basic vision. You
will be playing the gameMastermind with the dogs.
If you’re not really familiar with the game, check it out
here:
http://www.kongtechnology.com/index.asp?im=mastermind
You can see the rules and play.

Game Setup
You will be playing a simplified version of the game
with colored squares. There will be two positions and
three colors to choose from. Colors can be repeated in
the slots. The moderator will pick a sequence while the
player will try to use the responses from the moderator
to guess the sequence. You will interact with the dogs
through simple motions, buttons, and LEDs.

Part 1: AIBO as Moderator
In the first part, the AIBO will have to come up with
a random sequence of two colors and you will have to
guess it. Here’s how the game will go:

• Press the back button to unpause the robot.

• The AIBO starts in the play position, in this case a
resting position on its belly.

• You press the button under its chin to start the game.
It will select a random sequence and blink both mid-
dle LEDs twice to indicate the start of game play. It
will also pprintf this sequence so that we can see the
sequence using chokechain.

• You will then place two squares in front of it (your
choice of colors) at a distance specified by the tape
marks on the field. When you are ready for a re-
sponse from the AIBO, you will press the back head
button.

• The AIBO will see the two balls and respond to you
by:

– showingn green LEDs to illustrate the number of
squares that are of the correct color and in the right
place. (This corresponds to the black pegs in Mas-
termind)

– showingm red LEDs to illustrate the number of
balls that are of the correct color but in the wrong
place. (This corresponds to the white pegs in Mas-
termind)

– Nodding the head to let you know it is done evalu-
ating your choice.

• You will continue to place squares and then request
a response with the head button until you guess the
right sequence.

• The AIBO should roll over when you have guessed
the correct sequence (or you can use some other cute
motion instead).

Part 2: AIBO as Player
Now it is the AIBO’s turn to play. You will now have to
implement the logic for Mastermind formally in the AI-
BOs. This will require keeping some history of what the
AIBO has already seen and the responses it got. Here’s
how the game will go:

• Press the back button to unpause the robot.

• The AIBO again starts in the play stance. Now, you
will come up with a sequence of colors and press the
button under its chin to let it know you’re ready to
play.

• You will retrieve the AIBO’s guess by showing it
different colored squares and eliciting a position re-
sponse for each square. Specifically:
For each square of color C= C1, C2, C3

– Show the AIBO the square C
– If it wants square C, it will nod “yes” (up and

down). It will also raise its right or left paw to
indicate if it wants the square in the left or right
position. If it wants the color in both slots, it will
raise both paws. If it does not want color C, it will
shake its head “no” (left and right).

• You will then give feedback to the AIBO by:

– pressing the rear button on its head to tell it “start
input”

– pressing its left front footpad n times, where n is
the number of squares of the correct color in the
correct position

– pressing its right front footpad n times, where n is
the number of squares of the correct color in the
wrong position

– pressing the rear button on its head to tell it “stop
input”

• You will repeat this sequence of square guesses and
input until the AIBO correctly guesses the sequence.
Then, you should press the button on its back to tell it
that it has guessed correctly. It should roll over again
or do some cute thing.

Regarding the code, the only new thing will be the
vision. The real challenge will be to manage lots of
states with lots of history. The vision code will be pro-
vided for you; you will not have to calibrate or do any-
thing fancy. We expect you to simply use our code. You
are advised to test the behavior in stages rather than do-
ing it all at once. (In the case of AIBO as moderator,

you could have a “getMastermindGuess” behavior and
a “respondToMastermindGuess” or something). This
will be easier to debug.

Because some AIBOs might have broken foot but-
tons, please be sure to check the list inside the cabinet
to make sure that you don’t use one that has malfunc-
tioning buttons. When testing your program, you might
try lighting up an LED every time a footpad has been
pushed to be sure that it works.

Questions

Playing Mastermind with 3 colors and 2 slots is pretty
easy. But suppose we want you to play a much harder
game of some n colors and m slots. Answer the follow-
ing questions related to candidate elimination.

• As we discussed in recitation, candidate elimination
by enumerating all the values can become ridiculous
for large problem spaces. For arbitrary m and n, how
can you perform candidate elimination concisely?

• With large problems, it is desirable to guess those hy-
potheses that will get you the most information and
thereby reduce the total number of guesses to win.
Explain how you would choose a hypothesis from
your remaining set.

Figure 8: Mastermind: the AIBO on the left is the mod-
erator and the AIBO on the right is the player. The hu-
man manipulates the colored squares for the player. In
this picture, the player has notified the human that it
would like to place the colored square on the left.

Class Final Project
Students in the 2003 and 2004 CMRoboBits courses
were required to complete a final project worth 30% of
their overall grade. In 2003, the students were asked
to propose a project which would demonstrate some in-
teresting behavior of the AIBOs, whereas in 2004, the
students were all required to do the same project. We
felt that both approaches had specific advantages. The

open-ended 2003 project encouraged creativity and al-
lowed students to explore what they learned and en-
joyed most in the course, while the fixed 2004 project
tested the student’s complete knowledge of the course
materials.

2003 Final Project
In 2003, the students turned in a written proposal of
their project and then were coached by the professor
to make sure that their project was feasible in the time
remaining in the course. Because the projects were so
open-ended, we felt that this encouraged the students to
express their creativity and do a project that was inter-
esting to them. The resulting scope of the final projects
in 2003 was very broad. Some of the more interesting
projects included:

Obstacle Course: An AIBO was programmed to navi-
gate an obstacle course that consisted of an archway,
a straight corridor, a tunnel, and a step. The robot was
programmed to identify each obstacle by recognizing
a colored strip on the ground. When encountered, the
robot would perform a custom motion to move past
the obstacle.

Figure 9: Student final project: an AIBO navigating
through an obstacle course.

Tag: This project made use of localization and inter-
robot communication to allow two robots to play a
game of tag. Both robots used the six landmarks
placed around the carpet to localize themselves. They
would use this information to transmit their(x, y) lo-
cations to each other. With this shared information,
the robot that was “it” would try to come within a
minimum distance of the other robot while that other
robot tried to evade. When the minimum distance
was reached, the AIBOs switched roles.

Maze Learning: An AIBO was programmed to ex-
plore a maze of t-junctions and dead-ends using the
robot’s visual sonar sensor module to identify dis-
tances to the maze walls. The robot was started at

Figure 10: Student final project: two AIBOs playing
tag.

one part of the maze and had to explore until it found
an orange ball at the end. Whenever the robot en-
countered a t-junction, it would remember the last
direction that it took through it. After the goal had
been reached, the AIBO could be restarted at the be-
ginning and would always take the same correct path
through the maze to the goal.

Figure 11: Student final project: an AIBO learning a
maze through exploration.

AIBO Dance: Two AIBOs were programmed with a
set of choreographed motions to dance in time to a
custom song mixed by the students. This project
demonstrated the wide range of motions that are
achievable by the AIBO. Some motions included flip-
ping over to walk on their backs, sitting and wav-
ing both front paws in the air, and rolling completely
over.

Figure 12: Student final project: two AIBOs dancing in
time to music.

2004 Final Project

Inspired by the variety of student projects from 2003,
some of the more interesting aspects from those projects
were selected and merged to create a final project for the
2004 class. This final project tested the student’s cumu-
lative knowledge of the AIBOs and the CMRoboBits
source code by having two AIBOs cooperatively find
their way through a maze. Two identical mazes were
constructed side-by-side, as shown in Figure??.

Figure 13: Final project maze in 2004

Each AIBO would be started in its own maze and
both would have to find their way through to the end.
Inside each maze was an obstacle that the AIBO would
have to either climb over, crawl under, or crawl through.
At the end of the maze was an open area filled with col-
ored balls that the robots had to cooperatively empty.
The emphasis on this project was on navigating the
maze, overcoming obstacles with motions, and coop-
erating through wireless communication.

Cumulative Skill Testing For the final project, stu-
dents had to make use of their knowledge of both single
and multi-robot behaviors.
Single robot behaviors

• Navigation and obstacle avoidance
• Visual recognition and interpretation of landmarks
• Motions to climb over obstacles
• Visual navigation to colored targets

Multi-robot behaviors

• Synchronization of world model for maze naviga-
tion

• Negotiation and agreement on shared action for
ball task

Navigation in the Maze In order to navigate the
maze, the AIBOs were given clues at each of the t-
junctions as to which direction they should turn to reach
the end of the maze. These clues consisted of two-
color signs that the robots would have to interpret. If
the sign was tilted to the left, the robot should take the
left path. If the sign was tilted ton the right, the robot
should take the right path. If the sign was horizontal,
the robot should turn around and take the path behind
them. In order to read the signs, the robots would be
required to face the sign so that the orientation had the
correct meaning.

Cooperation in the Maze In order to encourage co-
operation between the robots, not each t-junction in a
specific robot’s maze would have a sign. However, be-
tween the two mazes, each t-junction would have a sign.
Therefore, students could program their AIBOs to com-
municate with each other to share the information as to
which direction they should turn when they arrived at
the same t-junction.

Cooperative Cleaning When both robots found their
way through the maze, they were required to work to-
gether to remove all of the colored balls from an open
area (each robot had its own separate area). In order to
remove a ball, both robots would need to navigate to a
ball of the same color and stop with their head over it. If
both balls were the same color when the robots stopped,
then they would both be removed and the robots could
continue collecting. If the robots stopped over two balls
of different colors, the balls would be moved to a new
area and the robots would have to continue until they
found two balls of the same color. Communication was
necessary in this case since the robots were unable to
see each other’s activities.

Future Final Projects
The final project in 2004 required a firm grasp of the cu-
mulative course materials. However, for 2005, the final

project will include a learning component whereby the
robots will have the opportunity to improve their per-
formance through experience. We will offer the same
final project to all students again, but will allow excep-
tional students to propose projects. These project pro-
posals will be accepted so long as they exhibit the same
breadth of coverage over the course materials.

Conclusion
We are very interested in teaching Artificial Intelligence
concepts within the context of creating a complete intel-
ligent robot. We believe that programming robots to be
embedded in real tasks illustrates some of the most im-
portant concepts in Artificial Intelligence and Robotics,
namely sensing uncertainty, reactive and deliberative
behaviors, and real-time communication and motion.

We seek to find a good balance between the theoret-
ical aspects of the in-class lectures and the hands-on
labwork. We feel very strongly that both are required
to achieve a well-rounded learning experience. As of
the 2004 class the students did not have any in-class
midterm or final exam in lieu of a more in-depth final
project, we have decided to include them the next time
the course is taught. There are too many concepts to fit
into a cumulative final project. A more traditional exam
schedule will fill this gap. Currently, all of our soft-
ware on our web page runs only on the AIBO ERS-210.
Future work includes making the necessary changes to
run the software on the new AIBO ERS-7s which have
higher resolution cameras, slightly different kinematics,
and more processing power.

The current course materials, including some final
project videos, are available on the course Web page
listed in Figure??.

Acknowledgements
We would like to thank Sony for their remarkable sup-
port of our research, specifically by making the AIBO
robots accessible to us since their first conception in
1997. Sony has continued their support through these
years, and is very interested in following the impact of
an AIBO-based course. We would also like to thank
the Carnegie Mellon Computer Science Department for
approving this new course in the Fall of 2003 and pro-
viding the lab facilities.

Web site URL
Course web page for the current year http://www.andrew.cmu.edu/course/15-491/

Archived course materials from previous yearshttp://www.cs.cmu.edu/˜robosoccer/cmrobobits
CORAL research group web page http://www.cs.cmu.edu/˜coral
SONY OPEN-R SDK home page http://openr.aibo.com/

AIBOs at Robocup www.robocup.org
Tekkotsu - another AIBO programming API http://www.cs.cmu.edu/ tekkotsu

Table 1: Web resources for using AIBOs in education

