Learning to Select Negotiation Strategies with Strategic
Experts

%
Elisabeth Crawford and Manuela Veloso
Computer Science Department
Carnegie Mellon University
5000 Forbes Ave
Pittsburgh, PA, USA, 15213

{ehc,mmvi@cs.cmu.edu

ABSTRACT

In many multiagent systems, agents need to negotiate amongst

themselves in order to reach agreements. In such systems,
agents (or the users they represent) often have private pref-
erences about the negotiation. For instance, agents may
have strong preferences for some outcomes over others, and
preferences about how the negotiation is conducted. In a
multiagent system, without a centralized control, it is possi-
ble for agents to use a wide range of negotiation strategies.
The effectiveness of an agent’s choice of strategy is heavily
dependent on (i) the preferences of the other participants in
the negotiation, and (ii) the strategies used by these partici-
pants. As such, in order to negotiate effectively, agents need
to learn how to choose appropriate negotiation strategies. In
this paper, we describe an approach, based on the Strategic
Experts Algorithm [7], to learning how to select negotiation
strategies in a multiagent setting. We demonstrate the use-
fulness of this approach in the domain of multiagent meeting
scheduling.

Categories and Subject Descriptors

1.2.6 [Artificial Intelligence|: Learning; 1.2.11 [Artificial
Intelligence]: Distributed Artificial Intelligence

General Terms
Agents, Multiagent Systems

Keywords

Multiagent Learning, Automated Negotiation, Meeting Schedul-

ing

*The first author is a student.

Permission to make digital or hard copies of all or part o tvork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

1. INTRODUCTION

Negotiation is widely used in multiagent systems for reach-
ing agreements among agents. For instance, negotiation is
used to agree upon prices in e-commerce systems, e.g. [13],
for resource allocation, e.g. [17], and for scheduling meet-
ings, e.g. [12]. While negotiation among multiple agents
assumes that agents want to reach agreement, it is the case
that agents also have private preferences that they wish to
maximize.

In order to maximize their private preferences, agents need
to adapt the way they negotiate. Different strategies are
likely to work well in different situations. For example, when
an agent negotiates with an honest agent, the best strategy
might be to also be honest, but when the other agent is not
being honest, it is likely to be in the agent’s interests to act
strategically (so as not to be taken advantage of).

Learning agents aim at improving their negotiation strate-
gies with experience. There are two main factors that make
adapting negotiation difficult. Firstly, the space of possible
negotiation strategies may be very large. Secondly, choosing
the right strategy for a specific situation, given an agent’s
limited knowledge, is not trivial.

One way to solve the first problem is to restrict the agent’s
attention to a diverse set of useful strategies (e.g. [18, 5]).
These strategies can be learned or be chosen by human ex-
perts. Given a set of diverse strategies, an agent must then
learn to choose good strategies for different situations. Un-
fortunately, there are a huge variety of factors in multiagent
systems that can affect the success of negotiation strate-
gies. These factors include things about the system state,
the strategies of other agents, and the preferences/payoffs
of other agents.

One approach to address the second problem, i.e., to learn
to select the best strategy, would be to attempt to model rel-
evant aspects of the multiagent system. An agent could try
and identify different aspects, including the strategy used by
each other agent, and the payoff function/preferences of each
other agent. However, given that agents may only rarely in-
teract with each other, learning a model of another agent
is clearly very difficult. Furthermore, in complex systems,
even if an agent does have a lot of accurate information
about the current situation, it may be very hard to work
out what strategy would match the situation best. As such,
we propose that agents learn what strategies to select by
observing their own rewards, as opposed to trying to model

other agents and the state of the system.

Agents that can learn online, from the rewards they re-
ceive, what strategies work well, either generally, or for dif-
ferent, easily identifiable contexts, can potentially solve the
strategy selection problem. In the context of multiagent
meeting scheduling, where agents wish to learn what strate-
gies work well with what agents, we demonstrated that algo-
rithms that seek to minimize regret [3] can be very useful [5]
for strategy selection. The approach was designed under the
stationary assumption that the strategies of the other agents
do not also adapt. When we applied these regret-minimizing
algorithms to the case where multiple agents are learning,
the performance degraded as expected.

In this paper, we study the problem of learning negotia-
tion strategies in the presence of learning agents. We pro-
pose an approach to learning to select negotiation strategies
that uses the Strategic Experts Algorithm (SEA) [7], or its
generalization, Exploration-Exploitation Experts (EEE) [6].
These experts algorithms are designed to work in reactive
environments, where the actions taken by an agent can af-
fect its future payoffs. Although bounds on the performance
of SEA and EEE in the limit have been proven [6], it is
not guaranteed that our approach will work well, since in
real-world multiagent negotiation problems the number of
negotiation episodes is limited.

Thus, we demonstrate the usefulness of our approach on
a real-world negotiation problem. The multiagent meeting
scheduling problem is an important real-world problem since
organizing meetings is a time-consuming task. As such,
there have been a number of efforts to develop multiagent
meeting scheduling systems, e.g., [14, 10], and more recently
[12, 2]. Since users have ownership of their own calen-
dars, and private preferences about meeting scheduling, we
approach the meeting scheduling problem in a distributed
manner. Automated negotiation has been proposed as a
method for multiple agents to reach agreement on meeting
times. Negotiation approaches have many advantages over
the open calendar approach taken by Microsoft Outlook (see
[4] for a discussion). However, very little work has been
done on how agents can negotiate strategically to improve
the utility they provide their users.

We show that our approach can be used to select good
negotiation strategies in the multiagent meeting scheduling
problem. It works particularly well in the case where the
other agents in the system are also adapting. Interestingly,
we also found that in most cases the agents using our ap-
proach tended to settle on generous negotiation strategies.
Thus, even though all the agents were attempting to opti-
mize their own user’s utility, this did not generally result in
them employing uncooperative negotiation strategies.

2. LEARNING TO SELECT NEGOTIATION
STRATEGIES IN A STATIONARY ENVI-
RONMENT

2.1 The Negotiation Problem

For each negotiation episode, the agent a must select a
strategy s from S,, the set of all strategies available to it.
The agent uses this strategy to carry out the negotiation.
At the end of the negotiation a determines its immediate
change in utility, which we will refer to as a’s reward. We
say that a’s reward is determined by the environment and

it may depend on many factors such as, the agent or agents
a negotiated with, and a’s past behavior.

How a should select its strategy, for a particular negotia-
tion, depends on the rewards a expects to receive from the
strategies available to it. a can base its expectations on the
rewards it received using its strategies in similar negotiation
contexts. We assume that the set of all negotiation contexts,
from a's perspective, C*, has been divided into subsets C{
such that for all ¢, ¢’ € Cf, c is similar to ¢/. For instance,
in a multiagent system where agents conduct pairwise ne-
gotiations, we might have a subset of C* for each agent a
negotiates with.

However, learning to select good negotiation strategies is
an online problem. An agent cannot simply select the strat-
egy that has performed best in the past because (i) the agent
may not have experience of each of the negotiation strategies
in the current context, (ii) a strategy may perform poorly (or
conversely well), a few times, due to chance or an uncommon
feature of the context Cf, and (iii) the best strategy to use
may change over time. To perform well an agent needs to
explore (try strategies at random) as well as exploit (select
strategies according to past experience).

In this paper we describe two approaches to handling the
exploration-exploitation trade-off. The first, an approach
based on work by Bowling, Browning and Veloso [3] in the
domain of robot we describe in this section.

2.2 Plays Approach

In the context of small-size robot soccer (where an over-
head camera and an off-board computer allow for coordi-
nated team planning) Bowling et al. [3] introduce the no-
tion of a play as a team plan. Each play has an applicability
condition and a termination condition, and assigns a role to
each of the robots.

All the plays available to the team are placed in the play-
book by a human expert. During the course of a game,
plays are weighted according to the reward they produce.
The play to use at each decision point is selected based on
these weights. The weights on plays are adapted in such
away that regret (difference between how well the team did
and how well it could have done had it used the best, in
hindsight, fixed play) about play selection goes to zero in
the limit.

In [5] we showed how we can adapt the playbook approach
to the specific problem of negotiating meeting times in a
multiagent system. Negotiation problems in general, have
a number of important features in common with small-size
robot soccer. In both domains, the space of available strate-
gies can be use. It is not possible for agents to adapt online
if they must consider the entire space. Furthermore, in both
domains, the models of the ‘opponents’ are unknown, and
online learning is required for good performance.

We can map the terminology, from robot soccer, to the
problem of selecting negotiation strategies as follows. The
plays correspond to complete negotiation strategies, the op-
ponent corresponds to the agent the agent a is negotiating
with (or more generally to the current context Cf'), and the
playbook is simply the set of negotiation strategies avail-
able to a. Unlike in robot soccer, in multiagent negotiation
problems, we are playing with multiple ‘opponent’ agents
at the same time. As such, the learning agent must adapt
strategy selection differently for the different contexts Cf'
simultaneously.

2.2.1 Learningto Weight Playbook Strategies

For each context C7 agent a must learn which strategy
to select. The playbook learning algorithm has the follow-
ing key components, (i) a rule for updating the weights on
strategies in the playbook and (ii) a rule for selecting the
strategy to apply based on these weights. Bowling et al. [3]
used results in the literature on experts problems to derive
the rules required. These rules can also be used for adapt-
ing weights on negotiation strategies. We will now briefly
describe the plays approach and its basis in the experts lit-
erature.

In the experts problem, an agent choses actions repeatedly
based on the instructions it receives from a set of experts.
Each time the agent needs to make a choice it selects which
expert to listen to. In the traditional formulation, once the
action or option has been selected, the agent receives a pay-
off from that action. In addition, the pay-offs it would have
received had it followed the advice of each of the other ex-
perts are revealed. The performance of the agent is mea-
sured by the notion of regret. Let the reward received from
following the advice of expert ¢ at choice point p be r?. The
regret of the agent after k£ choices have been made is given
by the following formula:

k k
regret, = max E r?— E ry
over experts 1 P
p=0 p=0

where x, denotes the expert the agent chose at choice point
p. Regret is simply the award achievable by always asking
the best expert minus the reward actually achieved. There
exist algorithms for various formulations of the expert prob-
lem that guarantee that average regret goes to zero as the
number of times the agent choses goes to infinity e.g. [11,
1]. We will say that such algorithms have no-regret.

Bowling et al. [3] combine elements of the Exp3 algorithm
proposed by Auer et al [1] (which handles the problem of un-
known rewards) with the sleeping regret approach of [§8]. We
describe their approach here, in the context of negotiation
strategies.

Let RF = 2220 77. Where 77 = 0 if ¢ not selected at point

T
3

p and 5 otherwise. We call the weight for strategy ¢ at

Pr(zp=i
decision point p, w?, and we let w! = e®. The value e is
denoted as m?, and we refer to this value as the multiplier
and use it to adjust the weights according to the reward
received from carrying out the negotiation strategy. The
probability that the strategy chosen at point p, denoted z,

is strategy i is given by the following equation:

p,.P
a; w;

p,,,P
PIAT

Where a? is a binary value indicating whether or not 4
can be applied at point p. Once strategy x, has been exe-
cuted, and the reward r%, received, we update the weights
as follows:

Pr(zy,=1) =

t ~
w; = w!.NP

w?™" for i not selected, but for i selected:

where W =

1 —
wp (mf) Pr(zp=1i)

The N? term is used to ensure that not being applica-
ble does not affect a strategy’s probability of being chosen.
NP =11if af =0 and otherwise:

P, p—1
NP = Zj aj wj
7 PP

25 a5
In this paper will not consider negotiation strategies that
are only sometimes applicable, however it is a nice feature
of the plays approach that it can handle this case.

For the negotiation problem an agent a using this ap-
proach must adapt the playbook weights separately for each
distinct negotiation context. In other words, a uses the algo-
rithm to learn a set of weights for each negotiation context.

2.2.2 Discussion

The plays approach is designed to minimize regret, in par-
ticular, to ensure that in the limit, average regret goes to
zero. However, regret (by definition) is calculated as the dif-
ference between how well the learning algorithm does versus
how well it could have done had it always selected the best
fixed strategy against the sequence of actions that were cho-
sen by the opponent (or environment). The plays approach,
and regret minimization algorithms generally, are not de-
signed to handle the case when agents’ actions/strategies
impact the environment, and the choices of other agents.

We found, that an agent using a plays based approach
to selecting negotiation strategies performed as well as the
best strategy from its playbook when negotiating with fixed
strategy agents [5]. Furthermore, an agent using the ap-
proach was able to converge on good strategies after only
approximately 25 meetings were scheduled. However, when
we added even one other player to the system, that was
also learning, we noticed that performance was significantly
worse than the best fixed strategy. Given that the algorithm
is not designed to handle this case, this drop in performance
is not surprising. In meeting negotiation, as in other negoti-
ation settings, it is not safe to assume that the other agents
use fixed strategies. We need a method that can learn to
select good strategies when the other agents are also adapt-
ing.

3. ASTRATEGIC EXPERTS APPROACH FOR

LEARNING IN A REACTIVE ENVIRON-
MENT

In this paper, we propose an approach to learning to se-
lect negotiation strategies that handles the case where other
agents are also learning. de Farias and Megiddo recently in-
troduced the Strategic Experts Algorithm (SEA) [7], as well
as a generalized version, Exploration-Exploitation Experts
(EEE) [6]. These algorithms learn to take the advice of the
best expert when playing a repeated stage game. Unlike
previous experts algorithms, SEA and EEE, can take into
account how the agent’s actions affect the actions of the en-
vironment or an opponent player. The key idea behind the
algorithms, is that when actions affect the environment and
other agents, each expert (in our case a strategy) needs to
be used multiple times in succession to gauge its effect.

Our approach to learning to select negotiation strategies
involves running the SEA or EEE algorithm for each con-
text, Ci'. This allows an agent a to learn online what strate-
gies are good in each context. We will now describe these

algorithms in terms of our negotiation problem.

The key steps in the SEA and EEE algorithms are the ex-
ploration and exploitation steps. Before we describe these
steps, we need to define two terms. A stage, is simply one
run of the stage game (recall that SEA and EEE are de-
signed for use in repeated stage games). In our case this
translates to one negotiation episode. A phase, is a sequence
of stages, for which the same expert (in our case strategy) is
used. Given these terms we can define the exploration and
exploitation steps.

e [Ezxploration: At the beginning of a new phase, a needs
to select a strategy. With some probability a explores,
by choosing a strategy s € Sq uniformly at random. a
then uses this strategy in every stage of the new phase.

o Faxploitation: When a is not exploring, it instead ez-
ploits its learned knowledge. When exploiting, a iden-
tifies the current context Cf' and picks the strategy
with the highest past average reward for this context
(ties are broken randomly). As in the exploration step,
a then uses this strategy in every stage of the new
phase.

Figure 1 shows the details of the algorithms in terms of
our negotiation problem. For a number of different settings
of EEE, de Farias and Megiddo show bounds, of various
kinds, on the performance difference between the best fixed
strategy and the learning strategy in the limit.

4. MULTIAGENT MEETING SCHEDULING:
NEGOTIATING MEETING TIMES

Multiagent meeting scheduling is an important, real-world
domain where negotiation can be used to reach agreements.
In fact, in most multiagent meeting scheduling systems that
have been proposed, meeting times are agreed upon via ne-
gotiation between meeting participants. Typical negotiation
protocols feature a meeting initiator that proposes meeting
times and collects the proposals of other participants. The
following simplified protocol is typical:

e while there is no intersection in proposals

— the initiator proposes some times to the other
agents

— each agent proposes some times to the initiator

A negotiation strategy, for meeting scheduling, is thus a set
of rules for deciding what times to propose at each point
in the process. Users often have strong preferences about
meeting scheduling. In particular, users have preferences
about when their meetings are scheduled, as well as about
the scheduling process itself e.g., about how long it takes.
Despite this, we are not aware of any other work on strategic
negotiation in this domain.

A number of negotiation approaches for multiagent meet-
ing scheduling have been proposed. Sen and Durfee [15]
conducted a probabilistic and simulation based analysis of
negotiation strategies. The basic framework they considered
was:

1. Host announces meeting

2. Host offers some times

3. Agents send host some availability information
4. Repeat 2 and 3 until an intersection is found.

Similar protocols have been looked at by other researchers,
for example, [10], and [9], while [16] looked at a more com-
plex protocol. These negotiation approaches have handled
user preferences for meeting times in quite different ways.
Shintani et al. [16] propose a persuasion based approach.
The persuasion mechanism involves compromising agents
adjusting their preferences so that their most preferred times
are the persuading agent’s most preferred times.

Garrido and Sycara [9] and Jennings and Jackson [10]
allow agents to not only propose meeting times, but also
to quantify their preferences for proposals. The agent that
is collecting the proposals, then chooses the meeting time
based on the reported utilities of all the meeting partici-
pants.

The approaches outlined, can work very well if we assume
that all the agents comply with the protocols and behave
cooperatively. However if we relax this assumption, an agent
that always complies e.g., by reporting its true preferences
for times, may be taken advantage of by agents that lie and
exaggerate their preferences. By negotiating strategically
agents can work to satisfy their users’ preferences. Note that
these preferences are not necessarily entirely selfish, in fact
it is likely that many users are willing to accept times they
do not like if it is necessary for the meeting to be scheduled
and so forth.

The approach to negotiation we propose in this paper,
fits very well with the meeting negotiation problem. Firstly,
there are many possible strategies for negotiating meeting
times. It is simply not possible for an agent to learn in the
whole space of strategies in reasonable amount of time. Our
approach solves this problem because it cuts down the num-
ber of strategies an agent must consider. Secondly, the envi-
ronment is not stationary - meetings are added and moved
and other agents can also adapt their strategies. Thus it
is important to use an approach that can handle a reactive
environment.

In order to apply our approach to the meeting negotia-
tion problem, we need to divide the set of possible negoti-
ation contexts, from an agent a’s perspective, into sensible
subsets. We note that agents can differ in many ways e.g.
agents can use very different strategies and have users with
a variety of preferences, and can represent users of differ-
ent importance and busyness. Clearly a strategy that works
well for negotiating with one agent may work very poorly
with another. So we at least need subsets C§* for each other
agent ¢ that a negotiates with. If a is attending a meeting
and agent ¢ is the initiator, a would identify the context as
C{. If agent a is initiating a meeting that more than one
agent attends, then a would identify a different negotiation
context for each of the attendees. We demonstrate in the
next section that agents can use our approach with these
contexts to achieve good performance.

5. EXPERIMENTS

In this section we demonstrate that our proposed ap-
proach to negotiation works well in the multiagent meet-
ing scheduling problem. We first describe the experimen-
tal setup, including the negotiation strategies considered,
the communication protocol, and the model of agent prefer-
ences.

a

4. i% =i% +1, go to 2.

° Rsci is the average reward achieved by strategy s in context C'.
e N, Sc " is the number of phases in which s has been followed in context C7'.

° SSCi is the number of times a has negotiated using s in context C{'.

e % is the number of phases for Cf* so far.
1. Initialization: YCF, sRSCi = Nsci = SSCi =0and i =1

2. Explore/Exploit Decision: Explore with probability picg’ if using the SEA restriction picg =
1/1'05. With probability 1 — pici exploit. Let s be the strategy chosen.

3. Use and Update: Use s for the next n negotiations in context C§'. If using the SEA variant,
n = Nsci . Then set Nsci = Nsci + 1, Ssci = Ssci +n. If we let R be the average payoff
received over the n stages, then the update for RSCi is given by the following formula:

RS = RS + 2 (R—RY)
S %

S

Figure 1: EEE Algorithm, adapted from de Farias and Megiddo, 2005

5.1 Negotiation Strategies

We have included two negotiation strategies in our ex-
periments. However one strategy is parametrized and can
actually represent multiple, diverse, strategies. An agent, a
using the Offer-k-b strategy offers k new times that are free
in its calendar every negotiation round. After b negotiation
rounds a compromises by offering one of the times that have
been proposed to it. The details of this negotiation strat-
egy are given in figure 2. Different parameters for k£ and b
result in very different negotiation strategies. If k is very
low and b very large the agent offers its less preferred times
very slowly. If k is large or b small however the strategy that
results is very generous.

The other strategy we consider, AvailabilityDeclarer, is a
very cooperative strategy. In practice this strategy proves
to be very useful, particularly when agents are very busy.
An agent a using the AvailabilityDeclarer strategy offers all
of its available times in the first week straight away. In
subsequent negotiation rounds, it does the same for later
weeks. The details of this strategy are shown in figure 3.

5.2 Communication Protocol

In order for agents to negotiate meeting times they need
a common communication protocol. Our protocol has three
basic stages: a negotiation phase, in which agents exchange
proposals, a pending stage, in which a time proposed by all
the agents is agreed upon, and a confirmation stage, after
which the meeting is entered into the agents’ calendars. Sup-
port is also provided for bumping (canceling and reschedul-
ing) meetings. There are a number of different types of
messages that the agents exchange:

e time proposals
e requests to bump meetings
e cancellation notices for meetings

e pending requests for times — when a meeting initiator
finds an intersection in proposals, it sends a pending

request for one of the times in the intersection to each
of the participants.

e pending responses — when an attendee receives a pend-
ing request it responds with either:

— a pending acceptance and marks the meeting as
pending, or

— a pending rejection (if the time is pending for
another meeting, we require that the agent rejects
the request).

e confirmation notices — sent out by the initiator when
all attendees reply to a pending request with a pending
acceptance.

5.3 Preferences

We let the utility a user derives from a negotiation strat-
egy take into account three elements:

1. the user’s preference for the time-of-day (tod) the new
meeting is scheduled for — val(tod).

2. the increase (or decrease) in utility from moving other
meetings, i.e., for all meetings that were moved, the
agent’s utility is increased by > qval(todnew) —

Zmoved val (tOdOld) .

3. the number of negotiation rounds r required to sched-
ule the new meeting and move any old meetings.

move

The user’s utility function is parametrized by two constants
« and 8 which specify the relative importance of time-of-day
valuations and negotiation cost. Formally a user’s utility for
the outcome of a negotiation strategy is modeled as:

U(i) = a(val(tod)+ Z val(todnew)— z val(todeiq))—pBr
moved moved

In our approach, every time a meeting is scheduled, a stage
ends. We use the utility function described to evaluate the
reward the agent receives in the stage. This reward is used

follows:

fewest participants.

1. In any negotiation round offer a’s k most preferred, available, un-offered times.

2. If negotiation round > b. Apply the simple compromiser sub-strategy which works as

e If a is an attendee of the meeting, a searches for any times proposed by the initiator
that a is free for, but has not offered. If one or more such times exist offer a offers
its most preferred such time. Else, a offers the time proposed by the initiator that
contains the meeting with the fewest participants.

e If a is the initiator, a ranks all the times proposed by other agents according to the
number of agents that have proposed that time. Out of all the times with the highest
number of proposals if any of these times are available, a offers its most preferred
such time, otherwise a offers the unavailable time containing the meeting with the

3. If negotiation round is greater than some limit x the scheduling is abandoned.

Figure 2: Offer-k-b negotiator

2.

1. In the first round a offers all its available times for the current week, in second round offers
all its available times for the following week and so on, until all available times, up until
the last possible time for the meeting, have been offered.

2. If negotiation round > 5, a applies the simple compromiser sub-strategy described in Fig.

3. If negotiation round > 50 a abandons the scheduling.

Figure 3: Availability Declaring Negotiator

by the algorithm to track the effectiveness of the negotiation
strategies in each context.

5.4 Evaluation Procedure

In the experiments we will describe all the meetings have
two participants. This makes it easier to reason about why
the learning converges upon particular strategies. The initial
calendars of the agents are populated with randomly gener-
ated meetings. The agents are then given a set of meetings to
schedule. In each experiment one agent is designated as the
agent to be evaluated. This agent uses our learning approach
to negotiate the set of meetings with the other agents. Be-
fore the agent schedules these meetings however, we record
the initial state of all the agents’ calendars. This allows us to
reset all the calendars and then have the agent we are evalu-
ating schedule the meetings again with non-learning strate-
gies. In particular, we have the designated agent schedule
the meetings using a random approach. Each time a meeting
needs to be negotiated, the random approach simply selects
from amongst the agent’s strategy pool S, uniformly at ran-
dom. We also have the agent schedule the meetings using
each fixed strategy from S,. This allows us to compare the
performance of our learning approach against the random
approach and against each of the fixed strategies.

5.5 Results

Figure 4 shows the performance of our approach to learn-
ing to select negotiation strategies. We evaluated an agent
learning with our algorithm against 4 other agents also us-
ing the algorithm. The agents had the following strategies
available to them: Offer-1-20, Offer-3-20, Offer-5-20, Offer-

10-10, Offer-15-10, AvailabilityDeclarer. We used a version
of the learning algorithm with a fixed phase length of 5. The
agents had a variety of preferences, favoring different times
of the day and having different o and 3 values. As the figure
shows, the learning approach performed much better than
random strategy selection. It did not perform quite as well
as the best fixed strategy, AvailabilityDeclarer, but it did
outperform all the other fixed strategies. It was interesting
to note, that despite the differing preferences of the agents
they nonetheless converged towards using the more coop-
erative strategies. In fact, AvailabilityDeclarer was often
the highest ranked strategy by the agents for every context
(i.e., for negotiating with each other agent). Furthermore,
the learning happened relative quickly, with agents gener-
ally discovering one of the good strategies after scheduling
less than 25 meetings with a particular agent. We gound

however, that when we used phases of length n = Nsci (i-e,
phases that increased in length over time) that the algorithm
did not get enough chance to explore, even if 100 meetings
were scheduled with each agent. This lead to agents some-
times not identifying good strategies. Using a fixed phase
length however gave the algorithm a good chance of explor-
ing all the strategies early on.

We also found that our learning algorithm performed well
against fixed strategy agents. Figure 5 shows how an agent
using our approach to select between the strategies: Offer-
1-20, Offer-10-10 and Offer-20-10, performed against 4 fixed
strategy agents. This performance is not as good as we
were able to achieve using a plays-based approach in [5].
But could be improved by tuning the algorithm parameters

Performance Comparison

26000 f

24000 f

22000 F

20000 f

18000 F

16000 F

Utility Achieved
]
J

14000 F

12000 f

10000 F

8000 [_—

6000 E

Learner Random Offer-1-20 Offer-3-20 Offer-5-20 Offer-10-10 Offer-15-10 Availability

Strategy

Figure 4: Performance comparison when all agents are learning, results averaged over 10 trials

Performance Comparison

23000

22000

21000

20000

19000

18000

Utility Achieved

17000

16000

15000

14000 T

Learner Random Offer-1-20 Offer-10-10 Offer-20-10
Strategy
Figure 5: Performance comparison when other

agents use: Availability Declarer, Offer-1-5, Offer-
10-10 and Offer-20-10, results averaged over 5 trials

for the case where the environment is stationary.

We found that the learning algorithm was appropriately
sensitive to changes in the user’s utility function. In the
cases where the agent’s utility function had high « values
and low 3 values, we found that the agent would sometimes
converge to selecting one of the less cooperative strategies.
In particular, this tended to occur when the other agent
was using a fixed strategy and had opposite preferences.
This did not occur in all cases however, since sometimes it
is unnecessary e.g.. in the case where the other agent is
mostly only available at times the learning agent prefers.

6. CONCLUSION

We introduced an approach to learning to select strate-
gies for negotiation in a multiagent system, based on the
SEA and EEE algorithms in [7, 6]. Our approach effectively
handles the case where choice of strategy impacts the en-
vironment and the strategies of other agents. We showed
that our approach can be used to select good strategies in
the multiagent meeting scheduling problem. Furthermore
we found that by using this approach, in most cases the
agents learnt to cooperate, despite the fact that each agent
was aiming to maximize its user’s preferences.

7. REFERENCES

[1] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. Schapire.
Gambling in a rigged casino: the adversarial
multi-armed bandit problem. In Proceedings of the
36th Annual FOCS, 1995.

[2] P. Berry, M. Gervasio, T. Uribe, K. Myers, and
K. Nitz. A personalized calendar assistant. In In the
AAAT Spring Symposium Series, March, 2004.

[3] M. Bowling, B. Browning, and M. Veloso. Plays as
effective multiagent plans enabling opponent-adaptive
play selection. In Proceedings of International
Conference on Automated Planning and Scheduling
(ICAPS’04), 2004.

[4] E. Crawford and M. Veloso. Opportunities for learning
in multi-agent meeting scheduling. In Proceedings of
the AAAI Symposium on Artificial Multiagent
Learning, 2004.

[5] E. Crawford and M. Veloso. Learning to select
negotiation strategies in multi-agent meeting
scheduling. In Proceedings of 12th Portugese
Conference on Artificial Intelligence, Springer, LNCS,
2005.

[6] D. de Farias and N. Megiddo.
Exploration-exploitation tradeoffs for experts

[7]

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

algorithms in reactive environments. In L. K. Saul,
Y. Weiss, and L. Bottou, editors, Advances in Neural
Information Processing Systems 17, pages 409-416.
MIT Press, Cambridge, MA, 2005.

D. P. de Farias and N. Megiddo. How to combine
expert (and novice) advice when actions impact the
environment? In S. Thrun, L. Saul, and B. Schélkopf,
editors, Advances in Neural Information Processing
Systems 16. MIT Press, Cambridge, MA, 2004.

Y. Freund, R. Schapire, Y. Singer, and M. Warmuth.
Using and combining predictors that specialize. In
STOC, 1997.

L. Garrido and K. Sycara. Multi-agent meeting
scheduling: Preliminary experimental results. In
Proceedings of the First International Conference on
Multi-Agent Systems, 1995.

N. R. Jennings and A. J. Jackson. Agent based
meeting scheduling: A design and implementation.
IEFE Electronics Letters, 31(5):350-352, 1995.

N. Littlestone and M. Warmuth. The weighted
majority algorithm. In IEEE Symposium on
Foundations of Computer Science, pages 256—261,
1989.

P. J. Modi, M. Veloso, S. F. Smith, and J. Oh.
Cmradar: A personal assistant agent for calendar
management. In 6th International Workshop on
Agent-Oriented Information Systems, 2004.

V. Narayanan and N. Jennings. An adaptive bilateral
negotiation model for e-commerce settings. In 7th
International IEEE Conference on E-Commerce
Technology, 2005.

S. Sandip and D. Edmund. On the design of an
adaptive meeting scheduler. In Proc. of the Tenth
IEEE Conference on AI Applications, pages 40-46,
1994.

S. Sen and E. Durfee. A formal study of distributed
meeting scheduling. Group Decision and Negotiation,
7:265—-289, 1998.

T. Shintani, T. Ito, and K. Sycara. Multiple
negotiations among agents for a distributed meeting
scheduler. In Proceedings of the Fourth International
Conference on MultiAgent Systems, pages 435 — 436,
July 2000.

L.-K. Soh and C. Tsatsoulis. Reflective negotiating
agents for real-time multisensor target tracking. In
Int. J. Conf. On Artificial Intelligence, 2001.

S. Zhang, S. Ye, F. Makedon, and J. Ford. A hybrid
negotiation strategy mechanism in an automated
negotiation system. In EC ’04: Proceedings of the 5th
ACM conference on Electronic commerce, pages
256-257, New York, NY, USA, 2004. ACM Press.

