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Abstract 
This paper presents an algorithm for learning the underlying 
models which generate streams of observations, found in 
video data, which encode activities performed by a person 
who appears in the video. With these learned models, we 
then aim to carry out recognition in new video streams 
which display the same activities as the ones that were 
learned. Our algorithm represents the underlying models as 
regular Hidden Markov Models as the problem includes 
sequential and temporally discrete observations and uses the 
Baum Welch algorithm in learning the underlying models. 

Introduction 
Effective behavior recognition using a Camera Assisted 
Meeting Event Observer [1] in the context of an office 
meeting is a challenging problem with many potential 
benefits to be reaped. If when given a video sequence of an 
office meeting, we are able to accurately segment the video 
and recognize consistent activities of meeting attendees, 
we would then be able to augment higher level 
functionality such as recognizing behaviors and with these, 
infer which attendees are presenting agenda items and even 
gauge attendee interest levels during the meeting. 
 
Previous work done in activity recognition includes using 
optical flow [8, 12], classification hierarchies [14], other 
model-based methods [15, 16] as well as variants of 
HMMs [7] to carry out the recognition. Instances where 
regular HMMs have been used to carry out activity 
recognition include cases where the structure of the models 
are already known [6] or have been generated using 
implicit information possessed by the researcher regarding 
the problem [4, 9, 10, 11] such as the number of states.  
 
In this paper we are interested in extending earlier work 
done in [13] by learning the underlying activity models 
automatically from video data with which we can 
subsequently carry out activity recognition. We wish to 
make the learning process automatic so as to make it 
feasible in carrying out recognition on video streams 
containing a large number of activities. Generating the 
underlying models by hand in cases where there are many 
activities would be time consuming to the extent of 
rendering the process impractical. Automating the process 
also allows us to do learning on datasets which are very 

general. This has the advantage of making the process 
versatile as the learning is applicable to a wide variety of 
data and is not constrained by particular aspects of a 
specific problem. 
 
This paper is structured as follows. In the next section we 
define the problem in more detail and identify some 
specific problems that arise when generating a solution. 
We then outline the approach taken by our algorithm and 
present some results by evaluating it against a hand labeled 
control case. We finally discuss the results of the 
evaluation and some possible future improvements to the 
algorithm. 

Problem Definition 
In this paper we focus on the problem of activity 
recognition given a video stream showing a person 
engaged in a set of activities. In particular, we will first run 
face detection on the sequence to obtain the x and y 
coordinates of the person’s face in each frame. We will 
then generate a stream of movement deltas along the x and 
y coordinates by taking the difference of the detected face 
coordinates between adjacent frames. This sequence of 
movement deltas will then be the features we will use in 
carrying out the activity recognition (where each pair of x 
and y delta values is a specific emission in our observation 
space).  
 
Given the movements deltas for the video stream and a few 
training segments of the various activities the person is 
engaged in (also expressed in terms of x and y deltas), we 
wish to be able to accurately recognize the correct activity 
the person is engaged in for each image in the unlabeled 
sequence. We want to be able to do this by first learning 
the parameters of some underlying model for each of the 
activities using the training segments and subsequently 
using these learned models to carry out activity recognition 
in the image sequence. 
 
One issue that arises when trying to solve this problem is 
that we don’t want to make any assumptions on the 
segment length of each activity in the unlabeled image 
sequence and so cannot segment the sequence 
automatically. Another problem that surfaces is that we do 
not have any implicit knowledge about the activities that 



we wish to recognize and so cannot make any assumptions 
about the underlying models such as the number of states 
generating the observations. 

Approach 
Our approach involves two stages. In the first, we use the 
training data to learn the underlying models and in the 
second, we use the learned models to recognize activities 
in the unlabeled image sequence. 

Learning Underlying Models 
We start our approach to the problem by generating the 
underlying models for each activity that we will later use 
for recognition. At this point we will make the assumption 
that the underlying models can be closely approximated by 
using regular Hidden Markov Models [3] consisting of (1) 
as the problem includes sequential and temporally discrete 
observations.  
 

{ }isN = - the states in the model 

{ }ioM = - the observation space 

{ }ijaA = - the state transition matrix, where 

     ),|( 1 itjtij sSsSPa === +     Nji ≤≤ ,1  

( ){ }ki obB = - the observation probabilities, where 

     ( ) ),|( iti sSoPob ==     Ni ≤≤1  

{ }iππ = - the initial state distribution, where 
     ),( 1 ii sSP ==π     Ni ≤≤1  

(1) 

 
We will first hand label sets of training segments for each 
of the activities we are learning. The training segments for 
each activity are streams of observations showing the 
activity being performed once through and can be of 
varying lengths. We then run the Baum Welch algorithm 
[3] to learn the optimal model for each activity using the 
training segments.  
 
Before Baum Welch can be carried out, we first need to 
determine the possible space of observations that can be 
emitted by the learned model and we obtain these 
observations by running through all the training segments 
for each activity and including all observations we find. In 
the case that we find an observation in the unlabeled 
sequence that we have not encountered before, we augment 
the learned observation probability matrices by adding the 
new observation (assigning it with a small non-zero 
probability) and re-normalizing the matrices.  
 
We also need to find the number of states, Q, which our 
model will contain before we can commence Baum Welch.  
We will choose this optimum value of Q by carrying out 

N-fold cross validation. To do this, we first set the upper 
bound for Q by choosing the length of the longest training 
segment, Qu (a value of Q corresponding to the case where 
each observation in the longest training segment is emitted 
by a single state). We then iterate over all values of Q 
(from 1 to Qu) and for each, we generate the most likely 
overall model for the activity we are learning by averaging 
the parameters of the models generated for each of the 
training segments as in [2]. We then perform N-fold cross 
validation on these Qu number of models using the 
criterion of how well the model was able to discriminate 
training segments of the activity we are trying to learn, 
from the training segments of other activities. In 
performing the N-fold cross validation, we initially used 
the log likelihood of generating the held out training 
segments as the criterion for testing to find the optimal 
value for Q, but found that this performed slightly worse in 
practice. 
 
With this optimal value, we then run Baum Welch using 
different sets of randomly initialized parameters and 
choose the model with the best sum of log likelihoods of 
generating all of the activity’s training segments. The best 
performing model, aλ , will then be the one we use as the 
underlying model for the activity we were learning. 

Activity Recognition 
Once we have learned the underlying model for each 
activity, we are ready to start recognizing activities in the 
new image sequence of length L. We start by defining a 
width, w, and from the beginning, sequentially consider the 
set of windows of observations (2) which are each w 
frames wide.  
 

{ }],...,,[ 11 −++ wmmm ooo   for ( )11 +−≤≤ wLm  (2) 
We then take each window as a separate observation 
segment of length w and calculate the likelihood, (3) for 
each activity. 
 

( )awmmm oooP λ|,...,, 11 −++  (3) 
 
We do this by obtaining (4) which is similar to the 
calculation of likelihood in [3]. 
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In practice it was found that a good window width, w, to 
use was the average of the lengths of the training segments 
for all activities. 



Once we have generated the likelihoods for each activity 
using its learned model, we then proceed to generate the 
recognized activity for each frame of the image sequence, 
activity(frame_index), by assigning the middle frame in 
each sequential window with the activity that has the 
highest likelihood and so satisfies (5). 
 

⎡ ⎤( ) ( )[ ]awttta oooPwt λ|,...,,maxarg2activity 11 −++=+  (5) 
 
For frames whose index is either less than ⎡ ⎤2w  or more 
than ⎡ ⎤2wL −  we generate the likelihoods based on the 
observations of the first and last windows of the image 
sequence. At the end of the procedure we have the set of 
labels, activity(i), identifying the recognized activity of 
each frame, i, for the entire image sequence. 

Evaluation and Results 
Evaluation was carried out on an image sequence 
consisting of a person engaged in the activities shown in 
Table 1. 
 

Activity Description 
Stand Having stood up 
Standing Process of standing up 
Sit Having sat down 
Sitting Process of sitting down 
Fidget Left Process of moving slightly 

left and stopping 
Fidget Right Process of moving slightly 

right and stopping 

TABLE 1. ACTIVITIES BEING OBSERVED 

The image sequence was 87 seconds in duration, consisting 
of 1296 individual frames with the x and y coordinates of 
the face of the person engaged in the activities being 
detected in each frame. This stream of coordinates was 
then processed to generate the movement deltas along the x 
and y directions of the face between subsequent frames. 
This stream of changes in the position coordinates of the 
face throughout the image sequence was used as the stream 
of observations. Examples of frames in the image sequence 
after the face has been detected can be seen in Figure 1. 
 
 
 
 
 
 
 
 
 
 

FIGURE 1. FRAMES WITH DETECTED FACES 

The sequence of observations was first hand labeled to 
indicate the activity each frame displayed. Segments of 
consecutive observations displaying the same activity were 
then extracted from the sequence and 4 training segments 
from each activity were used to learn the underlying model 
for that activity. These 24 individual training segments 
accounted for approximately 40% of all the activity found 
in the entire sequence. Using 4 training segments to carry 
out the learning was found to be optimal given that we 
wanted to minimize the amount of human labeling 
required. Final accuracies of recognizing activities in the 
new video when varying the number of training segments 
used to learn the underlying activity models can be seen in 
Figure 2.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 2. ACCURACIES WHEN VARYING THE NUMBER OF 
TRAINING SEGMENTS 

Once the underlying models were learnt for each activity, 
they were used to compute the likelihood of a sliding 
window over the new unlabeled image sequence. The 
likelihoods obtained for 3 of the 6 activities from each 
window over a portion of the image sequence can be seen 
in Figure 3. A value of 21 was used for the window width, 
w, as this was the average length of the 24 training 
segments used to learn the underlying models. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 3.  OBTAINED LIKELIHOODS  

 



With the determined likelihoods, the image sequence was 
then assigned with recognized activities by picking the 
highest likelihood as according to the developed algorithm 
and comparisons were made against the hand labeled 
sequence. Figure 4 displays a plot of the activities assigned 
to frames which were correctly recognized by the 
developed algorithm and so were identical to the hand 
assigned activities. Figure 5 displays a plot of the activities 
assigned by the developed algorithm for the frames whose 
algorithm recognized activity differed from the hand 
assigned activity and so were deemed to be incorrect. 
Figure 6 displays a plot of the hand assigned activities for 
those frames which were deemed to be incorrect. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 4. ACTIVITIES OF CORRECTLY RECOGNIZED FRAMES 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 5. ALGORITHM ASSIGNED ACTIVITIES OF 
INCORRECTLY RECOGNIZED FRAMES 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 6. HAND ASSIGNED ACTIVITIES OF INCORRECTLY 
RECOGNIZED FRAMES 

From the comparisons, it can be seen that the majority of 
the misclassifications are of 2 types. The first type occurs 
when misclassifications are at the edges of distinct activity 
segments in which they are instead assigned the label of 
the ‘sit’ activity. The second type of misclassification 
occurs when the ‘stand’ activity is misclassified as a ‘sit’ 
activity and vice versa. The first type of misclassification 
most likely occurs because there is little activity in the 
frames between distinct activities as there is not much 
movement when transitioning from one activity to the 
other. The observation sequence of movement deltas 
during these transition periods are therefore similar to a 
sequence emitted when a person is engaged in the ‘sit’ 
activity. The second type of misclassification occurs for a 
similar reason in that the movement deltas emitted when a 
person is engaged in the ‘sit’ and ’stand’ states are similar 
as in both cases the person is not moving significantly. The 
overall accuracy of the algorithm was found to be 
approximately 76% when compared with the hand 
assigned labels. 

Conclusions and Future Work 
From the results it was found that the developed algorithm 
performed fairly well when compared to labeling the 
activities of the image sequence by hand. When a 
comparable evaluation was done in previous similar work 
[13] of which this paper is an extension, activity labeling 
accuracy was found to be 90.8% when compared to hand 
labeled ground truth. However, it should be noted that the 
algorithm presented in this paper has the advantage of 
being able to automatically learn the underlying activity 
models whereas models in the previous work were 
generated by hand. This allows the algorithm to be more 
versatile as well as making it more practical in cases where 
the image sequence contains a large number of activities to 
be recognized. 
 



One possible improvement that could be made to the 
algorithm to reduce the number of misclassifications would 
to be to learn an overall model generating the sequence of 
activity segments themselves. As an example, if such a 
model was learned for the image sequence presented in the 
evaluation section, it would consist of 6 states where each 
state would correspond to one of the activities shown (sit, 
sitting, stand, standing, fidget left and fidget right). This 
overall model would therefore generate the sequence of the 
various activities we observe in our image sequence (where 
each specific activity would itself consist of a series of 
observations) and would allow us to deduce that the 
probability of transitioning from the sitting state to the 
stand state was very low. Once we have done the initial 
activity recognition in the unlabeled sequence using the 
algorithm presented in this paper, we could see if swapping 
the labeled activities of any frames with the activities of 
the next highest likelihood would increase the likelihood of 
observing the entire activity sequence when using this 
overall model and this might improve labeling accuracy. 
 
When choosing the value of the window width, averaging 
the lengths of the training segments for all activities might 
not be optimal especially when the average lengths of 
training segments for each activity vary by large amounts. 
A possible improvement to this is to standardize the 
lengths of the initial training segments by using dynamic 
time warping [5] and then interpolating between 
observations in each segment. If all training segments 
could be normalized to a particular window width, w, 
which we could then use when carrying out activity 
recognition on the unlabeled image sequence, recognition 
accuracy might be increased. 
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