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Abstract

Tracking in essence consists of using sensory informa-
tion combined with amotion model to estimate the posi-
tion of amoving object. Tracking efficiency completely
depends on the accuracy of the motion model and of
the sensory information. For avision sensor like acam-
era, the estimation istranslated into acommand to guide
the camera where to look. In this paper, we contribute
a method to achieve efficient tracking through using
a tactic-based motion model, combined vision and in-
frared sensory information. We use a supervised learn-
ing technique to map the state being tracked to the com-
mands that |ead the camerato consistently track the ob-
ject. We present the probabilistic algorithms in detail
and present empirical results both in simulation exper-
iment and from their effective execution in a Segway
RMP rabot.

Introduction

There have been a number of investigations into the prob-
lem of tracking moving objectse.g. (Doucet, Freitas, & Gor-
don 2001). Within the robotics community, there has been
a similar interest in tracking objects from robot platforms
e.g. (Schulz, Burgrad, & Fox 2003). When tracking is per-
formed by a robot executing specific tasks acting over the
object being tracked, such as a Segway RMP soccer robot
grabbing and kicking a ball, the motion model of the ob-
ject becomes complex, and dependent on the robot’s actions
(Kwok & Fox 2004). In this paper we show how multiple
motion models can be used as afunction of the robot’stactic
using a particle-filter based tracker.

Over the years, a lot of different sensors such as vision
sensors, infrared and ultrasound sensors have been used in
the robotics community. For environments the Segway RMP
operates in, there are few sensors that can compete with
color vision for low cost, compact size, high information
volume and throughput, relatively low latency, and promis-
ing usage for object recognition (Browning, Xu, & Veloso
2004). Thus, we choose vision as the primary sensor. Re-
cently, we have equipped each robot with a infrared sensor
to reliably detect objects close to it. We introduce how this
additional information can be of use for tracking.
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In order to fully utilize the tracking information, the state
being tracked has to be trandated to the control command to
guide the camera where to look. Our previous implementa-
tion of thistrandation is completely based on the geometric
model. We recently have used a supervised learning tech-
nigue to do the mapping.

The paper isorganized asfollows. In the following section
we give abrief description of the Segway RM P soccer robot.
Next we describe the tactic-based motion modelling. We
show the multi-sensor multi-model tracking algorithm. We
then focus on our supervised learning technique on camera
control, leading to our experimental results, related work,
conclusions and future work.

Segway RMP Soccer Robot

The Segway platform is unique due to its combination
of wheel actuators and dynamic balancing. Segway RMP,
or Robot Mobility Platform, provides an extensible con-
trol platform for robotics research (Searock, Browning, &
Veloso 2004).

In our previous work, we have developed a Segway RMP
robot base capabl e of playing Segway soccer. We briefly de-
scribe the two major components of the control architecture,
the sensor and robot cognition, which are highly related to
our tactic-based motion modelling for efficient tracking.

Vision Sensor and I nfrared Sensor

The goal of vision is to provide as many valid estimates of
objects as possible. Tracking then fuses this information to
track the most interesting objects (a ball, in this paper) of
relevance to the robot. We do not discuss the localization of
therobot in the sensethat alot of soccer tasks (known astac-
ticsin later sections) can be done by the Segway RMP robot
independently of knowing where it isin the world. Also we
use global referencein this paper (global position and veloc-
ity) which means it is relative to the reference point where
the robot starts to do dead reckoning.

Theinfrared sensor is added to detect the ball whenitisin
the catchable area of the robot. Its measurement is a binary
value indicating whether or not the ball is in that area. In
most cases, thisisthe blind area of the vision sensor. There-
fore, theinfrared sensor is particularly useful when the robot
is grabbing the ball. Furthermore, it works very reliably so
that we assume its measurement “is’ the true value. This
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Figure 1: Skill state machine for atactic. Each nodeisaskill
and the edges show the transition between skills. (a) Skill
state machine for tactic Chase-ball. (b) Skill state machine
for tactic Grab-and-Kick.

assumption greatly simplifies the dependency between the
measurement of the infrared sensor and the ball state, as we
will discuss in more detail when we introduce the tracking
algorithm.

Robot Cognition

Our control architecture, called Skills-Tactics-Plays, con-
sists of Killsfor low-level control policies, Tactics for high-
level single robot behavior, and Plays for team coordination
(Browning et al. 2004). We construct the robot cognition
using this architecture and in this paper we focus on skills
and tactics that form the components for single robot intel-
ligence. Skills can be connected into a finite-state-machine
for agiven tactic. Thus, atactic can perform arange of com-
plex actions by triggering the appropriate sequence of skill
execution.

Figure 1 (8) shows the skill state machine for a simple
Chase-Ball tactic, which contains two skills, Search and
GoNearBall. The tactic starts from Search, and when the
ball is visible then transits to the skill GoNearBall. If the
ball is lost, the state machine transits back to Search. And
Figure 1 (b) shows the skill state machine for a more com-
plex Grab-and-Kick tactic. This tactic executes a sequence
of skills such as Search, GoNearBall, GrabBall, Aim, and
thefinal kick skill.

Tactic-Based Motion Modelling

In this section, we will take the ball-tracking problem as a
detailed exampl e to show the tactic-based motion modelling
method in general.

Multi-Modd System
The general parameterized state-space system is given by:

X(k) = fm(x(k - 1)’um(k - 1)7vm(k - 1)) (1)
z(k) = hm(x(k), 0 (k)) )

where f,,, and h.,, are the parameterized state transition and
measurement functions; x(k), u(k), z(k) are the state, input
and measurement vectors; v(k),n(k) are the process and
measurement noise vectors of known statistics. The model
index parameter m can take any one of N,, values, where
N,,, isthe number of unimodels.

In our Segway RMP soccer robot environment, we define
three unimodels to model the ball motion.

e Free-Ball. Theball is not moving at all or moving straight
with a constant speed decay d which depends on the envi-
ronment surface.

x(k) = Fk)x(k—1)+vi(k—1) (3
z(k) = HF)x(k) +ni(k) 4

where x(k) = (a(k),y(k), i(k),j(k)", a(k) =
(x(k),y(k)T; x(k),y(k) are the bal’s z, y position in
the global coordinate at time k; and @(k), y(k) are the
ball’s velocity in = and y direction in the global coordi-
nate. The subscript “;1” indicates the model index. F(k)
and H(k) are known matrices:

1 0 At 0

01 0 At 1 0 00
F(k) = 00 d 0 vH(k):{o 1 0 0]

00 0 d

where At isthe timeinterval between vision frames.

e Grabbed-Ball. The ball is grabbed by the robot’s catcher.
In this case, no vision is needed to track the ball, because
we assume the ball moves with the robot. Therefore the
ball has the same vel ocity as the robot (but plus the noise)
and its global position at time & is just the robot’s global
position plus their relative position, which is assumed to
be a constant, plus the noise. These two noise form the
noise vector v,. We use the same measurement model as
Equation 4.

e Kicked-Ball. The ball is kicked therefore its velocity is
equal to a predefined initial speed plus the noise. And its
position is equal to its previous position plus the noise.
These two noise form the noise vector vz. We use the
same measurement model as Equation 4.

Motion Modelling Based on the Tactic

From the previous section, we know that the model index
m determines the present unimodel being used. For our ball
tracking example, m = 1,2, 3 for the unimodel Free-Ball,
Grabbed-Ball and Kicked-Ball respectively. In our approach,
itisassumed that the model index, m(k), conditioned on the
previous tactic executed ¢(k — 1), and other useful informa-
tion v(k) (such asball state x(k — 1), infrared measurement
s(k) or the combination of two or more variables), is gov-
erned by an underlying Markov process, such that, the con-
ditioning parameter can branch at the next time-step with
probability

p(m(k) = im(k — 1) = j,t(k = 1),v(k)) = hi;  (5)

where i,j = 1,---, N,,,. Since we can draw p(m(k) =
ilm(k — 1) = j) inan N,, x N, table, we can create a
table for Equation 5 with a third axis which is defined by
the tuple (¢,, vp) as shown in Figure 3. Here the tactic ¢, is
the primary factor that determines whether m; transitsto m;
and what the probability is of the transition, while the infor-
mation v;, determines the prior condition of the transition.
Thisis why we call it tactic-based. Each layer in the graph
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Figure 2: Ball motion model. Each node is a unimodel. The
tables list the transition probability between any two uni-
models. (a) Ball motion model based on tactic Chase-ball.
(b) Ball motion model based on tactic Grab-and-Kick.

is conditioned on a particular combination of the tactic exe-
cuted and the additional information obtained.

With this tactic-based modelling method, we can obtain
the corresponding motion models for the tactics shown in
Figures 2. In Figure 2 (a), there are only two possible uni-
models: Free-Ball and Kicked-Ball. We take the information
“ball is near” as a branching parameter, which can be ob-
tained by reasoning, using ball state information and robot’s
self state information. Because it is a binary parameter, we
can use two tables to define al the transition probabilities.
Similarly, in Figure 2 (b), we use the infrared binary mea-
surement as the branching parameter. The two tableslist the
transition probabilities between any two unimodels condi-
tioned on “the infrared sensor can/cannot sense the ball” re-
spectively. In this way, we can build motion models for any
existing tactics we have designed.

Multi-Sensor Multi-Model Tracking

Following the tactic-based motion model given in the pre-
vious section , we can use a dynamic Bayesian network
(DBN) to represent the whole system in a natural and com-
pact way as shown in Figure 4. Inthis graph, the system state
isrepresented by variables (tactic ¢, infrared sensor measure-
ment s, ball state b, ball motion model index m, vision sen-
sor measurement z), where each variable takes on valuesin
some space. The variables change over time in discrete in-
tervals, so that b(k) is the ball state at time k. Furthermore,
the edges indicate dependencies between the variables. For
instance, the ball motion model index m(k) depends on
m(k—1),t(k—1),s(k) and b(k — 1), hence there are edges
coming from the latter four variablesto m (k). Note that we
use an approximation here. We assume the measurement of
the infrared sensor is aways the true value, so it does not
depend on the ball state. Under this assumption, there is no
edgefromb(k—1) to s(k), which greatly ssimplifiesthe DBN
and the sampling a gorithm as well.

We use the sequential Monte Carlo method to track the
motion model m and the ball state b. Particle filtering is a
general purpose Monte Carlo scheme for tracking in a dy-
namic system. It maintains the belief state at time k as a set

of particles p{", p{¥ -, p\"*), where each p{") isafull in-
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Figure 3: Tactic-based motion modelling, where
mi,ms, -+, M, ae n unimodels, t, is the tactic, v,
is the additional information. h; ; is the transition proba-
bility from model m, to model m; given m;, and (¢, vy).
Each layer in the graph is conditioned on a particular
combination of the tactic executed and the additional
information obtained.

theweight of particle p,(j) and N isthe number of particles.
Inour case, p\” = ("), m'"). Note that in the following of
this section, for convenience, we use the subscript ; instead
of (k) to indicate time. For example, we will use m;, instead
of m(k).

The equations below follow from the DBN.

m® ~ plmem b s tey) (6)
)~ p(oglm b ) )

Note that in Equation 7, the ball state is conditioned on the

ball motion model " sampled from Equation 6.

Then we use the ple Importance Resampling (SIR)
algorithm to update the state estimates. The sampling algo-
rithm is asfollows:

(o) m? wi? ] = SIRHDLY  mi  wi? b 2k, s te1)

01 fori=1:N;

02 draw mg) ~ p(mk\miﬁl, b;jll, Skylk—1)-
03 draw b ~ p(brm{”, 6" ).

04 set w,(:) = p(zk\bg))

05 end for _

06 Calculate total weight: w = > [{w} }1¥*,]

07 fori=1:N, )

08 Normalize: w}, = w}, /w

09 end for

10 Resample.

The inputs of the algorithm are samples drawn from
the previous posterior (bg’ll, mgll, w,(;l 1), the present vi-
sion and infrared sensory measurement z, s, and the tac-
tic tx_1. The outputs are the updated weighted samples
b, D w™). Inthe sampling algorithm, first, anew ball
motion model index, m,(:), is sampled according to Equation
6 at line 02. Then given the model index, and previous ball
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Figure4: A dynamic bayesian network for ball-tracking with
a Segway RMP robot. Filled circles represent deterministic
variables which are observable or are known as the tactic
that the robot is executing.

state, anew ball state is sampled according to Equation 7 at
line 03. The importance weight of each sample is given by
the likelihood of the vision measurement given the predicted
new ball state at line 04. Finally, each weight is normalized
and the samples are resampled. Then we can estimate the

ball state based on the mean of all the b.”.

Camera Control

The role of tracking is to construct the probability density
function (pdf) of the states being tracked. The control ele-
ment then takes this pdf and trandates it into a command to
guide the vision sensor where to look. Using the prediction
of the ball position and vel ocity, we command the camerato
point to the predicted ball position in the coming frame. This
intelligent look-ahead is particularly useful when the ball is
moving at a high speed.

In our previous work, the trandation or mapping from
states (the position relative to the robot) to commands (the
pan/tilt of the camera) is implemented with a geometric
model. The model takes in the ball’'s position relative to the
camera and the robot’s pose as inputs and gives the pan/tilt
of the camera as outputs. However, the mapping through this
model is not satisfactory enough. We propose a supervised
learning method to approximate the mapping. Theideaisto
collect samples with ball’s relative position in (z,y) trans-
ferred to polar axial (p, #), and the corresponding (pan, tilt)
of the camera. It is obvious that the camera’'s pan only de-
pends on 6, and t:lt only depends on p if we assume the
robot keeps its balance well thus we can ignore the pose of
the robot. Then we construct two feed-forward neura net-
works (NNs). Each NN has oneinput and one output. Taking
all thesamplepairs (0, pan), and {p, tilt) astraining datare-
spectively, and training with the back-propagation with mo-
mentum, we obtain the mapping from 4 to pan and from p
to talt finally.
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Figure 5: The normalized mapping for 6-pan and p-tilt. The
scattered light gray dot is the training data, the heavy dark
curve is the fitted mapping obtained from the NN, and the
gray curve shows the mapping obtained from the geometric
model.

Experimental Results

Following the previous section, we first show the compar-
ative results for the camera control. Then we design exper-
iments to estimate the ball speed decay in At (time inter-
val between vision frames) on different surfaces. We profile
the system and measurement noise. Finally we evaluate the
effectiveness of our tracking system in both simulated and
real-world tests.

Compar ative Results of Camera Control

We put the ball on different positionsin front the robot, and
command the camera to tune its pan/tilt until the ball isvis-
ible and located in the center of the frame. Then we record
(p(k), 0(k)), and (pan(k),tilt(k)) a time k as a training
sample. Inasimilar way, we collect enough samplesto cover
the visible positionsin front of the robot.

Comparatively, we apply the geometric model on these
samples and get the corresponding pan/tilt. In Figure 5 (a)
and (b), we show the normalized mapping results for 6-pan
and p-tilt. In both plots, the scattered light gray dots rep-
resent the training data, the heavy dark curve is the fitted
mapping obtained from the NN, and the gray curve shows
the mapping obtained from the geometric model. We can see
that the mapping of the geometric model deviates from the
ideal one at both ends. Freezing the weights of the NNs, we
further do online mapping test to compare the performance
of geometric model and the NNs. The results show that in
terms of the MSE of pan/tilt, the NN achieves 0.0010 rad?
and 0.0006 rad® respectively, while the geometric model
gives 0.0025 rad? and 0.0014 rad? respectively. Apparently
the NN approximates the real mapping function better.

Ball Motion and M easurement Noise Profiling

From previous work we know the initial speed and accuracy
of the ball velocity after a kick motion (Searock, Browning,
& Veloso 2004). Here our goal is to estimate the ball speed
decay d. We put the ball on the top of aramp and let it roll
off the ramp with initial speed vy = +/2gh without taking
the friction on the surface of the ramp into account, where
g is the gravity and h is the height of the ramp. We record



the distance the ball travelled (L) from the position the ball
rolls off the ramp to the position it stops. Obviously, the ball
speed decay can be approximated asd = 1 — % where
At =~ 0.033 sec. Following the test result, we use d = 0.99
for the cement surface. From the test, we note that the faster
the ball’s speed is, the smaller the system noise, hence the
more the ball’s trgjectory forms a straight line. We therefore
model the system noise to be inverse proportional to the ball
speed when the motion model is Free-Ball.

In order to profile the measurement noise, we put the ball
on a series of known positions, read the measurement from
vision sensor, and then determine the error in that measure-
ment. From the results, we know that the nearer the ball, the
smaller the observation noise. Therefore we choose to ap-
proximate the error distribution as different Gaussians based
on the distance from the robot to the ball.

Simulation Experiments

Because it is difficult to know the ground truth of the ball’s
position and velocity in the real robot test, we do the simu-
lation experiments to evaluate the precision of tracking.
Experiments are done following the Chase-Ball tactic
(Figure 1 (a)). Noises are simulated according to the model
profiled in the previous section. When the ball is near the
robot and its speed is slower than 0.2 m/sec, it will be kicked
again with initial speed (0.4, 0) m/sec. We then compare the
performance of the tracker with unimodel Free-Ball and the
tracker with tactic-based multi-model in Figure 2 (a). Af-
ter 50 runs, the results show that in terms of the average
RMS error of position estimation, the former is 0.0055 m
while the latter is 0.0027 m. And in terms of the average
RMS error of velocity estimation, the former is 0.05 m/sec
while the latter is 0.0052 m/sec. Obviously, the multi-model
scheme performs much better than the unimodel especialy
in terms of velocity estimation. Because in the tactic-based
motion model, when the ball is near the robot and has a slow
speed, most particles evolving using the transition model
determined by the tactic ChaseBall will change its motion

model mg) from Free-Ball to Kicked-Ball, and a velocity
will be added to the ball accordingly. In Figure 6, we com-
pare the speed estimation of each tracker. The dark cross
represents the true value of the ball speed, and the gray cir-
cleisthe estimated value. We note that the speed estimation
in Figure 6 (b) tracks the true speed very well. Each time
the speed jumps (the ball is kicked), the estimation follows
it perfectly. While in Figure 6 (a), following the unimodel
Free-Ball, the speed estimation keeps decaying and can not
track the dynamic character of ball speed.

Test on the Real Robot

In the real-world test, we do experiments on the Segway
RMP soccer robot executing the tactic Grab-and-Kick. In
all runs, the robot starts with the skill Search. When it finds
the ball, the ball will be kicked directly to the robot. Then
the robot grabs the ball after the ball isin the catchable area
and is detected by the infrared sensor. Each run ends with
the skill Kick. And two seconds later after the kick if the
robot can till see the ball, we count this run as success-
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Figure 6: Chase-Ball speed estimation. (a) unimodel track-
ing. (b) tactic-based multi-model tracking. In both graph, the
dark crosses represent the true value of the ball speed, and
the gray circles are the speed estimation. We note that the
speed estimation in (b) tracks the true speed very well.

ful. Anytime the robot begins executing the skill Search a
second time, we count that run as fail. That is to say, we
only permit one searching which is at the beginning of each
run, after that, the robot should consistently keep track of
the ball. Note that in the Grab-and-Kick tactic, the robot is
commanded to search the ball if the ball is not visible in
t = 0.5 sec. In the experiments over 15 runs, the tracker
with a unimodel fails 93.3% of the total. While the Grab-
and-Kick based multi-model tracker only lost the ball 20%
of the total.

Figure 7 shows how the multi-model tracker beats the uni-
model tracker. In both plots, the thick line (actually the gray
circle) indicateswhether the ball is detectable by theinfrared
sensor. Because in each run, the ball is moving towards the
robot, then it is kicked away by the robot, the infrared sen-
sor always outputs O before the robot grabs the ball and after
the robot kicks the ball. It outputs 1 when the robot is grab-
bing the ball and aiming at the target. The measurements of
the infrared sensor divide the total area into three parts, A,
B, and C' as shown in the figure. The thin line (actually the
dark dot) indicates whether the ball is visible through vision
sensor. The light gray triangle indicates the speed estima-
tion of the tracker. The most interesting thing happens at the
time between B and C when the robot kicksthe ball. In area
C; of (a), the ball is visible in some few frames and is fi-
nally lost due to the underestimation of the ball speed. In
area C,, of (b), the bal is visible consistently thanks to the
correct estimation of the ball speed as soon as the infrared
sensor outputs 0. This change of infrared sensor measure-
ment triggers the motion model of most particles transiting
from Grabbed-Ball to Kicked-Ball then to Free-Ball, which
models exactly what is going on in the real world.

Related Wor k

Tracking moving objects using a Kalman filter is the op-
tional solution if the system follows aunimodel, f and A in
Equation 1 and 2 are known linear functions and the noise
v and n are Gaussians (Arulampalam et al. 2002). Multi-
ple model Kalman filters such as Interacting Multiple Model
(IMM) are known to be superior to the single Kalman filter
when the tracked object is maneuvering (Bar-Shalom, Li, &
Kirubarajan 2001). For nonlinear systems or systems with
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Figure 7: Grab-and-Kick speed estimation (a) unimodel
tracking. (b) tactic-based multi-model tracking. The thick
line (actualy the gray circle) indicates whether the ball is
sensable by the infrared sensor. The thin line (actually the
dark dot) indicates whether the ball is visible through vision
sensor. The light gray triangle indicates the speed estima-
tion of the tracker. The measurements of the infrared sensor
divide the total areainto three parts, A, B, and C.

non-Gaussian noises, afurther approximation is introduced,
but the posterior densities are therefore only locally accurate
and do not reflect the actual system densities.

Since the particle filter is not restricted to Gaussian den-
sities, a multi-model particle filter is introduced. However,
this approach assumes that the model index, m, is gov-
erned by a Markov process such that the conditioning pa-
rameter can branch at the next time-step with probability
p(m(k) =ilm(k—1) =j) = h; ; whered,j =1,---, N,.
But the uncertainties in our object tracking problem do not
have such a property due to the interactions between the
robot and the tracked object. In this motivation, we fur-
ther introduce the tactic-based motion modelling method as
shown in Equation 5.

In (Kwok & Fox 2004), an approach were proposed for
tracking a moving target using Rao-Blackwellised particle
filter. Such filters represent posteriors over the target loca-
tion by amixture of Kalman filters, where each filter is con-
ditioned on the discrete states of a particle filter. In their ex-
periments, the discrete states are the non-linear motion of the
observing platform and the different motion models for the
target. But they use afixed transition model between differ-
ent unimodels. This is where their work essentially differs
from ours. Our transition model is dependent on the tactic
that the robot is executing and the additional information
that matters. Thistactic-based motion modelling can be flex-
ibly integrated into our existing skills-tactics-plays architec-
ture.

Conclusions and Future Work

Motivated by the interactions between the observing plat-
form and the tracked object, we contribute a method to
achieve efficient tracking through using a tactic-based mo-
tion model and combined vision and infrared sensory infor-
mation. The tactic-based motion modelling method givesthe

robot a more exact task-specific motion model when exe-
cuting different tactics over the tracked object. And the in-
frared sensor provides useful information of the tracked ob-
ject when the object moves into the blind area of the vision
sensor. Then we represent the system in a compact dynamic
bayesian network and use particle filter to keep track of the
motion model and object state through sampling. We also
give a supervised learning technique to learn the mapping
from state to commands that |ead the camerato track the ob-
ject consistently. The empirical results from the simulated
and the real experiments show the efficiency of the tactic-
based multi-model tracking over unimodel tracking.

Future work will include extending the tactic-based mo-
tion modelling to the play-level, and tracking the state of
multi-robots. The first step is to model the interactions be-
tween the teammate, self and the ball, which then become a
tactic-dependent multi-target tracking problem.
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