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Abstract

Meetings are a very important part of every days life for professionals working in
universities, companies or governmental institutions. In fact, it is estimated that a mid-
level manager or professional spends around35% of his/her time in meetings. We have
designed a physical awareness system called CAMEO (Camera Assisted Meeting Event
Observer), a hardware/software component to record and monitor people’s activities
in meetings.

CAMEO captures the audio and a high resolution omnidirectional view of the meet-
ing by stitching images coming from almost concentric cameras. Besides recording
capabilities, CAMEO automatically detects people and automatically learns a person-
specific facial appearance model (PSFAM) for each of the participants. The PSFAMs
allow more robust, reliable and faster tracking and identification. Several novelties in
the video capturing device, multiple person identification and tracking are proposed.
The effectiveness and robustness of the proposed system is demonstrated over several
real time experiments and a large data set of videos.
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1 Introduction

Meetings are an integral part of business life. In fact, approximately 11 million business
meetings are held every day in the United States [2, 17]. A mid-level manager or
professional spends around 35% of his time in meetings, and this percentage increases
as a person advances up the company ladder [17]. On the other hand, meetings are not
always as productive as expected. Among professionals who meet on a regular basis,
96% miss all or a part of a meeting, 73% have brought other work to the meeting, 39%
have dozed during a meeting, and many of those attending a meeting need to clarify
miscommunications. Having systems that help to review and share meetings can help
to improve these undesirable situations. In fact, many companies now use devices to
transcribe events (such as who spoke and what was discussed) into a digital form that
can be searched and analyzed. This could be a very labor intensive and a tedious task
for a human to do. Using new technologies such as LCD projectors, optical character
recognition, voice-to-text converters, cameras or interactive whiteboards will allow for
the sharing of data and the automatically saving of information. This is a preliminary
step toward implementing collaborative technology in the meeting room.

In this paper we develop CAMEO (Camera Assistant Meeting Event Observer) a
hardware/software system that is able to record and process audio-visual information as
a first step towards understanding human interactions in meetings. CAMEO is part of
a larger effort to develop an enduring personalized cognitive assistant that is capable of
helping humans handle the many daily business or personal events that they engage in.
This larger project, CALO (Cognitive Agent that Learns and Organizes) aims to build
a personalized computational resource that will be able to handle routine tasks/events,
anticipate predictable user needs and prepare for them appropriately, and assist the
user in handling unexpected events. A CAMEO device is brought into a meeting and
simply placed in the center of the room without requiring special manual calibration or
instrumented rooms. Apart from omnidirectional audio-video recording capabilities,
CAMEO will be able to determine (real time) who is in the meeting, the placement
of each of the participants, and when some events occur. This is a first step towards
understanding human activity in meetings. Figure 1 shows the hardware and a block
diagram of the software capabilities of CAMEO.

The CAMEO hardware is composed of 4 daisy-chained web-cameras and an om-
nidirectional microphone, see fig. 1. There are two main benefits in the hardware
design, a 360 degrees of field of view and a portable device, so there is no need for
instrumented rooms to record meetings. A mosaic is constructed by stitching the im-
ages coming from the four cameras. Once the mosaic is built, CAMEO is able to track
and identify multiple people in the omnidirectional video in real time. The tracker and
recognition systems are effective and robust because they are based on a set of learned
person-specific facial appearance models (PSFAM). The PSFAM can be learned on-
line or off-line, and the model is usually adaptive to compensate for environmental
changes. In this paper several novelties in the hardware design, tracking and recogni-
tion are introduced.
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Figure 1: CAMEO a) Hardware b) Software

2 An omnidirectional view of the meeting

Meeting understanding has been an active research topic during the last few years and
several groups have proposed intelligent rooms [15, 18], concentric cameras [3, 6, 29]
and all sort of devices [21] to record human activity in meetings. Instead of having
instrumented meeting rooms, CAMEO is intended to be a portable and self-calibrating
device. In order to have a compact representation of the meeting, CAMEO records
a panoramic view of the meeting room. Many techniques have been researched to
construct panoramic images from real-world scenes. Mirrored pyramids and parabolic
mirrors [23] could be used to capture the images directly; however, in order to capture
high resolution images expensive equipment is needed and several defocusing prob-
lems may result in low quality video. Similar to previous work [3, 6, 29], CAMEO will
integrate images coming from almost concentric images into a single mosaic. In this
section the software/hardware details for constructing the camera device are explained.
Preliminary results have been presented at [25].

2.1 Real-time mosaicing

CAMEO is composed of four inexpensive web cameras that have been daisy-chained
and just one firewire cable is necessary to transmit the signal and power, similar to
[3, 6]. In order to reduce the number of cameras, wide angle lenses with 1.7mm of fo-
cal length and approximately 110o of field of view are used. This guarantees a slightly
overlap between the field of view of two cameras (further than 30 cm). A small focal
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Figure 2: a) Original Image b) Corrected image. Straight lines in the world are map to
straight lines in the image.

length yields large depth of field and thus all objects are in focus from a distance of few
centimeters to infinity, eliminating the need for autofocus. However, these lenses intro-
duce big radial and tangential distortion in the images. The first step towards stitching
the images is to compute an estimate of the intrinsic camera parameters, computed with
a standard calibration toolbox (http : //www.vision.caltech.edu/bouguetj/calibk doc/).
The intrinsic parameters include effective focal length fx, fy, the image center or prin-
cipal point xo, yo, and the ones to correct the radial/tangential distortion k1, k2, k3, k4

1.
The projection model, taking into account the distortion model, has the following ex-
pression [10]:

xn = X
Z yn = Y

Z r2 = x2
n + y2

n

up = (1 + k1r
2 + k2r

4)xn + 2k3xnyn + k4(r2 + 2x2
n)

vp = (1 + k1r
2 + k2r

4)yn + 2k3xnyn + k4(r2 + 2y2
n)

xp = fxup + xo yp = fyvp + yo

where X, Y, Z are the 3D coordinates and xp, yp are the pixels positions in the image.
Figure (2.a) shows the image before and after (2.b) correcting for radial/tangential dis-
tortion. As we can see in figure (2.b) after the radial/tangential distortion is corrected,
straight lines into the world will be mapped to straight lines into the image.

Once the radial/tangential distortions have been corrected, several techniques exist
for obtaining mosaic images coming from several cameras [19, 3, 6, 30, 20]. However,
most of them assume that the camera is panning or that only rotation exists between
cameras’ optical center. When the motion between the optical centers of the cameras is
just rotational, it is easy to show that a homography can relate the geometry of the im-
ages [9]. In our case, the cameras do not share a common center of projection (see fig.
1), and parallax effects occur due to the translational component between the optical
centers of the cameras. Having translational motion between cameras’ optical cen-
ters, the geometric transformation that relates two images becomes depth dependent

1Bold capital letters denote a matrix D, bold lower-case letters a column vector d. dj represents the
j column of the matrix D. dij denotes the scalar in the row i and column j of the matrix D and the
scalar i-th element of a column vector dj . All non-bold letters will represent variables of scalar nature.
diag is an operator which transforms a vector to a diagonal matrix. Ik ∈ �k×k is the identity matrix.
tr(A) =

�
i aii is the trace of the matrix A. ||A||F = tr(AT A) = tr(AAT ) designates the Frobenious

norm of a matrix. Nd(x; µ,Σ) indicates a d-dimensional Gaussian on the variable x with mean µ and
covariance Σ. � Hadamard (point wise) product.
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Figure 3: a) Original images. b) Mosaic image.

(the parallax effect becomes more evident at shorter distances). One possible solu-
tion will involve computing depth for each point [19]; however, this approach will be
very expensive for real-time applications. With the topology of the camera, if the ob-
jects are approximately 2 m far away from the camera, parallax effects can be ignored.
To minimize this effect and because of easy construction, cylindrical panoramas are
commonly used [3, 29, 30]. Each image is corrected and warped into cylindrical co-
ordinates (θ = atan(X

Z ), v = Y√
(X2+Z2)

. In order to speed up the process, a look up

table (LUT) is constructed to correct the radial/tangential distortion and the cylindrical
mapping. Once the images coming from the cameras are corrected and warped into
cylindrical coordinates, constructing the mosaic is a translational estimation problem
(assuming almost concentric cameras). CAMEO automatically searches for the trans-
lation that produces the best match between adjacent cameras. A constrained (by the
epipolar geometry between the cameras) normalized template matching is computed
to search for the optimal translation. Despite the possibility of using gradient descent
type of methods [30], parallax effects and the large change in viewpoint make them too
sensitive to local minima. Finally, a weighted (more weight to the image that is closer)
blending procedure is used to merge both images. Figure 3.a shows four original im-
ages and how they are merged into the mosaic one 3.b.

2.2 Geometric and photometric autocalibration

When CAMEO starts, it loads all the camera parameters, LUTs, and begins the geomet-
ric/photometric calibration process. Because the mosaic is constructed from different
cameras, all of them should be similarly color-calibrated to ensure that the cameras
look alike. In the beginning one camera is taken as the reference camera and the chro-
matic characteristics are recorded and propagated to the other cameras (no automatic
settings are used). In order to adjust different lighting and CCD properties, an affine
transformation is computed using overlapping regions. That is, given a set of matching
points between two images, an affine transformation (A, b), which minimizes the error
among matched points minA,b

∑
i ||x1 −Ax2 + b||, is computed. Finally, the camera

drivers are used to change the hue and saturation values of each camera and correct the
color in a hardware efficient way.
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A useful feature of CAMEO is to know the relative position of a person/pattern
with respect to one of the cameras. This will allow us to calibrate between several
CAMEO’s, to estimate the depth of a person, and to know the position with respect to
other devices. Having the internal camera parameters, and assuming a planar calibra-
tion pattern, it is relatively simple to estimate the relative orientation with respect to the
camera (e.g [35]). In order to simplify the scenario, it is assumed that the planar pattern
has just two rotational degrees of freedom, one angle θ, which describes the in-plane
rotation, and γ for the tilt. The pattern is composed of 3 colors (see fig. 4.a). CAMEO
automatically detects it with a high resolution image using normalized template match-
ing at different scales. Without loss of generality, it is assumed that the left corner of
the pattern is the world coordinate system and the axes are aligned with the pattern (the
pattern is in the plane Z=0). Under these assumptions, recovering the rotational angles
and translational components θ, γ, tx, ty, tz , is achieved by minimizing:

E(tx, ty, tz, θ, γ) =
∑N

i=1((x
i
p yi

p)
T − P

(
R2(θ)R1(γ)(Xi, Yi, Zi)T + (tx ty tz)T )

)2

=
∑N

i=1(x
i
n − Xicos(θ)cos(γ)−Yisin(θ)+tx

Xisin(γ)+tz
)2

+(yi
n − Xi sin(θ)cos(γ)+Yicos(θ)+ty

Xisin(γ)+tz
)2 (1)

where (xi
p, yi

p) are the pixel coordinates of the pattern for the point i and (X i, Yi, Zi)
are the 3D coordinates in the global reference frame (the pattern one). R 1(γ) =
 cos(γ) 0 −sin(γ)

0 1 0
sin(γ) 0 cos(γ)


, R2(θ) =


 cos(θ) −sin(θ) 0

sin(θ) cos(θ) 0
0 0 1


, and P is a non-

linear projection operator that takes into account the internal camera parameters (radial
distortion, focal length, principal point). Optimizing eq. 1 involves a non-linear opti-
mization and may be difficult to solve due to multiple local minima. Rather than apply-
ing gradient descent type of methods starting from different initial points, a multigrid
search is followed. There are two sources of non-linearity in eq. 1, one due to the an-
gles and the other due to the quotient (easily solved by multiplying). The angle space
is sampled for θ ∈ [0..2π] and γ ∈ [0..2π], and for each value of θ, γ the following
linear system of equations is solved:


 tx

ty
tz


 =




−1 0 x1
n

· · ·
−1 0 xN

n

0 −1 y1
n

· · ·
0 −1 yN

n




† 


X1cos(θ)cos(γ) − Y1sin(θ) − x1
n(X1sin(γ))

· · ·
XNcos(θ)cos(γ) − YNsin(θ) − xN

n (XNsin(γ))
X1sin(θ)cos(γ) + Y1cos(θ) − y1

n(X1sin(γ))
· · ·

XNsin(θ)cos(γ) + YNcos(θ) − yN
n (XNsin(γ))




(2)

† indicates the pseudo-inverse, which is computed just once. In order to make the
search efficient, first the minimum of a 10o grid is searched and later one of 1o is
computed. Figure 4.b shows the value of the energy function for several values of θ
and γ. In this particular case, there are two valid solutions with the same energy value
(due to planar ambiguity). The parameters which give positive depth are chosen.
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Figure 4: a) Calibration pattern. b) Surface error.

2.3 Software specifications

In order to ensure software stability, the software is divided into 4 main modules:

- Video acquisition: Acquires raw data from four cameras using Microsoft Direct
Show. This module supports different resolutions and different frame rates.

- Mosaic generation: Builds a mosaic from 4 camera streams. This module is op-
timized using IPP Intel libraries, and has two sub-modules: a. Correction of radial dis-
tortion and cylindrical mapping: LUT and interpolation; b. Mosaic calibration/tuning:
Computes the translational error between overlapping areas of adjacent cameras, keeps
track of the overlapping error and recomputes the translation if needed.

- Recording system (optional): Microsoft Windows Media 9 Series (MWM) is
used to record the output of the acquired mosaic. MWM provides a set of features that
are very convenient such as: audio and video synchronization, real time compression,
streaming, and the possibility of adding metadata in the stream.

- Processing module: Uses the remaining CPU processing time to detect, track
and recognize faces. To make this possible, we first need to determine the amount of
CPU time remaining for processing each image. Then we assign quotes of this time to
each sub-module to ensure real-time processing. If the system runs out of time, it then
jumps to the next task or module. Most of the routines use OpenCV functions, that are
highly optimized for INTEL processors.

The bandwidth of the Fire-Wire bus is up to 400 Mbps and to reduce the amount of
data transmitted CAMEO acquires the images using YUV format. However, there are
some limitations due to the Fire-Wire bandwidth, and there exists a trade-off between
resolution and the frame rate. Table 2.3 shows the bandwidth and CPU times required
for each configuration to build the mosaic. Finally, each meeting takes about 0.5G/hour
to store (high quality video), most of it the video signal (also the compression is pro-
portional to the number of people/movement).
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Cameras Resolution Frame rate Bandwidth CPU time
4 320x240 30 221 Mbps 50%
4 320x240 15 111 Mbps 25%
4 320x240 7.5 56 Mbps 15%
4 640x480 7.5 277 Mbps 45%
4 640x480 3.75 138 Mbps 25%

Table 1: Measured with Pentium-M CPU at 1.7 Ghz and 1 Gbyte of RAM.

3 Multiple People Tracking

Real time robust localization and tracking of faces from the omnidirectional video is a
key aspect of CAMEO towards understanding human activity. Knowing people’s posi-
tion is helpful to extract high level information in order to infer activity [24]. However,
tracking multiple people is a challenging problem due to significant occlusion caused
by interaction among people, deep changes in pose, and fast motions. Moreover, in the
CAMEO scenario low quality video, low contrast and varying illumination conditions
difficult the tracking process. This section describes the use of person-specific facial
appearance models (PSFAM) for tracking multiple people.

3.1 Detecting regions of interest.

In order to detect/track people efficiently, a first step is to detect regions where poten-
tially there can be moving objects. The regions of interest (ROI) are computed using a
simple but effective background subtraction algorithm.

When CAMEO starts, it computes an estimate of the background by averaging
the incoming mosaic images during several seconds (no camera motion). Once an
estimation of the background is given, a multi-resolution version of the mosaic image
from the estimated background is subtracted; this will provide a first estimate of the
ROI. The difference is thresholded and an opening (morphological operator) with an
structural element of 3 × 3 is used to eliminate spurious noise. At this point, a binary
image with blobs is created. The blobs correspond to compact regions with graylevel
changes, and the previously detected/tracked faces’ area is added to enforce temporal
consistency (in case the person does not move the head). In order to label the blobs, the
image is projected into its x and y coordinates. From segmenting the x-projection, it is
easy to estimate the y component and build a bounding box around the area of interest.
Finally, the background regions that do not belong to the ROI are used to update the
estimation of the background. Figure 5 illustrates the ROI algorithm.

3.2 Learning person-specific facial appearance models (PSFAM)

Since most of the people remain seated during the meeting, we have focused our efforts
on developing head trackers that are able to track the head from profile to profile. On
the other hand, most of the people who assist at the meetings are the same. Taking
this fact into account, CAMEO will automatically learn (off-line and on-line) Person-
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Figure 5: Algorithm to detect regions of interest.

Specific Facial Appearance Models (PSFAM), which will allow more robust and faster
tracking. Given a new video, CAMEO will automatically detect the people and identify
them (see next section). If the person is recognized, CAMEO will use his/her person-
specific facial appearance model to track his/her head. The PSFAM will be adapted
on-line to take into account changes in appearance and environmental conditions. If
the person is not recognized, CAMEO will build the PSFAM on-line.

3.2.1 Off-line learning

In order to construct a statistical model of facial-appearance variation of a person, a
person sits in front of a CAMEO’s camera and he/she performs different facial ex-
pressions under several pose/illumination changes (approximately 1 minute of video
is recorded). After the ROI’s are computed, the Scheniderman face detector [26, 27]
is used to detect frontal/profile faces. Figure (8.a) shows some original frontal faces
gathered (60 × 60 pixels); approximately around 800 frontal faces are gathered.

The face detector occasionally gives some false positives. In order to filter these
potential outliers, a simple scheme based on color [33] is used. Using the normalized
r, g components (r = R

R+G+B , g = G
R+G+B ), a Gaussian distribution N(µ,Σ) is

fitted to a set of training faces, where µ ∈ �2×1 and Σ ∈ �2×2 are the mean and
covariance that approximate the skin color. Given a new face, CAMEO computes the
percentage of skin color pixels inside the patch containing the face, and the percentage
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Figure 6: a) Set of templates. b) First eigenbasis

of skin color pixels in the surrounding area. In an ideal face, the ratio of skin pixels in
the area containing the face versus the percentage of skin pixels in the surrounding area
should be big. If this ratio is below a certain threshold the sample face is discarded.

A possible way of constructing a PSFAM will consist of selecting several proto-
types (different scales and profiles). To track, a normalized template matching would
be computed for each prototype and the one with minimum error would be selected.
However, as the number of templates increases, it becomes impractical to find the best
match with respect to each of the templates, and in our scenario a more efficient and
robust matching approach is necessary. To exploit the spatial redundancy existing be-
tween the templates, to filter noisy data and to average clutter from the background, a
subspace Bi for subject i is computed by means of the Principal Component Analysis
(PCA) [8]. In order to get a better estimate of the subspace, the images have to be per-
fectly geometrically aligned with respect to the subspace; parameterized component
analysis [4] is used to achieve geometric (translation, rotation, scale) invariant learn-
ing. After the data have been registered with respect to the subspace, which preserves
85% of the energy, the data is clustered in approximately 150 prototypes in order to
avoid the principal components being biased towards specific facial expressions/poses
that are more common. Furthermore, if the number of profile faces is lower than the
frontal ones, some samples are duplicated in order to give the same weight to all the
facial expressions. In figure 6.(b), the set of eigentemplates at one scale are displayed
after applying parameterized component analysis. Usually three eigentemplates are
constructed at 3 different scales by subsampling the training data.

3.2.2 On-line learning and adaptation

If CAMEO does not recognize the person during execution time, it will gather faces
coming from the face detector in order to build a PSFAM. With a minimum of 8 faces,
CAMEO will start building the PSFAM recursively. By recursively adapting the PS-
FAM, the tracker will be much more robust to illumination and appearance changes.
The core of the algorithm is based on the recursive SVD [1, 22].

Let D ∈ �d×n be a matrix with some initial data (e.g. 8 images) and its SVD
represented by D = UΣVT , where k = min{d, n}, U ∈ �d×k and V ∈ �k×n

are an orthogonal basis that spans the column and row space of D. Σ ∈ � k×k is a
diagonal matrix containing the singular values. If a new set of samples P are available,
computing the SVD of [D P] can be done recursively [1]. P can be expressed as
P = (1 − UUT + UUT )P = P − UUT P + UUT P = E + UL, where L =
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UT P and E = (1 − UUT )P. Using the QR factorization, E = JK, the new data
P can be factorized into a reconstruction with the previous basis U and its orthogonal
complement. The previous equation can be rearranged into:

[
UΣVT P

]
=

[
UΣ P

] [
V 0
0 I

]T

=
[

U J
] [

Σ L
0 K

] [
V 0
0 I

]T

(3)

Eq. 3 has much of the desired factorization, except that the central matrix is not
diagonal. However, it can be efficiently factorized with the SVD. In the particular case
that P is just a vector, the previous expression can simplified, see [1] for the details.

Registration of new images with respect to the model is a key aspect to ensure
compactness and achieve good generalization. In the off-line version, parameterized
component analysis [4] has been used; however, it can be computationally expensive to
run on real time. Instead, the gathered data is registered (just translation) with respect
to a set of clusters using normalized correlation. Later, the clusters are recomputed and
the procedure is repeated until convergence. This procedure is not as optimal as [4],
but it is suitable for fast on-line registration. In order to select the number of clusters,
a measure of the compactness of the data after the registration step is applied. The
compactness is measured by computing the energy of a set of bases when the SVD
is performed. Table 3.2.2 shows results for different number of clusters; the first row
indicates the number of bases, and the second row and beyond the percentage of energy
preserved. We compare the percentage of energy rather than the total reconstruction
error, since due to interpolation errors the energy of two sets with different registration
parameters is not necessarily equal. As it can be seen from the results, registering with

Number of basis 1 2 3 4 5 6
1 cluster(mean) 0.3 0.44 0.45 0.48 0.6

2 clusters 0.31 0.32 0.39 0.59 0.63
4 clusters 0.31 0.32 0.39 0.59 0.63
6 clusters 0.31 0.32 0.39 0.59 0.63
8 clusters 0.31 0.32 0.39 0.59 0.63

Table 2: Energy vs. number of basis for different number of clusters.

respect to two clusters usually results in a good trade-off between speed and quality of
the clustering.

3.3 Efficient subspace tracking

Once the person-specific subspace B is estimated, the problem becomes how to track
the face, that is, finding the scale, position and appearance coefficients in the image
that best match the model. Given a subspace B and an image I, CAMEO has to find
the position (u, v) in the image I such that the distance from the subspace is minimum.
At a given scale this implies minimizing:

E(u, v, c) = min
u,v,c

||I(x + u,y + v) − Bc||22 (4)
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Figure 7: A subspace is constructed with the 3 program chairs of ICRA-2005. One of
the program chairs’ picture is included next to the Sagrada Familia in Barcelona. After
computing the distance from the subspace, the minimum is located where the face is.

where x,y are the spatial coordinates of a rectangle of the same size of the sub-
space images, and u, v are the position of the head to search for. An obvious ap-
proach is to compute the reconstruction error for each position (u, v); however, this
approach is not efficient either in space or time. Key to developing efficient meth-
ods is to observe that the error at a particular position (u, v) can be computed as
E(c, u, v) = ||I(x + u,y + v) − Bc||22 = ||I(x + u,y + v)||22 − cT c [16], where
c = BT I(x+u,y+v). Computing the coefficients c is equivalent to correlating the im-
age with each basis of the subspace and stacking all the values for each pixel. For large
regions, this correlation is performed very efficiently in the frequency domain with the
Fast Fourier Transform (FFT) (i.e. c1 = bT

1 I = IFFT (FFT (b1) � FFT (I))), and
for small regions the highly highly optimized correlation from OpenCV is used. Fi-
nally, the local energy term, ||I(x + u,y + v)||22, is computed very efficiently using the
integral image [14]. Figure 7 shows an illustration of the subspace correlation method.

3.4 Solving for correspondence

The tracker may get lost either due to abrupt appearance changes or when people
cross/occlude one another. Having PSFAM greatly simplifies the data association prob-
lem. In the on-line version of the tracker, CAMEO waits until it finds a face by means
of the face detection [26, 27] and tracks it using normalized correlation. Later, the face
recognition is used to know the identity of the person and acquire his/her PSFAM.

A more interesting situation occurs when learning PSFAM from long video se-

11



quences. That is, given a video sequence, CAMEO will track and gather all the faces
as training data for face recognition. In long videos (e.g. 1 hour), it is likely that the
trackers eventually get lost. In this section, we introduce a simple but effective manner
of solving the correspondence between several sets of tracked faces.

The correspondence problem is posed as a clustering one. In particular, we make
use of recent advances in spectral graph methods [34]. Given several sets of images
tracked over different periods of time, an affinity matrix is computed as follows. First
the principal components for each set of images (many containing the same person at
different time instances) is computed. Given 2 sets of images and its principal compo-
nents B1,B2, several distance measures between sets of data are explored: principal
angles [8], average cosine angles [12] and the average reconstruction error.

The principal angle [8] is the minimum angle between the columns of B 1,B2 and
can be used as a measure of distance between two subspaces. However, this measure
can be very sensitive to outliers. The average cosine angles [12] is a more robust
measure and it is computed as follows; one of the subspaces is considered to be ”fixed”
and we find the best-matching set of orthogonal axes in the second subspace. It can be
shown that this is equivalent to compute [12]:

S = (B1)T B2(B2)T B1 0 < d(B1,B2) = tr(S) =
k∑

i=1

k∑
j=1

cos2(θij) =
∑

i

λi < k (5)

However, the measure which performs the best in our experiments was an average of
the reconstruction error:

1/n1||D1 − B2(B2)T D1||F + 1/n2||D2 − B1(B1)T D2||F (6)

where D1 ∈ �d×n1 denotes the first set of data and D2 the second one. If two sets
overlap over time, they can not belong to the same class. In order to enforce this
constraint, a bigger than the average reconstruction error is given as an input in the
affinity matrix. Once the affinity matrix is created, recent advances in Normalized Cuts
[34] are used to solve the clustering problem.

4 Multiple Face Recognition

A very important task in meeting understanding is to know who is attending to the
meeting, and CAMEO’s task is to infer people’s identity from the mosaic images. Face
recognition from images/video is quite a complex problem, which suffers from mis-
alignment, high dimensionality of the visual data, occlusions, facial expression changes
and illumination variations. Due to its difficulty and usefulness as a biometric, there
exists a huge literature and there are many available techniques for face recognition
from images (see [36] for a review). In this section, a new dimensionality reduction
technique, Multimodal Oriented Discriminant Analysis (MODA) [5], is used to op-
timally reduce the dimension of the data for fast recognition. Moreover, in order to
deal with unexpected variation changes, several strategies that exploit spatio-temporal
redundancy and are able to recognize several people simultaneously are introduced to
improve performance.
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Figure 8: a) Original training images (800). b) 40 out of 75 clusters.

4.1 Preprocessing

The first step towards face recognition is to construct a statistical model of facial ex-
pression/pose/illumination variations of a person. Using the same automatic way of
gathering visual data as for learning PSFAM, CAMEO collects around 800 frontal
faces. After a geometric normalization using Robust Parameterized Component Anal-
ysis [4], a dimensionality reduction to filter noise and alleviate computational burden
is performed. There are two types of ”dimensions” that would be interesting to reduce:
the number of pixels and the number of samples. Let D i ∈ �d×ni be a data matrix
containing the gathered images for class i, usually n i ≈ 800 (off-line). In the ni im-
ages collected for class i, there is not necessarily a uniform sampling over expressions
or illuminations, which can bias the posterior classifier. To avoid this problem the p
most representative samples (p << ni) are selected by clustering Di. To cluster high
dimensional data, recent advances in multi-way normalized cuts [34] are used. Figure
(8.a) shows some images of the original 800 samples and (8.b) represents 40 prototypes
out of 75. Observe that the variations are mostly due to facial expression, scale, and
illumination changes.

After the selection is done, a data matrix D ∈ �d×(p×c), containing the data from
all the classes (c), is created. The redundancy in the column space of D will be incon-
venient for several reasons: firstly any type of discriminative learning (e.g. classifiers)
will suffer over-fitting effects with lots of correlated data, and secondly we are inter-
ested in reducing the computational burden of the overall algorithm. Each image has
been rescaled to be 60 × 60 pixels (3600-dimensional vector). In order to reduce the
dimensions of the column space of D, principal component analysis (PCA) is applied
after normalizing the data (||di|| = 1 ∀ i and subtract the mean). PCA projects the data
into the subspace spanned by the eigenvectors of the covariance matrix DD T ∈ �d×d;
however, for large amounts of data where d >> n, it is more numerically convenient
to compute the eigenvectors of DT D ∈ �n×n [31]. DDT has the same eigenvalues
as DT D and the eigenvectors are related by D. Observe that by projecting onto the
principal components, some discriminatory power could be lost; however, it is worth
to point out a couple of aspects. Firstly, by projecting onto the principal components,
the generalization performance in the case of d >> n probably will be better, and sec-
ondly, the true dimensionality of D ∈ Rd×n when d >> n is n, so that by projecting
into the first k eigenvectors whose eigenvalues are different from zero, no discrimina-
tory power is lost. We project onto the PCs which preserve 99% of the energy.

13



4.2 Multimodal Oriented Discriminant Analysis

Given a detected/tracked face, CAMEO will classify it into one of the c classes. One
naive solution would be to match each test image with each of the prototypes (75) in the
class i; however, this nearest neighbor classifier is not very efficient since k dimensions
have to be matched. Multimodal Oriented Discriminant Analysis (MODA) [5], a new
method that generalizes Linear Discrimiant Analysis (LDA) will be used. MODA will
allow to perform fast matching (m << k), avoid overfitting, and improve recognition
performance with respect to LDA.

For each class, there are around 800 original images and 75 prototypes. The orig-
inal 800 images are clustered ([34]) into s clusters, typically between 2 and 5, which
mostly take into account scale changes. Each of these clusters r will be modeled as a
high-dimensional Gaussian N(x; µr

i ,Σ
r
i ) for each class i. MODA seeks for a low di-

mensional projectionB ∈ m × k, common to all the classes (i.e. N(BT µr
i ,BΣr

i B
T ) ∀i, r),

that maximizes the Kullback-Leibler (KL) divergence [7] between the clusters of dif-
ferent classes in the low dimensional space, but does not impose distance constraints
between the clusters of the same class. After some algebraic arrangements, it can be
shown that the optimal dimensionality reduction is given by [5]:∑

i

∑
r1∈Ci

tr
(
(BT Σr1

i B)−1(BT (
∑
j �=i

∑
r2∈Cj

(µr1
i − µr2

j )(µr1
i − µr2

j )T + Σr2
j )B)

)
(7)

where µr1
i is the r1 cluster of class i, and

∑
r1∈Ci

sums over all the clusters belonging
to class i. Eq. 7 is quite hard to optimize with respect to B; second-order type of gradi-
ent methods (e.g. Newton or conjugate gradient) do not scale well with huge matrices.
Moreover, in this particular energy function the second derivative is quite complex. A
bound optimization method called iterative majorization [13] is used instead. Iterative
majorization (similar to Expectation Maximization type of algorithms) is able to mono-
tonically reduce the value of the energy function. For details of the optimization see
[5].

Despite reducing the dimensionality of the data from d to k with PCA, fitting dis-
criminative models such as MODA can easily suffer from over-fitting problems and
lack of generalization. In order to be able to generalize better and not suffer from stor-
age and computational requirements, the covariance matrices are approximated as the
sum of outer products plus a scaled identity matrix Σ i ≈ UiΛiUT

i + σ2
i Ik where

Ui ∈ �k×l and Λi ∈ �l×l is a diagonal matrix. In order to estimate the parameters
σ2

i , Ui, Λi, a fitting approach is followed by minimizing Ec(Ui,Λi, σ
2
i ) = ||Σi −

UiΛiUT
i −σ2

i Ik||F . It can be shown that the optimal solution satisfies UiΣi = UiΛ̂i,
σ2

i = tr(Σi − UiΛ̂iUT
i )/k − l, Λi = Λ̂i − σ2

i Ik [5].
It is worthwhile to point out two important aspects of the previous factorization. It

is an efficient (in space and time) manner to deal with the small sample case, since we
can compute ΣiB = UiΛi(UT

i B) + σ2
i B. In this case we do not need to explicitly

have the full covariance matrix. On the other hand, observe that the original covari-
ance has k(k + 1)/2 free parameters, and with the factorized matrices (U i,Λi, σ

2
i ) the

number of parameters is reduced to l(2k − l + 1)/2 (assuming orthonormality of U i),
so we need much less data to estimate these parameters and hence it is not so prone to
over-fitting.
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Figure 9: Training data.

Due to the lack of public databases for face recognition from video, we have col-
lected one to test our approach. A database of 23 people has been recorded over two dif-
ferent days (two weeks apart) under different illumination conditions. Figure 9 shows
some images from people in the database, variations are mostly due to facial expres-
sion, pose, scale and illumination conditions. The training set consist of the data gath-
ered during the first day, under three different illumination conditions (varying lights
in the recording room), scale, and expression changes. The testing data consist of the
recording of the second day (a couple of weeks later) under similar conditions. Fig-
ure 10 illustrates the recognition performance using PCA, LDA and MODA, similarly
table 4.2 gives some detailed numerical values for the different number of bases.

Basis 2 5 10 15 20 25 30 40 50 60
PCA 0.12 0.26 0.43 0.50 0.55 0.56 0.58 0.59 0.59 0.60
LDA 0.21 0.36 0.48 0.54 0.56 NA NA NA NA NA

MODA 0.23 0.38 0.50 0.57 0.59 0.60 0.61 0.62 0.63 0.63

Table 3: Recognition performance of PCA/LDA/MODA (23 classes)

In this experiment, each class has been clustered into two clusters to estimate B.
Once B is calculated, the Euclidean distance for the nearest neighborhood is used.
Several metrics have been tested (e.g. Mahalanobis, Euclidean, Cosine, etc) and the
Euclidian distance (with 75 prototypes) is the one which performs the best in our ex-
periments. For the same number of bases, MODA outperforms PCA/LDA. Also, ob-
serve that LDA can extract just classes-1 features (22 features), whereas MODA can
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Figure 10: PCA/LDA/MODA

extract many more features. By matching just 20-dimensional vector rather than the
original 3600-dimensional one, MODA is able to get more accurate better recognition
performance with less computational complexity.

4.3 Improving performance

Although MODA is the optimal linear dimensionality reduction technique that pre-
serves discriminability power among classes, it does not handle changes in the statis-
tical properties of the training data due to undesirable noise very well (e.g. different
illumination, hair configuration, misregistration). Three strategies have been tested in
order to handle such unexpected situations:

• Use a verification step to reject samples (outlier detection).

• Integrate temporal information into the classification process.

• Recognize multiple people simultaneously.

4.3.1 Pattern rejection and verification

Face recognition from video has the advantage of having a lot of temporal redundancy
that can be exploited. In order to construct robust systems against surprise or untrained
situations, not all of the adquiered samples are going to be classified, only the ones that
are reliable. In order to decide if a sample should be used for classification or not, a
simple outlier detection strategy is used.

When CAMEO detects the face of a person, the first step it performs is to deter-
mine if the person is in the database or not. Two thresholds (one generative and the
other discriminative) are used in order to determine if the sample belongs to any of the
classes. Both thresholds are computed from the covariance of the projected data. That
is, the training data have been projected onto the discriminative or generative subspace
(i.e. C = BT D), and a threshold is established by the variance of this distribution, that
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Figure 11: MODA and MODA + a verification step

is CCT . The covariance naturally becomes diagonal (due to a first PCA step). Outliers
will be considered the ones that are 4 times far away from the standard distribution.

If the first global step is not an outlier, the second one uses a verification method to
check if the data belong to a local subspace. For each class i the principal components
that preserve 80% of energy are computed, U ∈ �d×ki . The average error (µi) and the
variance (σi) of the distance from the subspace (DFS) (||I−Uc||22 = ||I||22 − cT c) for
class i, are computed, as well as the average error (µo) and the average variance (σo)
of the distance from the subspace for all the classes but class i. Once the mean and
variance for the inter class DFS of class i, and the mean and variance for the intra class
DFS for class i are obtained, a quadratic classifier that minimizes the classification error
is calculated. That is, an optimal threshold (T), which reduces the classification error (∫ ∞

T
Pipi(x)dx =

∫ T

−∞ Popo(x)dx), where Pi and Po, are the a priori probabilities of
each class. Assuming that pi(x) and po(x) are Gaussian, the optimal threshold is given
by the solution of the following second order equation:

T 2(
1
σ2

i

− 1
σ2

o

) + 2T (
µi

σ2
i

− µo

σ2
o

) + (
µ2

i

σ2
i

− µ2
o

σ2
o

− 2ln(
Piσo

Poσi
)) (8)

Basis 2 5 10 15 20 25 30 40 50
MODA+verification 0.16 0.35 0.64 0.69 0.70 0.71 0.72 0.73 0.73

Percentage(%) 45% 44% 49% 51% 50% 51% 51% 52% 50%

Table 4: Recognition performance of MODA and MODA+outliers. The % indicates
the percentage of inlier data.

Figure 11 shows the comparison between MODA and MODA plus a generative
verification step. Table 4.3.1 shows more detailed values for some basis and the per-
centage of data that has not been discarded. Discarding approximately half of the data
greatly improves the recognition performance. In the real time implementation, all the
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Figure 12: MODA and MODA + Verification step + Temporal voting

thresholds, the global and local ones, vary proportionally to one parameter, which is
adapted depending on the amount of data that has been classified.

4.3.2 Temporal consistency

Up to now, CAMEO uses one single image to determine classification; however, a key
aspect to improve recognition performance consist of integrating all the evidence com-
ing from the video stream. Preliminary work has been done to match sets of images
rather than individual images. Yamaguchi et al. [32] propose to compute the princi-
pal angle as a distance between two sets. However, this measure is too sensitive to
possible outliers, since it is based on computing the minimum correlation between two
vector (one on each subspace). Shakhmarovich et al. [28] took into account a more
probabilistic approach, modeling both sets as a high dimensional Gaussian, and then
computing the Kullback-Leibler distance between distributions. In this paper, a simple
voting scheme is used. The data is first projected with the basis obtained with MODA,
and the class with less error is chosen. After the verification step, if the reconstruction
error for this class falls within a range, the sample is used for classification. The same
procedure is followed with the rest of the samples, and when 10 samples are collected
CAMEO assigns the set of images to the class where more samples have been classi-
fied. Figure 12 compares the recognition performance w.r.t. just using MODA. Table
4.3.2

Basis 2 5 10 15 20 25 30 40 50
MODA+verification 0.27 0.46 0.76 0.79 0.81 0.83 0.84 0.84 0.84

+voting

Table 5: Recognition peformance using MODA + Verification step + Temporal voting.
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Figure 13: MODA and MODA + Verification + Temporal consistency + Multiple face
Recognition.

4.3.3 Multiple face recognition

Recognizing several people simultaneously greatly improves the recognition perfor-
mance, since the constraint that two people can not have the same identity is implicitly
imposed. To incorporate these constraints into the classification problem, the multiple
face recognition problem is posed as the classical assignment (transport) problem.

A matrix A with m rows (number of people tested) and n columns (number of
people in the database) is created, where each position a ij correspond to the average
error of the last 10 samples for person i w.r.t class j. The error is computed as the
average of the minimum error from the prototypes of class i. Once this matrix is
created, the assignment problem is the task of finding a permutation π[0] , · · · , π[n−1]
of {0, · · · , n − 1} such that

∑n−1
k=0 akπ[k] is minimized [11]. This is typically solved

when (m = n) with the Hungarian algorithm. In our case, m < n, and n− m dummy
rows with zero value are added, which do not affect the result of the algorithm. The
code for the Hungarian algorithm has been copied from [11].

Fig. 13 shows the recognition performance exploiting spatio-temporal information
and outlier detection vs. using just MODA. As we can see, around 40% of increase
in performance is achieved. Imposing constraints in the multiple face recognition im-
proves on average 5% of recognition performance and it can be time consuming for
real time applications.

Basis 2 5 10 15 20 25 30 40 50
MODA+ Verification 0.38 0.52 0.74 0.83 0.87 0.87 0.87 0.89 0.90
+Temporal+ Multiple

Table 6: Multiple face recognition with a window of 10 samples.
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Figure 14: Some images illustrating the depth estimation. In the upper black box the
depth(Z) and the (Y) coordinates can be observed.

5 Experiments

5.1 Depth estimation

The first experiment tests CAMEO’s ability to infer distances from a video sequence.
Knowing the relative position of one person with respect to a CAMEO’s camera is an
important feature for meeting understanding. Once a face is detected, an average size
of the head of the person is assumed (12cm wide and 17cm high). Using eq. 2 and
considering that the face is a plane oriented towards the camera (rotational angles 0),
the translational components are straight forward to compute. Figure 14 shows some
results for the depth estimation. In the black box, Z indicates the estimated depth and Y
the altitude with respect to the ground. A video with ground truth can be downloaded
from www.salleURL.edu/~ftorre/distance.avi . CAMEO is able to estimate the depth
with a factor error of less than 4%.

5.2 Multiple face recognition

A four people meeting has been recorded and can be downloaded from ftp://brim.coral.cs.cmu.edu/
pub/calo/presentations/icra05/recognition.avi. The duration of the video is approxi-
mately one minute. CAMEO has pre-stored facial models for three of the people at-
tending the meeting. After a few frames CAMEO starts recognizing people and using
PSFAM to track; however, the third person starting from the left is not recognized.
CAMEO gathers a few frames of the unknown person (≈ 50) and asks the person if
he/she wants to be introduced into the database. In this case, the user agrees by press-
ing a key and the model is stored in the database. Once the model is added to the
database, CAMEO successfully recognizes the new person. Observe that at the end
of the video CAMEO does not recognize the new person, probably due to big scale
changes; however, it detects that the new person is in the database and the label ’Need
Data’ is shown.

The multiple face recognition constraint has not been used in this video, since it
only increases the recognition performance 5% (in our database experiments) and it
can be time consuming. If two users have the same identity, the one with less error is
chosen. Although not the optimal solution, it is a reasonable approximation for real-
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Figure 15: Tracking multiple faces.

time applications.

5.3 Multiple people tracking

A four people meeting scenario is recorded and the video can be downloaded from
www.salleURL.edu/ ~ftorre/tracking.asf. In figure 15, one frame of this meeting is
shown. In the first frames, CAMEO automatically identifies the people and assigns
them his/her PSFAM (previously learned in similar environmental conditions). CAMEO
is able to track multiple heads using PSFAM, despite fast head motion, partial oc-
clusion, and crossing people. Occasionally, the head tracker is lost due to very fast
motion, motion blur, or frames with different training conditions; when this situation
occurs the face detector is executed again (red square). The PSFAMs use between 5-7
bases and run at 5-6 fps. Observe that in the mosaic construction, there exist some
blurring effects in the overlapping area between the cameras. This is due to the par-
allax existing between the cameras; however, the automatic adjustment reduces this
effect. A similar tracking in a meeting scenario of 5 people can be downloaded from
www.salleURL.edu/ ~ftorre/tracking2.asf.

5.4 On-line learning and adaptation

In figure 16 some images of the online method for learning PSFAM are shown. At
the beginning, the face is tracked with normalized correlation until several images are
gathered (8). Each of the added samples are first equalized, normalized, and resized to
28x36 pixels. Later, the set of bases is adapted to compensate for appearance changes.
The subspace tracker is faster, more accurate and robust than a simple template match-
ing. The video can be downloaded from http : //www.salleURL.edu/˜ftorre/online adaptation.asf .

5.5 Learning PSFAM from long video sequences

We have recorded 1 hour video of a meeting with five attendees. The adaptive subspace
tracker runs automatically for each person’s face until it gets lost (usually after several
minutes). Each of the trackers runs the frontal face detection in the tracked area in
order to gather frontal people’s faces. Figure 17 shows an example of set of faces
collected by CAMEO. Each tracker starts or stops independently. CAMEO outputs
90 folders, where each folder contains more than 10 frontal faces of the same person.
Some of the sets overlap over time and the ultimate goal is to put in correspondence
all the folders. That is, the folders containing the same person should be grouped. As
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Figure 16: Online learning and Adaptation. 4 of the 9 basis are shown in the lower left.

Figure 17: Gathered faces. Each tracker starts and ends independently over time.

explained in section 3, for each set (e.g D1 and D2) the principal components (B1 and
B2) are computed and the distance between the two sets is calculated as the average
residual d(D1,D2)S = 1/n1||D1−B2(B2)T D1)||F +1/n2||D2−B1(B1)T D2)||F .
If the sets overlap over time they can not belong to the same cluster, hence a bigger
distance (e.g. 1.5*d(D1,D2)S ) is introduced. Moreover, in order to take into account
spatial information and assuming smoothness of motion, the final distance is computed
as the product of the distance between subspaces and a geometric distance. That is,
d(D1,D2) = d(D1,D2)S ∗ d(D1,D2)G, where d(D1,D2)G is proportional to the
distance between the location of the face in the last frame of the starting set (D 1 or
D2) and the location of the face of the other set.

After creating the similarity matrix, Normalized Cuts [34] is used to cluster the
affinity matrix. This procedure links correctly the sets which belong to the same person.
Figure 18 shows some images belonging to each of the five clusters over 1 hour of
video. Recall, that in the first and second row there are some outliers. Also, observe that
in the fourth row, there is an image another person, this was because the tracker jumped
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Figure 18: Result from clustering 90 sets containing 5 people.

from one person to another for few frames. Once the faces have been automatically
gathered, we can construct the PSFAM easily as explained in section 3.

6 Discussion and future work

In this paper we have introduced CAMEO, a hardware/software component to record
and to extract useful visual information for meeting understanding. Several novelties
for face identification, tracking, and mosaic generation have been introduced. The use
of FSFAM has proven to provide robust, reliable, and fast tracking. On the other hand,
the on-line adaptation strategy is necessary to be able to adapt to new environments. In
the identification aspect, the combination of generative and discriminative models has
proven to be very effective to increase the recognition performance. However, several
aspects remain to be researched and extended:

• In order to improve the mosaic generation, better distortion models should be
used (e.g. non parametric ones [29]).

• Better algorithms for reducing parallax problem in the matching have to be re-
searched.

• To gather higher resolution data of some meeting events (such as what is be-
ing written on the blackboard or gathering higher resolution face images), a
pan/tilt/zoom camera should be added.

• Face-to-face meeting encompasses several modalities such as speech, gesture,
and handwriting which should be added to CAMEO’s capabilities. For instance,
recognition could be improved by adding speech.

• Capturing high-quality audio in a meeting room is a challenging problem due
to the variety of noises, reverberation, etc., which should be removed. In future
versions, we will record directly from a microphone.

Besides the meeting scenario, CAMEO could be used to target applications such as
classroom lectures, distance learning, and video conferencing. Also, we are working on
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the audio-visual summarization aspects of the meeting. For instance, we are interested
in automatically detecting changes in facial expression for all the attendants, detect
when everybody tries to speak/laugh, or who wrote in the blackboard. Moreover, more
research will be conducted towards temporal segmentation of the meeting into simple
events (monologue, discussion, start/end, presentation, etc.).
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