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Abstract— In this paper,  we make two contributions.  First,  we
present  a new domain, called Segway Soccer, for investigating
the  coordination  of  dynamically  formed,  mixed  human-robot
teams within  the realm of  a  team task  that  requires  real-time
decision  making  and  response.   Segway  Soccer  is  a  game  of
soccer between two teams consisting of Segway riding humans
and Segway RMP-based robots.  We believe Segway Soccer is the
first game involving both humans and robots in cooperative roles
and  with  similar   capabilities.  In  conjunction  with  this  new
domain,  we  present  our  work  towards  developing  a  soccer
playing robot using the Segway RMP platform and vision as its
primary  sensing  modality.  As  Segway  Soccer  is  set  in  the
outdoors, we have developed novel vision algorithms to adapt to
changes in lighting conditions. We present the domain of Segway
Soccer, its inherent challenges, and our work towards this goal.

I.  INTRODUCTION 

There  has  been  considerable  research  into  both  human-
robot  interaction  [12],  and  multi-agent  teams  [8,9,10].
Additionally, since the inception of RoboCup robot soccer [2],
there has been considerable research into multi-robot teams
operating  in  adversarial  environments.  To  our  knowledge,
however, there has been no work to date that combines these
attributes; namely, to examine human-robot interaction within
an adversarial, multi-robot setting where humans and robots
are team members with similar  capabilities and no clear role
hierarchy. 

We are  developing  a new game,  which we call  Segway
Soccer, that aims to fill this void. Segway Soccer is a game
that requires mixed teams of humans and robots to cooperate
to  achieve the  maximum reward in  an  adversarial  task.  To
ensure  interesting  cooperation,  both  humans  and  robots  are
equipped with similar capabilities.  We achieve this difficult
task by requiring that both humans and robots use the same
drive platform – the Segway platform developed by Segway
LLC (Figure 1).

Our goal is to create a task that requires advanced robot
intelligence,  combined  with  robust  human-robot  interaction
skills. We hope to extend the powerful aspects of RoboCup –
competition, an adversarial domain requiring fast decisions, a
well understood task – to incorporate human-robot interaction.
The need for  this new domain lies in the lack of  study for
human-robot  interaction  where  decisions  need  to  be  made
quickly. As robots become more integrated into society, they

will  inevitably  have  to  interact  with  humans  and/or  legacy
robots in  complex tasks.  For some of these tasks,  decisions
may need to be made quickly and roles of both humans and
robots may not be clearly defined a priori. 

Figure 1. The Segway RMP (left and right) and Segway HT (right) platforms
developed by Segway LLC (http://www.segway.com).

In this paper, we describe our work towards developing a
robot capable of participating in Segway Soccer. As this new
domain  is  set  in  the  outdoors,  compensating  for  variable
lighting conditions and less structured environments, but still
retaining the ability to make and act on decisions quickly is a
challenging task. We describe our initial solutions to meet this
challenge.

The format of the paper is as follows.  In Section II, we
describe the specifics of Segway Soccer; its rules, structure,
goals,  and  challenges.  Section  III  describes  our  proof  of
concept, a soccer playing Segway RMP, which uses vision as
its primary sensing modality. Finally, we conclude in section
IV and present our on-going work.

II.SEGWAY SOCCER

In this section, we concretely describe the rules of Segway
Soccer and the common hardware platforms used. We begin
by describing the rules of the game of Segway soccer.

The Game

Segway Soccer is a game between two teams playing on a
grass field in an outdoor environment with an orange, size 4
soccer ball. Teams can consist of humans, robots, or a mix of
humans and robots.  Figure 2 shows the field structure.  The
field consists of  a grass surface in an outdoor  environment.
White tubular markers are placed around the field to indicate
the  field  boundary.  Each  goal  is  uniquely  colored  and  is
delimited by two posts. A human referee maintains control of
the  game  and  transmits  signals  verbally,  as  per  a  normal
referee, and via wireless communications to the robots via anThis research was sponsored by the United States Army under Grant No.

DABT63-99-1-0013. The content of the information in this publication does
not necessarily reflect the position or the policy of the Defense Advanced
Research Projects Agency (DARPA), the US Army or the US Government, and
no official endorsement should be inferred  



assistant referee armed with a laptop and a wireless network.
Team members may be robots, humans, or robots and humans.
In all cases, the Segway platform is used to ensure each team
member  has  identical  physical  capabilities.  Humans  ride
Segway  HT platforms,  while  robots  use  the  Segway  RMP
base.  We  describe  these  platforms  further  in  the  ensuing
section. Both humans and robots are colored to allow for easy
team identification. 

Figure 2. The Segway field. Teams consist of humans, robots, or robots and
humans using the Segway platform, and an orange size 4 soccer ball.

The field dimensions follow a scale law as a function of
the number of players on the field. For n players on each team
the field dimensions can be calculated as:

length= n
11
⋅100 m , width= n

11
⋅60 m (1)

As both Segway HT's and RMP's carry considerable mass,
and are able to reach speeds of 8mph or greater, safety is a
primary concern. To address this problem, the game follows a
flow more familiar to Ultimate Frisbee1.  When play begins,
ball  possession  is  decided  with  a  coin  toss.   Afterwards,
players gain possession based on proximity to the ball when it
is “free”. Once a player obtains possession, opponents are not
allowed to contest the ball thereby preventing any unnecessary
contact.  Players are also not allowed to move with the ball
(dribble), and instead must pass the ball to one another for the
team to maintain possession. A time limit will be enforced on
how long  possession  can  be  maintained  by  a  single  player
before  the  ball  must  be  passed  on  to  a  teammate  before
possession is overturned.   When the ball is passed, the first
player on any team to come within a specific distance of the
ball will gain possession.  The same player cannot re-acquire
possession of the ball until after another player has obtained
possession.  Possession is also changed if the ball is kicked out
of bounds or if a goal is scored.  Although primarily a safety
measure, this rule also ensures that players must pass the ball
to  advance.  As a  direct  consequence teamwork,  rather  than
purely  single  robot  skills,  becomes  essential.  The  goal  of
exploring intelligent teamwork is therefore achieved.

Although the rules defined thus far allow for a multi-agent,
adversarial  game to  be  played,  they  do  necessarily  enforce
human-robot  interaction.  If,  for  example,  humans  prove
considerably  more  capable  than their  robot  teammates,  one
can  expect  humans  to  dominate  possession  leading  to  little
human-robot  interaction  opportunities.  Should  robots  prove
more capable than their human brethren, the reverse situation
happens.  Either  case  is  undesirable.  Our  solution  to  this
problem is to require that both a human and a robot be part of

1 Rules for Ultimate Frisbee can be found at: http://www.upa.org

the sequence of passes leading to a goal score. How effective
this solution is, remains to be seen.

Segway RMP as a Platform for Robotics Research

The  Segway  platforms,  invented  by  Dean  Kamen,  are
unique  in  their  combination  of  wheeled  dynamic  balancing
mobility. The human ridable Segway HT has two separately
driven  wheels  and  on-board  computation  that  allows  the
platform to dynamically balance when a human is standing on
it. The human rider controls the forward/backward velocity of
the Segway by leaning forward to accelerate or backwards to
decelerate. To turn, the rider twists a handle grip to turn in one
direction  or  the  other.  This  combination  of  controls  are
surprisingly easy to master even for the most novice of riders.

The  Segway  RMP,  or  Robot  Mobility  Platform,  is  the
focus of this paper. The RMP consists of a Segway HT that
has been modified by Segway LLC, to provide an extensible
robot control platform. Figure 1 shows the Segway RMP and
HT. The RMP consists of three modifications to the base HT
platform. First, a CAN Bus interface is  exposed to enable two
way, high speed electronic communication with the platform.
Second, the Segway's control software is modified to enable a
computer to send direct velocity commands to the platform.
The third change is to attach a large mass of approximately
50lbs at a height of about 50cm from the robot wheel base.
This  mass,  consisting  of  multiple  steel  plates,  serves  the
purpose  of  raising  the  robot's  center  of  gravity.  This  is
necessary to slow down the rate of falling over for the robot to
enable  Segway's  control  loop  to  operate  effectively  at  a
realizable frequency. 

Commands to the Segway RMP can either cause the robot
to move or modify the general operation characteristics of the
robot. Motion commands have a speed-rotation format of  (v,
ω)T, where  v   is the forward velocity and  ω  is the rotational
velocity.  These commands act  as set  points for  the Segway
RMP's  PID  control  loop.  The  control  loop  is  a  position
controlled,  meaning  the  robot  will  continue  to  move  as
commanded until it reduces the position error to zero or the
PID  integrators  are  reset.  The  additional  commands  can
disable the Segway, reset the PID integrators, select different
gain schedules, or adjust the velocity/acceleration scales. The
different  gain  schedules  prove  useful  for  different
weight/height  arrangements.  In  addition  to  receiving
commands,  the  Segway  returns  status  information  derived
from  its  internal  sensors.  The  state  information  is  sent  at
100Hz and includes:

• Pitch, roll, yaw angles and rates

• Remaining battery charge

• Wheel velocity, displacement

• Forward displacement

As  a  platform  for  robotics  research  the  Segway  RMP
offers many unique features.  First, it  is  a robust,  extensible
platform  capable  of  extended  operation  both  in  terms  of
distance traveled and in operation time in both indoors and
outdoors. Although operation distance and time depend upon
terrain  and  use,  figures  of  16km  and  3  hours  are  not
uncommon.  The  Segway  is  able  to  move  at  speeds

referee
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considerably faster than most robotic platforms. It can carry a
significant  payload,  in  excess  of  100  kg.  The  mechanical
arrangement of the Segway means that sensors can be placed
to give a human perspective on the surrounding world without
compromising  the  robot's  stability  or  maneuverability.  The
dynamic balancing gives the robot a certain measure of active
compliance, which is more than useful when collisions occur.
The one caveat  to  the  Segway,  is  that  to  maintain  a  stable
balanced operation it must remain within  ±20°  of vertical. If
the  robot  exceeds  this  limits,  it  automatically  disables  its
balancing and promptly falls over. 

III.DEVELOPING A SEGWAY SOCCER PLAYER

We now describe  our  work  to  develop  a  Segway RMP
robot base capable of playing Segway Soccer. To build any
autonomous  robot,  one  must  develop  a  complete  system
involving  perception,  cognition,  and  action.  We  begin  by
presenting  an  overview  of  our  approach,  followed  by  a
detailed discussion of the vision, skill learning, development
environment, and hardware. 

Figure 3. The control hierarchy used for the robot. The gray modules are the
perception-cognition-action part of the system. The white are development

infrastructure aids. Xdriver is a teleoperation program.

Overview

Figure 3 shows the complete control  architecture for the
Segway RMP. The gray boxes show the main processing path
that makes up perception, cognition, and action. In a dynamic,
multi-robot environment, where robots are moving at speeds
approaching  3.5m/s  (8mph),  the  ability  to  perceive  and
respond to situations in minimum time is essential. Hence, it is
critical  to  overall  robot  performance  that  the  control  loop
formed by gray modules operates at full frame rate, and with
minimum  latency,  in  addition  to  executing  the  correct
command  for  each  situation.  The  white  boxes  show  the
supporting  development  environment,  which  although  not
critical to the normal operation of the system is critical to the
development  cycle.  Not  shown  in  this  figure  are  the
mechanical components to support ball manipulation. We now
describe  each  major  component  and  its  role  in  the  overall
hierarchy,  namely;  the  robot  hardware,  vision and  tracking,
state  representation,  robot  cognition,  and  the  development
environment. 

Robot Hardware

Just as the control hierarchy can be broken into perception,
cognition,  and  action,  so too  can  the  physical  hardware  be
broken  into  sensing,  computation,  and  actuators.  Figure  4
shows the main physical hardware components. For sensing,
the robot  uses a single color CCD camera.  Specifically,  the
robot uses a Phillips 690 Web camera with a wide-angle lens
providing   a  Field-of-View  of  around  110°.  The  camera
provides 320x240 color pixels at 30Hz in a YUV 420 planar
format.  The  only  other  sensors  are  those  internal  to  the
Segway as discussed above. For computation, two laptops are
used with one dedicated to the intensive task of  perception
procession and the other dedicated to communication with the
Segway  RMP via  the  CAN Bus.  The  latter  occurs  via  the
Kvaser LAPCan II PCMCIA card.  The remaining cognition
algorithms are distributed between the two laptops depending
upon computational requirements. In the current arrangement,
only motion control and interfaces with the Segway RMP and
CMU board run on the actuation laptop.

Figure 4. The main robot hardware components. The left shows the
kicker mechanism, the right shows the processing architecture.

Vision  was  chosen  as  the  primary  sensor  for  its  high
information  content,  low  cost,  and  suitably  to  the  task  of
recognizing multiple fast moving objects in a complex world.
As  cameras  are  now  a  consumer  item  and  are  therefore
beneficiaries of  competition in terms of device development
and  price  reduction.  Thus,  for  building  teams of  robots  it
makes sense to use an affordable sensor. Moreover, if suitable
algorithms can be developed to realize the vast potential  of
vision its capabilities will far outweigh any comparably priced
sensor.  We return to this discussion shortly.

The  final  component  of  the  hardware  system  is  a
mechanism for propelling the ball. Although it is possible to
propel the ball with a human ridable Segway through weight
transfer by swinging the feet through underneath the rider (see
figure 1), this motion is not effective with the Segway RMP
platform due to the lack of an actuated mass decoupled from
the robot base. Instead, we require a separate mechanism for
imparting  energy  into  the  ball.  We  have  developed  a
pneumatic kicking mechanism for just this task. 

The task of ball manipulation is to develop motions and/or
mechanisms to transfer a maximum amount of energy to the
ball in as predictable a direction as possible. This problem has
been  studied  extensively  within  the  RoboCup  robot  soccer
community  [3,9,10].  We  can  categorize  these  different
approaches  based  on  the  actuation  mechanism  into:
pneumatic, spring, motor, and solenoid based kickers. Due to
the  size  and  power  requirements  of  the  robot,  a  solenoid
solution  is  clearly  inappropriate.  Motor  based  approaches,
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such  as  the  rotating  bar  of  or  the  driven  plate  of  [3,10],
although  simple  lack  the  power  transfer  capabilities  at  the
needed size or raise significant safety concerns. This leaves a
spring  based  solution,  or  a  pneumatic  one.  A  spring-based
solution  has  many  appealing  factors;  namely  it  offers  high
power to volume and power to weight ratios.  The caveat is
that  it  requires  specialized  mechanical  hardware  creating  a
design  challenge,  and  more  significantly  a  maintenance
challenge.  Thus,  we  used  a  pneumatic  approach  due  to  its
simplicity and high power to weight ratio. Figure 4 shows the
main components of  the pneumatic system. Essentially,  two
pistons form the drive mechanism. Two 6V actuated solenoid
valves 'actuate' the device, while the regulator and electronic
switch maintain a set pressure and refill the tank with an on-
board compressor when the pressure drops too low.

Vision and Tracking

As described above, for this domain there are few sensors
that can compete with color vision for cost, size, information
content, and latency. Due to the size and speed of the Segway
RMP  platforms,  it  is  necessary  for  the  robot  to  operate
predominantly  outdoors on grass fields. Thus, algorithms that
are robust to changes in illumination and color variation are
needed. Unfortunately, there is a lack of vision algorithms that
provide  the combination of  robustness to color  illumination
and can operate at full frame rate on a moderate processor.
Given  the  need  to  perform  all  computation  related  to
perception, cognition, and action, the need to operate in real-
time means that only a fraction of computational resources are
available for vision procession. To our knowledge, there are
no vision algorithms that offer all of these features.

A  number  of  fast,  color-based  algorithms  and  freely
available  source  libraries  have  been  developed  for  static
lighting conditions. In particular, CMVision [6], is one such
library for  very  quickly extracting  color  blobs from images
that has been widely used in RoboCup research. CMVision
operates  using  a fixed  color  table  to  map from pixel  color
vectors to a symbolic color value.  The actual  color  table is
generated  a  priori  either  by  GUI  tools  or  via  supervised
learning algorithms. Once each pixel in the image is mapped
to  a  symbolic  color  value,  a  fast  connected  component
analysis is performed. The resulting regions are then reported
allowing for higher level recognition and tracking algorithms
to be run. Although very effective, the fixed color map means
that CMVision is unable to adapt as lighting conditions and
consequently  color  values,  change.  For  example,  if  the  sun
moves behind a cloud the color and luminance of the visual
scene can change quite dramatically. 

To  address  this  issue,  we  have  extended  CMVision  to
detect  well  contrasting  objects  under  variable  illumination
conditions. Our algorithm extends CMVision by replacing the
pixel  labeling  process  with  an  adaptive  one  derived  from
knowledge of object geometry and color relative to the scene.
The complete vision algorithm works in five steps, as follows:

1. Transform the color space via vector projection

2. Build a histogram of resulting 1D pixel values

3. Analyze histogram for a peak satisfying constraints

4. Run connected components from CMVision 

5. High-level filter resulting blobs to find ball

The first part of the process operates by projecting each
pixel  p∈(1...N)  with  color  values  (yp,  up,  vp)T onto  a  1D
intensity  space  via  a  normalized  dot  product  operation
commonly  found  in  image  tracking  applications  [7].
Specifically, the operation is:

Ip=
yp up vp⋅a b cT

∣a∣∣b∣∣c∣
a , b , c∈{−6,. ..5 , 6} (1)

The values for the prototype vector  (a, b, c)T are selected
manually. For the orange soccer ball, a prototype of (1 -3 5) T.
Thus, the ball must be bright and red/orange in color. A global
histogram  of  the  resulting  intensity  image  is  constructed,
which is then searched for the brightest peak. We developed a
simple  peak  detection  algorithm  that  takes  into  account
constraints  including  a  minimum  peak  size,  and  area.
Concretely, the algorithm searches for the brightest peak 

1. Starting from p = Nmax find p such that 

HistppHmin , Histp≥ max
i=p..Nmax

Hist i (2)

2. Starting from m = p, find m such that

Histm≤mini=m..p Hist i , mp (3)

Where  m and  p are  indexes constrained  to  {pmin,...Nmax},
Hist(i) is the histogram count for intensity i, and there are [0,
Nmax] possible intensity values (in practice  Nmax = 255).  The
found peak is only accepted if the area under the peak, Am,  is
within the constraints: Amin ≤ Am ≤  Amax. Thus:

Ai=∑
j=i

Nmax

Hist j (4)

The minimum value,  m,  is chosen as the threshold value
for the image. Each pixel is then labeled using this threshold
and the components connected to form regions. A number of
high level filters are then run on the largest regions satisfying
a minimum size constraint. Each filter produces a confidence
estimate c∈[0, 1] based on known geometric properties of the
object,  and  the  product  of  the  confidences  is  used  as  the
confidence for that region. For the ball, these estimates are the
same as for [11]; an expected bounding box size, an expected
pixel count given the boundary box size, and the shape of the
bounding box. Figure 5 shows the algorithm in action.

Figure 5. The left image shows a raw image, the right the processed result
with ball pixels labeled and a bounding box drawn around the identified ball.



Robot Cognition

Through our previous work, we have developed a control
architecture  for  multi-robot  control  in  adversarial,  highly
dynamic environments. The architecture, which we call Skills-
Tactics-Plays  [5],  consists  of  Skills  for  low-level  control
policies,  Tactics  for  high-level  single  robot  behavior,  and
plays for team coordination. Here we briefly review the key
components of skills and tactics, and then focus on the new
developments for recording skills to speed up  development.  

Skills,  tactics,  and plays  in  the  STP architecture form a
control hierarchical. Here we focus on skills and tactics that
form the components for single robot intelligence. A skill is a
focused control policy for carrying out complex actions in the
world.  For  this  task,   example  skills  include  a  particular
method to kick the ball, a technique to prepare for a kick, or a
method  for  stealing  the  ball  from  an  opponent.  A  tactic
encapsulates  a  complete  single  robot  behavior  such  as
shooting the ball in the goal, passing, acting as a goal keeper.
Skills  form the high-level  action primitives  for  tactics,  thus
tactics affect the world by commanding skills to execute and
passing parameters appropriately. Skills can be connected into
a  finite-state-machine  for  a  given  tactic.  Thus,  a  tactic  can
perform  a  range  of  complex  actions  by  triggering  the
appropriate sequence of skill execution. For example to shoot
the ball at the goal, the  shoot  tactic executes a sequence of
skills such as  gotoBall,  positionForKick,  and when aimed at
the target  the final  kick  skill.  Transitions between skills  are
controlled based on the perceived state of the world using a
decision  tree.  Finally,  following  the  usual  behavior  based
approach [1],  tactics and skills  both execute in parallel  and
compute their decisions once per vision frame at 30Hz. The
tactics set the parameters for skill execution, and possibly the
executing skill, while the skill makes its decision on the world
state and generates output for the robot low-level  modules. 

Figure 6 shows the skill state machine for the shoot tactic.
To ease the complexity  of  skills,  we have also developed a
robot  control  module.  This  module  implements  a  motion
control algorithm as in [4]. Additionally, we have developed
skill recording mechanisms which we describe next. Thus, the
skills actuate the robot through the motion control module by
setting  a  robot  relative  way  point,  through  the  motion
playback  module,  or  by  directly  actuating  the  robot  (not
shown).  The robot  command is sent  to  the Segway via the
CAN Bus.

Figure 6. The skill state machine for the shoot tactic. Also shown is the
motion playback portion of the skill recording mechanism.

In  an  adversarial  domains,  the  efficiency,  accuracy,  and
robustness of skill execution is a major factor in determining

robot performance. Skill performance is a direct function of
the  robot  mechanics,  control  system,  and  the  local
environment.  As such,  skills  do not  transfer  well  from one
environment to the next, from one robot platform to another,
and from simulation to reality. Finally, as skills are inherently
tied to the low-level actions of the robot, they typically require
many  parameters  to  define  their  execution.  Tuning  these
parameters by hand is time consuming and error prone. Thus,
we  desire  a  technique  to  enable  rapid  tuning  of  skill
parameters. 

We have developed a skill recording system, whereby a
human operator can teach a robot a skill. The human operator
guides the robot via tele-operation through a complex motion.
The commands sent to the robot at each processing cycle are
recorded  to  a  file,  which  can  then  be  edited  manually   if
desired. The recorded commands can be played back at run
time verbatim. The result is a complex motion which can be
executed by a tactic as a skill.  

To test the validity of this approach, we recorded a kick
motion for the Segway RMP to kick the ball. To best execute
a  kick  on  rough  terrain,  the  Segway  RMP must  first  lean
forward,  drive  through  the  ball  actuating  the  kicker  at  the
correct time, and then slow down to avoid running over the
ball  and  robbing  it  of  its  momentum.  Although  writing  an
algorithm  to  generate  such  motion  presents  only  minor
difficulty, tuning the parameters to achieve the right behavior
takes a non-negligible amount of work due to the need to test
and  adjust  parameters.  In  contrast,  it  is  relatively  straight
forward to provide the robot with a good example via tele-
operation  (especially  if  one  is  already  experienced  with
driving the robot). 

The  mechanism  described  here  can  only  be  used  to
reproduce  directly  recorded  motions.  There  is  no  ability  to
generalize beyond the examples it has been given. Our future
work is to extend this approach to incorporate generalization
mechanisms.  With such  an  ability  we  hope  to  significantly
reduce the complexity required to develop complex skills.

Development Interface

One of the key aspects to robot development that is often
overlooked in the literature relates to the support infrastructure
to  aid  development.  In  our  experience,  good  development
infrastructure  can  greatly  ease  the  development  burden,
however,  there  has  been  no  scientific  study  of  what  'good'
development infrastructure is. Based on our prior experiences,
we have developed a number of  infrastructure  tools for  the
Segway  RMP  to  aid  development.  Concretely,  we  have
developed  a  Debug  Server  and  GUI  client  for  providing
contextual  text  and  graphic  debug  information  at  execution
time. We have also developed a logging/playback system to be
able to record what the robot 'sees', 'thinks', and 'does' and play
it back for later analysis. Finally, we have developed an off-
line  vision  testing  tool  to  speed up  the vision  development
process. We now describe in detail each of these components.

Figure 7 shows the GUI output for allowing a remote user
to  view several  aspects  of  the  robot's  sensory  and  internal
state.  This is particularly useful for developing behaviors for
the robot as one can quickly see what the robot's model of the
world  is.  The  GUI  client  programs  connect  to  the  Debug
server  (see  figure  3)  over  a  TCP  socket.   In  the
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RawRobotView display, the output of the vision system can be
seen and the user can use it to view the output of the various
tracking modules.  For instance, the outputs from the ball or
obstacle  tracking  modules  can  be  directly  viewed.   Other
output interfaces, such as the  RobotLocalMap, show an ego-
centric view of the robot and show the positions of detected
objects  around it,  while  the  RobotPoseView,  shows an ego-
centric side view of the robot so that the reported tilt angle can
be visualized.  Finally, all of the text output generated from
the soccer server, such as debug and state information, can be
viewed on the RobotTextWindow display.

Figure 7. The GUI output showing the raw video from the Segway (top left),
the robot's state real-time information (top right), the robot's local world

model (bottom left), and a graphic of the robot state (bottom right). The GUI
may connect to the robot 'live' or to a log player for off-line analysis.

The  Logging  server  allows  the  Segway  to  record  all
sensor and state information at a configurable rate, so that it
can  be  analyzed  off-line  as  well  as  replayed.  The  latter  is
especially  useful  given  the  speed  of  action  and  the  large
information  content.  The  user  can  request  a  number  of
different sensor channels to log, where these might be all of
the robot's pose and velocity state information, the raw video,
the  segmented  video,  or  even  the  specific  positions  of  the
tracked  targets  (ball  and  players).   Logging  all  of  the  raw
video  data  along  with  all  of  the  robot  state  information  is
fairly  processor  intensive  and  is  not  typically  done  unless
there is a specific need for it.

In order to test and debug the video processing algorithms,
the raw frames of video can be loaded into a  vtest  program
which will process each frame using all of the Segway's video
processing code.  This is particularly useful for gathering large
amounts  of  video  data  for  testing  purposes.  The  robot  can
simply be tele-operated around the environments where it will
be expected to operate, and new video processing code can be
tested without having to drive the robot.

IV.SUMMARY AND FUTURE WORK

The  Segway  RMP and  HT  present  a  new  and  exciting
robotics  research platform.  Based on this platform we have
devised a new domain called Segway Soccer for investigating
human-robot  interaction  within  the  confines  of  a  real-time,
adversarial  task.  We  have  developed  the  single  robot
capabilities  to  control  a  Segway  RMP  in  an  outdoor

environment. Specifically, we have developed robust outdoor
vision, a skill-tactic-play control hierarchy, and infrastructure
to  support  skill  training,  logging,  and  playback.  All  of  the
algorithms described here have been fully implemented on the
Segway RMP and run in real-time at  the full  frame rate of
30Hz.  Using  these  algorithms  the  robot  can  successfully
perform a shoot tactic in an outdoor environment with variable
lighting. We have made available videos of the robot in action,
including  videos  derived  from  the  robot  vision  logs.  We
encourage interested readers to download videos of the robot
operating at  http://www.cs.cmu.edu/~robosoccer/segway.  Our
future work will focus on extending the behavior repertoire of
the robot and moving towards mixed human-robot teams.
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