
Development of a Soccer-Playing
Dynamically-Balancing Mobile Robot

Brett Browning, Paul E. Rybski, Jeremy Searock, Manuela M. Veloso
Carnegie Mellon University
School of Computer Science

5000 Forbes Avenue, Pittsburgh, USA
{brettb, mmv,prybski}@cs.cmu.edu, jsearock@andrew.cmu.edu

Abstract— In this paper, we make two contributions. First, we
present a new domain, called Segway Soccer, for investigating
the coordination of dynamically formed, mixed human-robot
teams within the realm of a team task that requires real-time
decision making and response. Segway Soccer is a game of
soccer between two teams consisting of Segway riding humans
and Segway RMP-based robots. We believe Segway Soccer is the
first game involving both humans and robots in cooperative roles
and with similar capabilities. In conjunction with this new
domain, we present our work towards developing a soccer
playing robot using the Segway RMP platform and vision as its
primary sensing modality. As Segway Soccer is set in the
outdoors, we have developed novel vision algorithms to adapt to
changes in lighting conditions. We present the domain of Segway
Soccer, its inherent challenges, and our work towards this goal.

I. INTRODUCTION

There has been considerable research into both human-
robot interaction [12], and multi-agent teams [8,9,10].
Additionally, since the inception of RoboCup robot soccer [2],
there has been considerable research into multi-robot teams
operating in adversarial environments. To our knowledge,
however, there has been no work to date that combines these
attributes; namely, to examine human-robot interaction within
an adversarial, multi-robot setting where humans and robots
are team members with similar capabilities and no clear role
hierarchy.

We are developing a new game, which we call Segway
Soccer, that aims to fill this void. Segway Soccer is a game
that requires mixed teams of humans and robots to cooperate
to achieve the maximum reward in an adversarial task. To
ensure interesting cooperation, both humans and robots are
equipped with similar capabilities. We achieve this difficult
task by requiring that both humans and robots use the same
drive platform – the Segway platform developed by Segway
LLC (Figure 1).

Our goal is to create a task that requires advanced robot
intelligence, combined with robust human-robot interaction
skills. We hope to extend the powerful aspects of RoboCup –
competition, an adversarial domain requiring fast decisions, a
well understood task – to incorporate human-robot interaction.
The need for this new domain lies in the lack of study for
human-robot interaction where decisions need to be made
quickly. As robots become more integrated into society, they

will inevitably have to interact with humans and/or legacy
robots in complex tasks. For some of these tasks, decisions
may need to be made quickly and roles of both humans and
robots may not be clearly defined a priori.

Figure 1. The Segway RMP (left and right) and Segway HT (right) platforms
developed by Segway LLC (http://www.segway.com).

In this paper, we describe our work towards developing a
robot capable of participating in Segway Soccer. As this new
domain is set in the outdoors, compensating for variable
lighting conditions and less structured environments, but still
retaining the ability to make and act on decisions quickly is a
challenging task. We describe our initial solutions to meet this
challenge.

The format of the paper is as follows. In Section II, we
describe the specifics of Segway Soccer; its rules, structure,
goals, and challenges. Section III describes our proof of
concept, a soccer playing Segway RMP, which uses vision as
its primary sensing modality. Finally, we conclude in section
IV and present our on-going work.

II.SEGWAY SOCCER

In this section, we concretely describe the rules of Segway
Soccer and the common hardware platforms used. We begin
by describing the rules of the game of Segway soccer.

The Game

Segway Soccer is a game between two teams playing on a
grass field in an outdoor environment with an orange, size 4
soccer ball. Teams can consist of humans, robots, or a mix of
humans and robots. Figure 2 shows the field structure. The
field consists of a grass surface in an outdoor environment.
White tubular markers are placed around the field to indicate
the field boundary. Each goal is uniquely colored and is
delimited by two posts. A human referee maintains control of
the game and transmits signals verbally, as per a normal
referee, and via wireless communications to the robots via anThis research was sponsored by the United States Army under Grant No.

DABT63-99-1-0013. The content of the information in this publication does
not necessarily reflect the position or the policy of the Defense Advanced
Research Projects Agency (DARPA), the US Army or the US Government, and
no official endorsement should be inferred

assistant referee armed with a laptop and a wireless network.
Team members may be robots, humans, or robots and humans.
In all cases, the Segway platform is used to ensure each team
member has identical physical capabilities. Humans ride
Segway HT platforms, while robots use the Segway RMP
base. We describe these platforms further in the ensuing
section. Both humans and robots are colored to allow for easy
team identification.

Figure 2. The Segway field. Teams consist of humans, robots, or robots and
humans using the Segway platform, and an orange size 4 soccer ball.

The field dimensions follow a scale law as a function of
the number of players on the field. For n players on each team
the field dimensions can be calculated as:

length= n
11
⋅100 m , width= n

11
⋅60 m (1)

As both Segway HT's and RMP's carry considerable mass,
and are able to reach speeds of 8mph or greater, safety is a
primary concern. To address this problem, the game follows a
flow more familiar to Ultimate Frisbee1. When play begins,
ball possession is decided with a coin toss. Afterwards,
players gain possession based on proximity to the ball when it
is “free”. Once a player obtains possession, opponents are not
allowed to contest the ball thereby preventing any unnecessary
contact. Players are also not allowed to move with the ball
(dribble), and instead must pass the ball to one another for the
team to maintain possession. A time limit will be enforced on
how long possession can be maintained by a single player
before the ball must be passed on to a teammate before
possession is overturned. When the ball is passed, the first
player on any team to come within a specific distance of the
ball will gain possession. The same player cannot re-acquire
possession of the ball until after another player has obtained
possession. Possession is also changed if the ball is kicked out
of bounds or if a goal is scored. Although primarily a safety
measure, this rule also ensures that players must pass the ball
to advance. As a direct consequence teamwork, rather than
purely single robot skills, becomes essential. The goal of
exploring intelligent teamwork is therefore achieved.

Although the rules defined thus far allow for a multi-agent,
adversarial game to be played, they do necessarily enforce
human-robot interaction. If, for example, humans prove
considerably more capable than their robot teammates, one
can expect humans to dominate possession leading to little
human-robot interaction opportunities. Should robots prove
more capable than their human brethren, the reverse situation
happens. Either case is undesirable. Our solution to this
problem is to require that both a human and a robot be part of

1 Rules for Ultimate Frisbee can be found at: http://www.upa.org

the sequence of passes leading to a goal score. How effective
this solution is, remains to be seen.

Segway RMP as a Platform for Robotics Research

The Segway platforms, invented by Dean Kamen, are
unique in their combination of wheeled dynamic balancing
mobility. The human ridable Segway HT has two separately
driven wheels and on-board computation that allows the
platform to dynamically balance when a human is standing on
it. The human rider controls the forward/backward velocity of
the Segway by leaning forward to accelerate or backwards to
decelerate. To turn, the rider twists a handle grip to turn in one
direction or the other. This combination of controls are
surprisingly easy to master even for the most novice of riders.

The Segway RMP, or Robot Mobility Platform, is the
focus of this paper. The RMP consists of a Segway HT that
has been modified by Segway LLC, to provide an extensible
robot control platform. Figure 1 shows the Segway RMP and
HT. The RMP consists of three modifications to the base HT
platform. First, a CAN Bus interface is exposed to enable two
way, high speed electronic communication with the platform.
Second, the Segway's control software is modified to enable a
computer to send direct velocity commands to the platform.
The third change is to attach a large mass of approximately
50lbs at a height of about 50cm from the robot wheel base.
This mass, consisting of multiple steel plates, serves the
purpose of raising the robot's center of gravity. This is
necessary to slow down the rate of falling over for the robot to
enable Segway's control loop to operate effectively at a
realizable frequency.

Commands to the Segway RMP can either cause the robot
to move or modify the general operation characteristics of the
robot. Motion commands have a speed-rotation format of (v,
ω)T, where v is the forward velocity and ω is the rotational
velocity. These commands act as set points for the Segway
RMP's PID control loop. The control loop is a position
controlled, meaning the robot will continue to move as
commanded until it reduces the position error to zero or the
PID integrators are reset. The additional commands can
disable the Segway, reset the PID integrators, select different
gain schedules, or adjust the velocity/acceleration scales. The
different gain schedules prove useful for different
weight/height arrangements. In addition to receiving
commands, the Segway returns status information derived
from its internal sensors. The state information is sent at
100Hz and includes:

• Pitch, roll, yaw angles and rates

• Remaining battery charge

• Wheel velocity, displacement

• Forward displacement

As a platform for robotics research the Segway RMP
offers many unique features. First, it is a robust, extensible
platform capable of extended operation both in terms of
distance traveled and in operation time in both indoors and
outdoors. Although operation distance and time depend upon
terrain and use, figures of 16km and 3 hours are not
uncommon. The Segway is able to move at speeds

referee

goal

goal

considerably faster than most robotic platforms. It can carry a
significant payload, in excess of 100 kg. The mechanical
arrangement of the Segway means that sensors can be placed
to give a human perspective on the surrounding world without
compromising the robot's stability or maneuverability. The
dynamic balancing gives the robot a certain measure of active
compliance, which is more than useful when collisions occur.
The one caveat to the Segway, is that to maintain a stable
balanced operation it must remain within ±20° of vertical. If
the robot exceeds this limits, it automatically disables its
balancing and promptly falls over.

III.DEVELOPING A SEGWAY SOCCER PLAYER

We now describe our work to develop a Segway RMP
robot base capable of playing Segway Soccer. To build any
autonomous robot, one must develop a complete system
involving perception, cognition, and action. We begin by
presenting an overview of our approach, followed by a
detailed discussion of the vision, skill learning, development
environment, and hardware.

Figure 3. The control hierarchy used for the robot. The gray modules are the
perception-cognition-action part of the system. The white are development

infrastructure aids. Xdriver is a teleoperation program.

Overview

Figure 3 shows the complete control architecture for the
Segway RMP. The gray boxes show the main processing path
that makes up perception, cognition, and action. In a dynamic,
multi-robot environment, where robots are moving at speeds
approaching 3.5m/s (8mph), the ability to perceive and
respond to situations in minimum time is essential. Hence, it is
critical to overall robot performance that the control loop
formed by gray modules operates at full frame rate, and with
minimum latency, in addition to executing the correct
command for each situation. The white boxes show the
supporting development environment, which although not
critical to the normal operation of the system is critical to the
development cycle. Not shown in this figure are the
mechanical components to support ball manipulation. We now
describe each major component and its role in the overall
hierarchy, namely; the robot hardware, vision and tracking,
state representation, robot cognition, and the development
environment.

Robot Hardware

Just as the control hierarchy can be broken into perception,
cognition, and action, so too can the physical hardware be
broken into sensing, computation, and actuators. Figure 4
shows the main physical hardware components. For sensing,
the robot uses a single color CCD camera. Specifically, the
robot uses a Phillips 690 Web camera with a wide-angle lens
providing a Field-of-View of around 110°. The camera
provides 320x240 color pixels at 30Hz in a YUV 420 planar
format. The only other sensors are those internal to the
Segway as discussed above. For computation, two laptops are
used with one dedicated to the intensive task of perception
procession and the other dedicated to communication with the
Segway RMP via the CAN Bus. The latter occurs via the
Kvaser LAPCan II PCMCIA card. The remaining cognition
algorithms are distributed between the two laptops depending
upon computational requirements. In the current arrangement,
only motion control and interfaces with the Segway RMP and
CMU board run on the actuation laptop.

Figure 4. The main robot hardware components. The left shows the
kicker mechanism, the right shows the processing architecture.

Vision was chosen as the primary sensor for its high
information content, low cost, and suitably to the task of
recognizing multiple fast moving objects in a complex world.
As cameras are now a consumer item and are therefore
beneficiaries of competition in terms of device development
and price reduction. Thus, for building teams of robots it
makes sense to use an affordable sensor. Moreover, if suitable
algorithms can be developed to realize the vast potential of
vision its capabilities will far outweigh any comparably priced
sensor. We return to this discussion shortly.

The final component of the hardware system is a
mechanism for propelling the ball. Although it is possible to
propel the ball with a human ridable Segway through weight
transfer by swinging the feet through underneath the rider (see
figure 1), this motion is not effective with the Segway RMP
platform due to the lack of an actuated mass decoupled from
the robot base. Instead, we require a separate mechanism for
imparting energy into the ball. We have developed a
pneumatic kicking mechanism for just this task.

The task of ball manipulation is to develop motions and/or
mechanisms to transfer a maximum amount of energy to the
ball in as predictable a direction as possible. This problem has
been studied extensively within the RoboCup robot soccer
community [3,9,10]. We can categorize these different
approaches based on the actuation mechanism into:
pneumatic, spring, motor, and solenoid based kickers. Due to
the size and power requirements of the robot, a solenoid
solution is clearly inappropriate. Motor based approaches,

Air pistons
3/4” bore,
6” stroke

Solenoid
valves

Regulator: 140 psi

Electronic
pressure switch
close: 150 psi
open: 150 psi

Airtank: 1 gallon
150 max psi
15 kicks (120-150 psi)

To compressor

Perception

Cognition

Action

USB Camera(s)

Perception
Laptop

Robot Laptop

CAN Bus

GUI XDriver

Logging/Debug Server

Vision

Robot

Manager

Robot State

Internal State

Perception

Robot State

Internal State

World Model

Log file

such as the rotating bar of or the driven plate of [3,10],
although simple lack the power transfer capabilities at the
needed size or raise significant safety concerns. This leaves a
spring based solution, or a pneumatic one. A spring-based
solution has many appealing factors; namely it offers high
power to volume and power to weight ratios. The caveat is
that it requires specialized mechanical hardware creating a
design challenge, and more significantly a maintenance
challenge. Thus, we used a pneumatic approach due to its
simplicity and high power to weight ratio. Figure 4 shows the
main components of the pneumatic system. Essentially, two
pistons form the drive mechanism. Two 6V actuated solenoid
valves 'actuate' the device, while the regulator and electronic
switch maintain a set pressure and refill the tank with an on-
board compressor when the pressure drops too low.

Vision and Tracking

As described above, for this domain there are few sensors
that can compete with color vision for cost, size, information
content, and latency. Due to the size and speed of the Segway
RMP platforms, it is necessary for the robot to operate
predominantly outdoors on grass fields. Thus, algorithms that
are robust to changes in illumination and color variation are
needed. Unfortunately, there is a lack of vision algorithms that
provide the combination of robustness to color illumination
and can operate at full frame rate on a moderate processor.
Given the need to perform all computation related to
perception, cognition, and action, the need to operate in real-
time means that only a fraction of computational resources are
available for vision procession. To our knowledge, there are
no vision algorithms that offer all of these features.

A number of fast, color-based algorithms and freely
available source libraries have been developed for static
lighting conditions. In particular, CMVision [6], is one such
library for very quickly extracting color blobs from images
that has been widely used in RoboCup research. CMVision
operates using a fixed color table to map from pixel color
vectors to a symbolic color value. The actual color table is
generated a priori either by GUI tools or via supervised
learning algorithms. Once each pixel in the image is mapped
to a symbolic color value, a fast connected component
analysis is performed. The resulting regions are then reported
allowing for higher level recognition and tracking algorithms
to be run. Although very effective, the fixed color map means
that CMVision is unable to adapt as lighting conditions and
consequently color values, change. For example, if the sun
moves behind a cloud the color and luminance of the visual
scene can change quite dramatically.

To address this issue, we have extended CMVision to
detect well contrasting objects under variable illumination
conditions. Our algorithm extends CMVision by replacing the
pixel labeling process with an adaptive one derived from
knowledge of object geometry and color relative to the scene.
The complete vision algorithm works in five steps, as follows:

1. Transform the color space via vector projection

2. Build a histogram of resulting 1D pixel values

3. Analyze histogram for a peak satisfying constraints

4. Run connected components from CMVision

5. High-level filter resulting blobs to find ball

The first part of the process operates by projecting each
pixel p∈(1...N) with color values (yp, up, vp)T onto a 1D
intensity space via a normalized dot product operation
commonly found in image tracking applications [7].
Specifically, the operation is:

Ip=
yp up vp⋅a b cT

∣a∣∣b∣∣c∣
a , b , c∈{−6,. ..5 , 6} (1)

The values for the prototype vector (a, b, c)T are selected
manually. For the orange soccer ball, a prototype of (1 -3 5) T.
Thus, the ball must be bright and red/orange in color. A global
histogram of the resulting intensity image is constructed,
which is then searched for the brightest peak. We developed a
simple peak detection algorithm that takes into account
constraints including a minimum peak size, and area.
Concretely, the algorithm searches for the brightest peak

1. Starting from p = Nmax find p such that

HistppHmin , Histp≥ max
i=p..Nmax

Hist i (2)

2. Starting from m = p, find m such that

Histm≤mini=m..p Hist i , mp (3)

Where m and p are indexes constrained to {pmin,...Nmax},
Hist(i) is the histogram count for intensity i, and there are [0,
Nmax] possible intensity values (in practice Nmax = 255). The
found peak is only accepted if the area under the peak, Am, is
within the constraints: Amin ≤ Am ≤ Amax. Thus:

Ai=∑
j=i

Nmax

Hist j (4)

The minimum value, m, is chosen as the threshold value
for the image. Each pixel is then labeled using this threshold
and the components connected to form regions. A number of
high level filters are then run on the largest regions satisfying
a minimum size constraint. Each filter produces a confidence
estimate c∈[0, 1] based on known geometric properties of the
object, and the product of the confidences is used as the
confidence for that region. For the ball, these estimates are the
same as for [11]; an expected bounding box size, an expected
pixel count given the boundary box size, and the shape of the
bounding box. Figure 5 shows the algorithm in action.

Figure 5. The left image shows a raw image, the right the processed result
with ball pixels labeled and a bounding box drawn around the identified ball.

Robot Cognition

Through our previous work, we have developed a control
architecture for multi-robot control in adversarial, highly
dynamic environments. The architecture, which we call Skills-
Tactics-Plays [5], consists of Skills for low-level control
policies, Tactics for high-level single robot behavior, and
plays for team coordination. Here we briefly review the key
components of skills and tactics, and then focus on the new
developments for recording skills to speed up development.

Skills, tactics, and plays in the STP architecture form a
control hierarchical. Here we focus on skills and tactics that
form the components for single robot intelligence. A skill is a
focused control policy for carrying out complex actions in the
world. For this task, example skills include a particular
method to kick the ball, a technique to prepare for a kick, or a
method for stealing the ball from an opponent. A tactic
encapsulates a complete single robot behavior such as
shooting the ball in the goal, passing, acting as a goal keeper.
Skills form the high-level action primitives for tactics, thus
tactics affect the world by commanding skills to execute and
passing parameters appropriately. Skills can be connected into
a finite-state-machine for a given tactic. Thus, a tactic can
perform a range of complex actions by triggering the
appropriate sequence of skill execution. For example to shoot
the ball at the goal, the shoot tactic executes a sequence of
skills such as gotoBall, positionForKick, and when aimed at
the target the final kick skill. Transitions between skills are
controlled based on the perceived state of the world using a
decision tree. Finally, following the usual behavior based
approach [1], tactics and skills both execute in parallel and
compute their decisions once per vision frame at 30Hz. The
tactics set the parameters for skill execution, and possibly the
executing skill, while the skill makes its decision on the world
state and generates output for the robot low-level modules.

Figure 6 shows the skill state machine for the shoot tactic.
To ease the complexity of skills, we have also developed a
robot control module. This module implements a motion
control algorithm as in [4]. Additionally, we have developed
skill recording mechanisms which we describe next. Thus, the
skills actuate the robot through the motion control module by
setting a robot relative way point, through the motion
playback module, or by directly actuating the robot (not
shown). The robot command is sent to the Segway via the
CAN Bus.

Figure 6. The skill state machine for the shoot tactic. Also shown is the
motion playback portion of the skill recording mechanism.

In an adversarial domains, the efficiency, accuracy, and
robustness of skill execution is a major factor in determining

robot performance. Skill performance is a direct function of
the robot mechanics, control system, and the local
environment. As such, skills do not transfer well from one
environment to the next, from one robot platform to another,
and from simulation to reality. Finally, as skills are inherently
tied to the low-level actions of the robot, they typically require
many parameters to define their execution. Tuning these
parameters by hand is time consuming and error prone. Thus,
we desire a technique to enable rapid tuning of skill
parameters.

We have developed a skill recording system, whereby a
human operator can teach a robot a skill. The human operator
guides the robot via tele-operation through a complex motion.
The commands sent to the robot at each processing cycle are
recorded to a file, which can then be edited manually if
desired. The recorded commands can be played back at run
time verbatim. The result is a complex motion which can be
executed by a tactic as a skill.

To test the validity of this approach, we recorded a kick
motion for the Segway RMP to kick the ball. To best execute
a kick on rough terrain, the Segway RMP must first lean
forward, drive through the ball actuating the kicker at the
correct time, and then slow down to avoid running over the
ball and robbing it of its momentum. Although writing an
algorithm to generate such motion presents only minor
difficulty, tuning the parameters to achieve the right behavior
takes a non-negligible amount of work due to the need to test
and adjust parameters. In contrast, it is relatively straight
forward to provide the robot with a good example via tele-
operation (especially if one is already experienced with
driving the robot).

The mechanism described here can only be used to
reproduce directly recorded motions. There is no ability to
generalize beyond the examples it has been given. Our future
work is to extend this approach to incorporate generalization
mechanisms. With such an ability we hope to significantly
reduce the complexity required to develop complex skills.

Development Interface

One of the key aspects to robot development that is often
overlooked in the literature relates to the support infrastructure
to aid development. In our experience, good development
infrastructure can greatly ease the development burden,
however, there has been no scientific study of what 'good'
development infrastructure is. Based on our prior experiences,
we have developed a number of infrastructure tools for the
Segway RMP to aid development. Concretely, we have
developed a Debug Server and GUI client for providing
contextual text and graphic debug information at execution
time. We have also developed a logging/playback system to be
able to record what the robot 'sees', 'thinks', and 'does' and play
it back for later analysis. Finally, we have developed an off-
line vision testing tool to speed up the vision development
process. We now describe in detail each of these components.

Figure 7 shows the GUI output for allowing a remote user
to view several aspects of the robot's sensory and internal
state. This is particularly useful for developing behaviors for
the robot as one can quickly see what the robot's model of the
world is. The GUI client programs connect to the Debug
server (see figure 3) over a TCP socket. In the

GotoBall
Drive to

kick location

Kick
Playback

trained skillBall visible
and in kick zone

Sequence completeBall not seen in last t seconds

Observed
ball

Motion Control
GoTo <x,y,?>

Motion
Playback

Search
Rotate on spot

Skill State
Machine

Robot Control
Layer

Segway RMP Segway
Manager

RawRobotView display, the output of the vision system can be
seen and the user can use it to view the output of the various
tracking modules. For instance, the outputs from the ball or
obstacle tracking modules can be directly viewed. Other
output interfaces, such as the RobotLocalMap, show an ego-
centric view of the robot and show the positions of detected
objects around it, while the RobotPoseView, shows an ego-
centric side view of the robot so that the reported tilt angle can
be visualized. Finally, all of the text output generated from
the soccer server, such as debug and state information, can be
viewed on the RobotTextWindow display.

Figure 7. The GUI output showing the raw video from the Segway (top left),
the robot's state real-time information (top right), the robot's local world

model (bottom left), and a graphic of the robot state (bottom right). The GUI
may connect to the robot 'live' or to a log player for off-line analysis.

The Logging server allows the Segway to record all
sensor and state information at a configurable rate, so that it
can be analyzed off-line as well as replayed. The latter is
especially useful given the speed of action and the large
information content. The user can request a number of
different sensor channels to log, where these might be all of
the robot's pose and velocity state information, the raw video,
the segmented video, or even the specific positions of the
tracked targets (ball and players). Logging all of the raw
video data along with all of the robot state information is
fairly processor intensive and is not typically done unless
there is a specific need for it.

In order to test and debug the video processing algorithms,
the raw frames of video can be loaded into a vtest program
which will process each frame using all of the Segway's video
processing code. This is particularly useful for gathering large
amounts of video data for testing purposes. The robot can
simply be tele-operated around the environments where it will
be expected to operate, and new video processing code can be
tested without having to drive the robot.

IV.SUMMARY AND FUTURE WORK

The Segway RMP and HT present a new and exciting
robotics research platform. Based on this platform we have
devised a new domain called Segway Soccer for investigating
human-robot interaction within the confines of a real-time,
adversarial task. We have developed the single robot
capabilities to control a Segway RMP in an outdoor

environment. Specifically, we have developed robust outdoor
vision, a skill-tactic-play control hierarchy, and infrastructure
to support skill training, logging, and playback. All of the
algorithms described here have been fully implemented on the
Segway RMP and run in real-time at the full frame rate of
30Hz. Using these algorithms the robot can successfully
perform a shoot tactic in an outdoor environment with variable
lighting. We have made available videos of the robot in action,
including videos derived from the robot vision logs. We
encourage interested readers to download videos of the robot
operating at http://www.cs.cmu.edu/~robosoccer/segway. Our
future work will focus on extending the behavior repertoire of
the robot and moving towards mixed human-robot teams.

Acknowledgment

The authors would like to thank M. Sokolsky, D. Rozner,
D. Govindaraju, L. Xu, and B. Sklar for their work on the
Segway RMP robot. The authors would also like to thank Dr.
Douglas Gage and Segway LLC. for their support in this
project.

REFERENCES

[1] R. C. Arkin. "Behavior-Based Robotics". MIT Press, 1998.

[2] M. Asada et. al. "An overview of RoboCup-2002 Fukuoka/Busan". AI
Magazine, 24(2): pages 21-40, Spring 2003.

[3] S. Behnke et al., "Using Hierarchical Dynamical Systems to Control
Reactive Beahvior." RoboCup-99:Robot Soccer World Cup III. Berlin:
Springer, 2000, pp.189-192.

[4] M. Bowling and M. Veloso. "Motion Control in Dynamic Multi-Robot
Environments". In M. Veloso, E. Pagello, and H. Kitano, (eds).
RoboCup-99: Robot Soccer World Cup III, pp. 222-230, Springer
Verlag, Berlin, 2000.

[5] B. Browning, J. Bruce, M. Bowling, M. Veloso. "STP: Skills, tactics,
and plays for multi-robot control in adversarial environments". IEEE
Journal of Control and Systems Engineering, under submission.

[6] J. Bruce, T. Balch, and M. Veloso. “Fast and Inexpensive Color Image
Segmentation for Interactive Robots”. In Proceedings of IROS-2000,
Japan, October 2000.

[7] R. Collins and Y.Liu, "On-Line Selection of Discriminative Tracking
Features," IEEE International Conference on Computer Vision,
ICCV'03, Nice, France, October 2003, pp.346-352.

[8] M.B. Dias and A. Stentz. "Opportunistic Optimization for Market-
Based Multirobot Control". Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems IROS 2002, 2002.

[9] M. Ferraresso, et al., “Collaborative Emergent Actions Between Real
Soccer Robots.” RoboCup-2000:Robot Soccer World Cup IV. Berlin:
Springer, 2001, pp.297-300.

[10] N. Kiat, Q. Ming, T. Hock, Y. Yee, and S. Yoh, “LuckyStar II-Team
Description Paper.” RoboCup-2000:Robot Soccer World Cup IV.
Berlin: Springer, 2001, pp. 543-546.

[11] S. Lenser, J. Bruce, and M. Veloso. CMPack: “A Complete Software
System for Autonomous Legged Soccer Robots”. In Proceedings of the
Fifth International Conference on Autonomous Agents, May 2001.

[12] M. Nicolescu, M. J Mataric, "Learning and Interacting in Human-Robot
Domains", Special Issue of IEEE Transactions on Systems, Man, and
Cybernetics, Part A: Systems and Humans , Vol. 31, No. 5, pages 419-
430, C. C. White and K. Dautenhahn (Eds.), 2001.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	header: Proceedings of the 2004 IEEE International Conference on Robotics & Automation New Orleans, LA • April 2004
	footer: 0-7803-8232-3/04/$17.00 ©2004 IEEE
	01: 1752
	02: 1753
	03: 1754
	04: 1755
	05: 1756
	06: 1757

