
Time Series Classification Using Non-Parametric Statistics

keywords: time series, prediction, classification, non-parametric

Abstract

We present a new class-based prediction al-
gorithm for time series. Given time series
produced by different underlying generating
processes, the algorithm predicts future time
series values based on past time series val-
ues for each generator. Unlike many algo-
rithms, this algorithm predicts a distribution
over future values. This prediction forms
the basis for labelling part of a time series
with the underlying generator that created
it given some labelled examples. The algo-
rithm is robust to a wide variety of possible
types of changes in signals including mean
shifts, amplitude changes, noise changes, pe-
riod changes, and changes in signal shape.
We show results demonstrating that the algo-
rithm successfully segments signals for a wide
variety of example possible signal changes.

1. Introduction

Segmentation of time series into discrete classes is an
important problem in many fields. We approach the
problem from the field of robotics where time series
generated by sensors are readily available. We are
interested in using these signals to identify sudden
changes in the robot’s environment. By identifying
these changes in the sensor signals, the robot can intel-
ligently respond to changes in its environment as they
occur. For this application, the signal segmentation
must be performed in real time and on line. There-
fore, we are focused on algorithms which are amenable
to on-line use. Also, usually mathematical models of
the processes that generate the sensor signal are un-
available as are the number of possible generating pro-
cesses. Therefore, we are focused on techniques that
require very little a priori knowledge and very few as-
sumptions. In particular, we are focused on techniques

Preliminary work. Under review by the International Con-
ference on Machine Learning (ICML). Do not distribute.

where the number of generating processes (or classes
of signals) is unknown in advance and where generator
models for each class are unavailable.

In previous work (Lenser & Veloso, 2003), Lenser and
Veloso developed a technique for segmenting a time se-
ries into different classes given labelled example time
series. In that work, they broke the time series into
windows and used distance metrics over probability
densities to determine from which class each window
was generated. In this work, we improve on their tech-
nique by allowing for smaller window sizes, putting the
segmentation on a strong probabilistic foundation, and
taking into account the conditional dependence of time
series points on points in the recent past.

We have named our new algorithm for classifying
time series the Probable Series Classifier (PSC). It is
based on a time series prediction component which we
will refer to as the Probable Series Predictor (PSP).
It generates predictions based upon an internal non-
parametric model which is trained from an example
time series. PSP uses this model and the most recent
values from a time series to predict the future values
that are likely to be seen. PSP is typically used to pre-
dict the next value in a running time series based on
recent observed values, a new observation is obtained,
and the process is repeated. Unlike many other meth-
ods, PSP does not predict a single next value for the
time series, but instead predicts a probability density
over next values. Because of the way this prediction
is done, PSP is capable of making multi-model predic-
tions which is important in order to represent realistic
time series. PSC uses several PSP modules to classify
a time series into one of a set number of pre-trained
generator classes. PSC uses one PSP module per gen-
erator class. Each PSP module is pre-trained from an
example time series generated by one of the generator
classes. PSC runs each PSP module on a time series
to be classified and uses the one which best predicts
the time series to classify the unknown time series.

There has been much interest in time series analy-
sis in the literature due to the broad applicability of
time series techniques. There have also been many

approaches to time series predictions, most of which
are focused on producing a single predicted value. For
example, time series prediction has been done using
AR, ARMA, IMA, and ARIMA models (e.g. (Deng
et al., 1997)). All of these techniques produce a single
estimated next value in the time series. In contrast,
we generate a distribution over next values. These
ARIMA models are also not class-based, which makes
them better suited for time series produced by a single
underlying process or underlying processes that vary
continuously. PSC, on the other hand, is tuned for sit-
uations where the time series is produced by a set of
discrete underlying processes. These differences make
these other algorithms suited for a different class of
problems than PSC.

There are also a wide variety of algorithms based
on classes, particularly in the domain of fault detec-
tion and identification (FDI). These FDI algorithms
(e.g. (Basseville & Nikiforov, 1993; Hashimoto et al.,
2001)) are usually specialized for the case of two
classes, one which represents normal operation of the
system and one which represents a failure. Because
it is difficult to gather data on failure cases, these al-
gorithms focus on confirming/denying the hypothesis
that the system is working correctly. This focus re-
sults in algorithms that have a one-sided test where
the decision of working/failure is based entirely on
the properties of the normal case which results in less
knowledge being needed at the cost of some resolution
power. Also, most of the algorithms are further spe-
cialized for detecting particular types of changes in the
signal. Detecting mean shifts in the signal is a partic-
ularly common specialization while other algorithms
specialize in variance changes.

We take a very general approach where we detect a
wide variety of types of changes to the signal which
sets PSC apart from these other techniques. There
has also been a lot of interest in HMMs and switch-
ing state-space models, e.g. (Penny & Roberts, 1999;
Ghahramani & Hinton, 1998). These techniques re-
quire an a priori knowledge of the underlying structure
of the system, which is not available for the robotic
signals we are interested in. PSC does not require as
much knowledge about the system structure, as we
only require labelled time series examples.

2. Probable Series Classifier Algorithm

Consider a time series of values ~x0, ~x1, . . . , ~xt gener-
ated by k distinct generators. Assume each generator
is a Markov process possibly with some hidden state.
At each point in time, one of the generators is ac-
tive and generates the next data value in the time

series based upon its hidden state and the previous
time series values. Also assume that the frequency
of switching between generators is relatively low, such
that sequential values are likely to be from the same
generator. We are interested in using the time series
of values to recover which generator was active at each
point in time using only example time series created
by each generator.

The belief state at time j for generator ci is the prob-
ability of it being active at time j:

B(ci,j) = P (ci,j |~xj , ~xj−1, . . . , ~x0)

=
P (~xj |~xj−1, . . . , ~x0, ci,j) ∗ P (ci,j |~xj−1, . . . , ~x0)

P (~xj |~xj−1, . . . , ~x0)

We take a maximum likelihood approach, and are in-
terested in finding ci that maximizes this probability.

Note that P (~xj |~xj−1, . . . , ~x0) is just a normalizing con-
stant and thus doesn’t affect which ci has the max-
imum likelihood. Furthermore, we will make the
simplifying assumption that the effective information
found in time series values more than m time steps
in the past is negligible, given more current readings.
This assumption simplifies P (~xj |~xj−1, . . . , ~x0, ci,j) to
P (~xj |~xj−1, . . . , ~xj−m, ci,j).

P (ci,j |~xj−1, . . . , ~x0)

=
∑

l

P (ci,j , cl,j−1|~xj−1, . . . , ~x0)

=
∑

l

P (ci,j |cl,j−1, ~xj−1 . . . ~x0)P (cl,j−1|~xj−1 . . . ~x0)

=
∑

l

P (ci,j |cl,j−1) ∗B(cl,j−1)

Here we have assumed that ci,j is independent of ob-
servations before time j given cl,j−1 for all l.

These assumptions simplify the problem to finding the
ci that maximizes the following equations providing a
recursive solution:

B(ci,j)
∝ P (~xj |~xj−1, . . . , ~x0, ci,j) ∗ P (ci,j |~xj−1, . . . , ~x0)
≈ P (~xj |~xj−1, . . . , ~xj−m, ci,j) ∗ P (ci,j |~xj−1, . . . , ~x0)

= P (~xj |~xj−1 . . . ~xj−m, ci,j)
∑

l

P (ci,j |cl,j−1)B(cl,j−1)

This belief update equation is useful for segmentation
and classification. Our Probable Series Classifier al-
gorithm uses the update equation for classification by
finding the generator class that maximizes the proba-
bility of an unknown time series (using PSP for some
key probability calculations). The probability of the

unknown time series of length w for a generator ci can
be calculated using the following equations, where we
assume that P (ci,j |cl,j−1) = 0 for i 6= l and the initial
beliefs over all generator classes are equal.

B(ci,j)

∝ P (~xj |~xj−1 . . . ~xj−m, ci,j)
∑

l

P (ci,j |cl,j−1)B(cl,j−1)

= P (~xj |~xj−1, . . . , ~xj−m, ci,j) ∗B(ci,j−1)

= B(ci,j−w)
i∏

l=j−(w−1)

P (~xl|~xl−1, . . . , ~xl−m, ci,l)

∝
i∏

l=j−(w−1)

P (~xl|~xl−1, . . . , ~xl−m, ci)

3. Probable Series Predictor Algorithm

We need a prediction of the likelihood of new time se-
ries values based upon previous values and the current
generator ci.

P (~xj |~xj−1, . . . , ~xj−m, ci,j)

Note, that ci is known in this case, so we know what
generator we are predicting for. Assume we have pre-
vious time series values generated by this generator.
We can use these previous examples to generate an es-
timate at time j given the previous values of the time
series. We will focus on the case where m = 1 and ~x
is a single dimensional value.

We have

• a set of value pairs ~xi,~xi−1

• a value at time j − 1: ~xj−1

We need to generate a probability for each possible ~xj .
We can use non-parametric techniques with a locally
weighted approach. The problem is visualized in Fig-
ure 1. We need to introduce some terminology to more
easily discuss the problem.

base value(s) Those value(s) used in generating a
predicted value. These are the time series val-
ues on which the output is conditioned. In the
case of m = 1, this is just ~xj−1. The condition-
ing on the generator is accomplished by having a
separate model for each generator.

output value The value output by prediction.

model points Points in base/output space in the
training data for a generator. These points form
the model for this generator. Each point is a pair
of values: an output value ~xj and associated base
value(s) ~xj−1, . . . , ~xj−m.

base value

base value

ou
tp

ut
 v

al
ue

ou
tp

ut
 v

al
ue

w
ei

gh
t

probability

Figure 1. Data prediction. The dots in the main graph
show the data available for use in prediction. The grey bar
shows the range of values used in the prediction. The bot-
tom graph shows the weight assigned to each model point.
The left graph shows the contribution of each point to the
predicted probability of a value at time t as dotted curves.
The final probability assigned to each possible value at time
t is shown as a solid curve.

model point base value(s) The base value(s) in a
model point.

prediction query A query of the model which pro-
vides ~xj−1, . . . , ~xj−m as input and generates a
probability density over ~xj as output.

query base value(s) The base value(s) in the pre-
diction query.

We will generate a probability density by generating a
weighted set of output value predictions, one from each
model point. A kernel is used that assigns more weight
to model points with base value(s) near the query base
value(s). The predicted output values must then be
smoothed to form a continuous probability density.

We use a bandwidth limited kernel over base value(s)
to weight model points for speed reasons. The kernel
used is the tri-weight kernel:

Kt(x, h) =
{

(1− (x/h)2)3 if |x/h| <= 1,
0 otherwise

This kernel is a close approximation to a Gaussian
but is much cheaper to compute and reaches zero in
a finite bandwidth. The finite bandwidth allows some
points to be eliminated from further processing after
this step. The bandwidth h is a smoothing parameter

Procedure PredictOutput(generator model,base values)
let OP ← generator model.model points
let D ← dist(OP.base values,base values)
Choose base dist equal to the d

√
neth smallest d ∈ D.

let hb ← base dist + noise base
let pred ← {z.output value | z ∈ OP ∧

dist(z.base values, base values) < hb}
Perform correlation correction on pred.
let base ← {z.base values | z ∈ OP ∧

dist(z.base values, base values) < hb}
Choose ho that minimizes M(ho) over pred.
Return probability density equal to

pdf(z) =
P

i Kg(predi − z, ho)∗
Kt(basei − base values, hb)

Table 1. Probable Series Predictor algorithm.

that controls the amount of generalization performed.
We need to select a bandwidth h for this kernel. From
non-parametric statistics, it is known that in order
for the prediction to converge to the true function,
as n → ∞ (the number of model points), the follow-
ing two properties must hold: h → 0 and n ∗ h → ∞.
These properties ensure that each estimate uses more
data from a narrower window as we gather more data.
We use a ballooning bandwidth for our bandwidth se-
lection. A ballooning bandwidth chooses the band-
width as a function of the distance to the kth nearest
neighbor. Since the average distance between neigh-
bors grows as 1/n, we choose a bandwidth equal to the
distance to the

√
n nearest neighbor, ensuring that the

bandwidth grows as 1/
√

n which satisfies the required
statistical properties. We add a small constant an to
this bandwidth to ensure that a non-zero number of
points have non-zero weight. This constant is chosen
equal to the minimum amount of base value change
that is considered meaningful. Each model point is
assigned a weight by the base kernel Kt which is used
to scale its prediction in the next stage.

Figure 1 illustrates the PSP algorithm. The dark cir-
cles represent model points that have already been
seen. The x axis shows the base value. The y axis
shows the output value. The dark vertical line shows
the query base value. The grey bar shows the range of
values that fall within the non-zero range of the base
kernel. The graph underneath the main graph shows
the weight assigned to each model point based on its
distance from the query base value. A prediction is
made based on each model point that is simply equal
to its output value (we will refine this estimate later).
The dotted lines leading from each model point used
in the prediction shows these predicted output values.
PSP is described in pseudo-code in Table 1.

We need to smooth the predicted output values to get
a continuous probability density. We will once again

turn to non-parametric techniques and use a Gaussian
kernel centered over each point. A Gaussian kernel is
used because it assigns a non-zero probability to ev-
ery possible outcome. If we chose a bandwidth limited
kernel, we would have locations with zero probability.
These zero probability regions would make entire se-
quences have zero probability for some classes, a form
of overfitting. The Gaussian kernel used is:

Kg(x, h) =
1

h
√

2π
∗ e−(x/h)2/2

We need a method for selecting a bandwidth for Kg,
the output kernel. We can’t reuse the ballooning
method because it would result in an invalid prob-
ability density function which changes as you query
it. This output bandwidth can be found by a simple
search if we first develop a metric for determining the
quality of a bandwidth. The error we are interested in
is the ratio of predicted probabilities to actual proba-
bilities, not the distance between these two probabili-
ties. We chose to use the pseudo-likelihood cross vali-
dation measure (Habbema et al., 1974; Duin, 1976).
This method is known to minimize the Kullback-
Leibler distance between the estimated probability
densities and the actual probability density (for many
classes of probability densities (Hall, 1987)). The
Kullback-Leibler distance (

∫
f(x) ∗ ln(f(x)/g(x))dx)

has a strong dependence on the ratio of the two proba-
bility densities. The pseudo-likelihood cross validation
method maximizes the likelihood of the data predict-
ing itself over all possible bandwidths. We use leave-
one-out cross-validation where each point is excluded
from its own prediction. The pseudo-likelihood cross
validation measure is defined as:

M(h) =
∏

i

∑
j 6=i

Kg(
xi − xj

h
, h)

PSP does a search over all possible bandwidths start-
ing from one corresponding roughly to expected mea-
surement noise and ending with one corresponding to
the range of possible values. The search is done by
starting at the low value and increasing the bandwidth
each time by a constant factor. The bandwidth with
the maximum pseudo-likelihood cross validation mea-
sure is chosen as the bandwidth.

As exemplified in Figure 1, there is usually a strong
correlation between the time series value at time t and
the value at time t−1. This correlation causes a natu-
ral bias in predictions. Model points with base values
below the query base value tend to predict an output
value which is too low and model points with base val-
ues above the query base value tend to predict an out-
put value which is too high. We can correct for this

data at time t−1

da
ta

 a
t t

im
e

t

linear fit

Figure 2. Correlation removal. A linear fit to the model
points (shown as dots) is shown. The grey vertical bar
shows the range of values actually used in the prediction.
The short solid lines show the effect of shifting the model
points to match the base value of the query while taking
into account the correlation. The hollow squares show the
predicted output values.

bias by compensating for the correlation between xt

and xt−1. We calculate a standard least squares linear
fit between xt−1 and xt. Using the slope of this linear
fit, we can remove the bias in the predicted output val-
ues by shifting each prediction in both base value and
output value until the base value matches the query
base value. This process is shown in Figure 2, where
we can see that the predicted output value can shift a
substantial amount, particularly when using points far
from the query base value. This correlation removal
was used in all the tests performed in this paper.

4. Evaluation

We tested the PSC using simulated data, allowing us
to know the correct classification ahead of time. It also
allowed us to systematically vary different parameters
of the signal to see the response of the classification
algorithm.

4.1. Methodology

We used PSC to segment a signal generated from 2
classes. One generator class was a fixed baseline signal.
The other generator was a variation of the baseline
signal formed by varying one parameter of the signal.
The algorithm was graded on its ability to correctly
label segments of the signal that it hadn’t been trained
on into the 2 classes. We tested the performance of
PSC by varying the following test parameters:

Training window size The number of data points
used to train on each generator. The smaller the
window size the harder the problem.

Testing window size The number of data points
used to classify each unknown time series segment.
The smaller the window the harder the problem.

Parameter value The value of the parameter used
in the modified signal. The closer the parameter
to the baseline value the harder the problem.

Parameter modified The parameter chosen for
modification. We tested changes to the following
parameters:

• Mean
• Amplitude/Variance
• Observation Noise
• Period
• Signal Shape

For each test we generated a time series with 4000
data points. The baseline generator(class 1) gener-
ated points 0–999,2000–2999 and the modified gener-
ator(class 2) generated points 1000–1999,3000–3999.
We chose to use a sine wave for the underlying signal
for the baseline. We added uniform observation noise
to this underlying signal to better reflect a real world
situation. We did not try adding process noise. The
signal is parameterized by amplitude, mean, period,
and noise amplitude resulting in 4 parameters. In ad-
dition, we ran some tests where the modified signal
was generated from a triangle wave with parameters
as per the sine wave as shown in Figure 3. The stan-
dard signal used an amplitude of 5 ∗ 105, a mean of 0,
a period of 20 observations, and a noise amplitude of
5∗104. This results in ±10% noise on each observation
point relative to the range of the signal.

-600000

-400000

-200000

 0

 200000

 400000

 600000

 900 950 1000 1050 1100

va
lu

e

time step

Figure 3. Example signal. The first half of the figure shows
the baseline sine wave and the second half shows the tri-
angle wave.

For each test we subdivided the 4000 data points
into 100 data point long segments. We used seg-
ments starting at 0, 200, 400, . . . , 3800 for training
models of classes. We used segments starting at
100, 300, 500, . . . , 3900 for testing the ability of the

models to correctly label new data. For each possi-
ble combination of testing segment, training segment
for baseline signal (class 1), and training segment for
modified signal (class 2), we evaluated the likelihood of
the test segment coming from class 1 or 2 based upon
the trained models. If the more likely class matched
the actual class for the test segment, we counted that
trial a success. We used the fraction of correct la-
bellings as the metric for evaluating the performance
of the algorithm. This metric is shown in most of the
graphs. A value of 1 indicates a perfect segmentation
of the test segments into classes. A value of 0.5 is
the performance expected from randomly guessing the
class. This metric equals the probability of getting the
correct labelling using a random training segment for
class 1, a random training segment for class 2, and a
random testing segment.

4.2. Results

We summarized our test results in a series of figures.
The y axis shows the fraction of correct labellings
achieved by PSC. In each figure, there is a point at
which the performance of PSC falls to chance levels
(0.5). These points occur where the generators for
class 1 and class 2 have the same parameters and are
hence the same signal. Since a signal cannot be seg-
mented from itself, we expect the algorithm’s perfor-
mance to fall to chance levels at these points.

We considered two main usage scenarios for the avail-
ability of training/testing data. In the first scenario,
we considered applications where the training and test-
ing windows are of the same size as might occur in clus-
tering applications. In the second scenario, we consid-
ered applications where a constant, large amount of
training data is available as would occur in on-line la-
belling applications.

4.2.1. Equal Size Training and Test Windows

Figure 4 shows the performance of PSC with respect to
changes in the amplitude of the signal. When the sig-
nals are the same, the performance drops to the chance
level of 0.5. The rest of the time, PSC performs quite
well even for extremely small window sizes. With a
window size of just 100 data points, PSC is success-
fully able to segment between even very small changes
of amplitude. Even with only 5 data points for train-
ing and another 5 for testing, PSC correctly labels
most of the test sequences. Using 5 data points cor-
responds to using data from only 1/4 of the period
of the signal. PSC also matches intuition well in per-
forming better for larger training/testing window sizes
and larger changes in the signal. This type of change

to the signal would not be detected by algorithms that
are only sensitive to mean shifts as a change in ampli-
tude does not change the mean but only the variance.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06 1.8e+06 2e+06

fra
ct

io
n

co
rr

ec
t

amplitude

win size 5
win size 10
win size 20
win size 40
win size 80
win size 100

Figure 4. Detection of changes to the signal amplitude with
equal sized training and testing windows. The x axis shows
the factor by which the amplitude was multiplied.

Figure 5 shows the performance of PSC with respect
to mean shifts. PSC performs well and is able to de-
tect small mean shifts. Detecting mean shifts requires
more data points than some of the other changes, as
multiple periods worth of data are desirable to confirm
a mean shift. This type of change to the signal can
be detected by algorithms capable of detecting mean
shifts. Many mean shift algorithms would have trou-
ble with a periodic signal like this sine wave, though,
unless the data was averaged over a full period which
would slow detection time.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.5 1 1.5 2

fra
ct

io
n

co
rr

ec
t

mean shift

win size 5
win size 10
win size 20
win size 40
win size 80
win size 100

Figure 5. Detection of changes to the signal mean with
equal sized windows. The x axis shows the mean shift
as a fraction of the signal amplitude.

Figure 6 shows the performance of PSC with respect
to changes in observation noise. This type of change is
very difficult to detect as it produces no mean shift in
the signal and a negligible variance change. Neverthe-
less, PSC is still able to detect this type of change very
effectively. With a window size of 100, PSC almost
perfectly segments the data for a small 2x change in
noise. We are not aware of any other algorithms that
can detect this kind of change to a signal.

Figure 7 shows the performance of PSC in detecting
changes in the period of the signal. PSC performs
well at detecting a shortening of the period for a wide

range of window sizes, with larger windows providing
better performance. PSC also performs well at detect-
ing lengthening of the period for the larger window
sizes.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

fra
ct

io
n

co
rr

ec
t

noise amplitude

win size 5
win size 10
win size 20
win size 40
win size 80
win size 100

Figure 6. Detection of changes to the observation noise
with equal sized windows. The x axis shows the obser-
vation noise as a fraction of the signal amplitude.

The performance at detecting lengthening of the pe-
riod for small window sizes is erratic and often poor.
This poor performance is caused by a misalignment
between the part of the period of the signal used for
training and the part used for testing. Since the train-
ing/testing windows for the smaller window sizes are
only a small part of one period, it is often the case that
the training window and the testing window come from
different parts of the signal period. Naturally, the pre-
dictions during the testing phase are poor when tested
on a part of the signal that was never seen during train-
ing. This effect accounts for the poor performance of
PSC for long periods and short window sizes. PSC
performs well in the cases where the training data and
testing data contain the same parts of the signal. Usu-
ally, algorithms which detect period changes are highly
specialized to period changes and are incapable of de-
tecting other changes.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 20 30 40 50 60 70 80

fra
ct

io
n

co
rr

ec
t

period

win size 5
win size 10
win size 20
win size 40
win size 80
win size 100

Figure 7. Detection of changes to the period with equal
sized windows. The x axis shows the period of the signal.

4.2.2. Constant Size Training Windows

Figures 8, 9, 10, and 11 show the equivalent tests to
Figures 4, 5, 6, and 7 respectively, except that in all
cases the training window size is fixed at 80. As can be

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 200000 400000 600000 800000 1e+06 1.2e+06 1.4e+06 1.6e+06 1.8e+06 2e+06

fra
ct

io
n

co
rr

ec
t

amplitude

win size 5
win size 10
win size 20
win size 40
win size 80
win size 100

Figure 8. Detection of changes to the signal amplitude with
a fixed training window size. The x axis shows the factor
by which the amplitude was multiplied.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.5 1 1.5 2

fra
ct

io
n

co
rr

ec
t

mean shift

win size 5
win size 10
win size 20
win size 40
win size 80
win size 100

Figure 9. Detection of changes to the signal mean with a
fixed training window size. The x axis shows the mean
shift as a fraction of the signal amplitude.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

fra
ct

io
n

co
rr

ec
t

noise amplitude

win size 5
win size 10
win size 20
win size 40
win size 80
win size 100

Figure 10. Detection of changes to the observation noise
with a fixed training window size. The x axis shows the
observation noise as a fraction of the signal amplitude.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 20 30 40 50 60 70 80

fra
ct

io
n

co
rr

ec
t

period

win size 5
win size 10
win size 20
win size 40
win size 80
win size 100

Figure 11. Detection of changes to the period with a fixed
training window size. The x axis shows the period of the
signal.

seen from the graphs, the extra training data results in
an across the board improvement in the performance
of PSC. The graphs show that even very small window
sizes are sufficient for detecting most signal changes.
The most dramatic improvement is in detection of pe-
riod changes. With the longer training window size,
small testing window sizes are now sufficient for de-
tecting changes in the period of the signal. This im-
provement is caused by the guarantee of the testing
window overlapping the same phase of the signal as
at least some of the training window. PSC correctly
selects the relevant part of the training data and can
detect even small changes in period.

Figure 12 shows the ability of PSC to segment signals
based upon the shape of the signal. We tested using
two classes with identical parameters to the base sig-
nal except that for class 2 the signal is based upon
a triangle wave instead of a sine wave. The y axis
shows the difference in the log probability of the two
classes for a window of 25 data points. As can be seen
in the graph, the most likely class is also the correct
class in the vast majority of cases. We trained PSC on
a window of 100 data points for each class. We also
ran the same experiment with a few different training
window sizes and testing window sizes. In all cases, we
observed that increasing the amount of available data
resulted in larger margins in the classification (results
not shown).

-20

-15

-10

-5

 0

 5

 10

 15

 20

 0 500 1000 1500 2000 2500 3000 3500 4000

di
ffe

re
nc

e
in

 lo
g

pr
ob

ab
ili

ty

time step

Figure 12. Segmentation between a sine wave and a trian-
gle wave. The y axis shows the log probability of the sine
wave minus the log probability of the triangle wave. A
value above 0 indicates the signal is probably a sine wave
while a value below 0 indicates that a triangle wave is more
likely. Each data point shows the difference in log prob-
ability for the two possible signals based on a window of
25 data points centered at the x coordinate of the point.
The actual signal was a sine wave from times 0–999 and
2000-2999 and a triangle wave the rest of the time.

5. Conclusion

We have presented an algorithm for generating predic-
tions of future values of time series. We have shown
how to use that algorithm as the basis for a classifi-

cation algorithm for time series. We proved through
testing that the resulting classification algorithm ro-
bustly detects a wide variety of possible changes that
signals can undergo including changes to mean, vari-
ance, observation noise, period, and signal shape. The
algorithm has the nice property that the performance
of the algorithm improves when more training data is
available, when more data is available before a class la-
bel must be chosen, and when the difference between
the signals becomes greater. The algorithm can be
used to replace a collection of algorithms tuned to
detecting particular changes in signals with one algo-
rithm which can detect any change to the signal.

References

Basseville, M., & Nikiforov, I. (1993). Detection of
abrupt change - theory and application. Englewood
Cliffs, N.J.: Prentice–Hall.

Deng, K., Moore, A., & Nechyba, M. (1997). Learn-
ing to recognize time series: Combining arma mod-
els with memory-based learning. IEEE Int. Symp.
on Computational Intelligence in Robotics and Au-
tomation (pp. 246–250).

Duin, R. P. W. (1976). On the choice of smoothing
parameters of Parzen estimators of probability den-
sity functions. Proceedings of IEEE Transactions on
Computers (pp. 1175–1179).

Ghahramani, Z., & Hinton, G. E. (1998). Switching
state-space models (Technical Report). 6 King’s Col-
lege Road, Toronto M5S 3H5, Canada.

Habbema, J. D. F., Hermans, J., & van den Broek, K.
(1974). A stepwise discrimination analysis program
using density estimation. Proceedings of Computa-
tional Statistics (COMPSTAT 74).

Hall, P. (1987). On Kullback-Leibler loss and den-
sity estimation. The Annals of Statistics (pp. 1491–
1519).

Hashimoto, M., Kawashima, H., Nakagami, T., &
Oba, F. (2001). Sensor fault detection and identi-
fication in dead-Reckoning system of mobile robot:
Interacting multiple model approach. Proceedings of
the International Conference on Intelligent Robots
and Systems (IROS 2001) (pp. 1321–1326).

Lenser, S., & Veloso, M. (2003). Automatic detection
and response to environmental change. Proceedings
of ICRA-2003.

Penny, W., & Roberts, S. (1999). Dynamic models for
nonstationary signal segmentation. Computers and
Biomedical Research, 32, 483–502.

