Multiagent Meeting Scheduling with Rescheduling

Pragnesh Jay Modi and Manuela Veloso

Computer Science Department
Carnegie Mellon University
Pittsburgh PA 15213
{pmodi,mmy} @cs.cmu.edu

Abstract. We are interested in how personal agents who perform calenala-

agement on behalf of their human users can schedule meeffiegtively. A key

difficulty of concern is deciding when to reschedule an éxismeeting in favor
of a new meeting. We model the meeting scheduling problemspeeaial sub-
class of distributed constraint reasoning (DCR) calledititeemental, Limited
Information Exchange Multiagent Assignment Problem (Il&AR). Key novel-

ties of our approach include i) a focus on incremental scliregiui) scheduling

under a limited information exchange paradigm and, iingsnodels of other
agents to schedule more effectively. Our results are thafilBCR to show how
models of other agents can be used to improve problem sobérfgrmance.

1 Introduction

Meeting scheduling is a time consuming routine task thatnwdelegated to a
personal assistant agent promises to significantly redaite abgnitive load. A
key competency of agents who do meeting scheduling is thdityato coor-
dinate schedules such that all attendees of a meeting agriée siart time [3,
9, 2]. The problem is challenging in part because a) eachtafp@oses its own
schedule, i.e., scheduling distributed b) new meetings are introduced over
time, i.e., scheduling isicremental and c) agents arémited in the informa-
tion they can exchange. This article provides an approaanfutbagent meeting
scheduling using the Distributed Constraint ReasoningRPp@aradigm [1, 4,
5, 10, 11]. Previous researchers have proposed DCR as admknfor multia-
gent coordination and considerable progress has been naadthe last several
years. However, novel techniques are needed to addredsatenges described
above.

The main idea in this paper is to exploit given models of “stiieg diffi-
culty” with other agents’ in order improve meeting schedglperformance. The
specific hypothesis we investigate is that an agent can udelsof the calendar
density of other agents where we assume that the calendsitydencorrelated
with the agent’s rank in an organization. This is novel beseato our knowl-
edge, existing methods for DCR have not investigated hoake advantage of

learned or given models of other agents to aid in making sdhmgddecisions.
Further, we evaluate our approach iniaoremental schedulingaradigm, in
which new meetings must be scheduled in the context of atirxischedule.
Existing DCR approaches have focused primarily on batchlpno solving and
are not designed for minimizing disruption to an initial givsolution. Finally,
we assume that communication between agents is limitedxpliely prohibit
the communication of information about variables betwegenés who are not
involved in the variable’s value assignment. This restitis motivated by the
meeting scheduling domain in which schedule privacy is adacern. Exist-
ing DCR algorithms typically communicate “context” infoation which does
not adhere to this restriction.

We first formalize the meeting scheduling problem by defirengpecial
form of DCR which we call the Incremental, Limited Informati Exchange
Multiagent Assignment Problem (IL-MAP). IL-MAP requiregents to assign
values to variables where multiple agents must agree o \adgsignments but
are limited in what and to whom information can be commumidaSecond,
we describe a basic distributed protocol for IL-MAP in whih initiator pro-
poses assignments to others who either agree or refuseoihesed assignments
based on their own existing assignments. The protocol corgo our need for
limited information exchange by only communicating allahieformation to
relevant agents. Third, we use this basic protocol to iiyat using models
of scheduling difficulty with other agents to increase dffemess of the mul-
tiagent meeting scheduling process. Finally, we demaestrat our approach
improves scheduling effectiveness in an agent organizé&ierarchy where the
lower ranked agents have lower calendar density than thehiginked agents
in the hierarchy.

The multiagent meeting scheduling problem has been prslyidavesti-
gated but methods for making effective rescheduling dewssis lacking. Sen
and Durfee [9] formalize the problem and identify a familynefgotiation proto-
cols aimed at searching for feasible solutions in a distetbumanner. However,
rescheduling of existing meetings or modeling of other &gémimprove per-
formance is not a major focus. Sen and Durfee also describateact-net ap-
proach for multiagent meeting scheduling [8] and in thisteat) rescheduling
and cancellation of existing meetings is discussed. Thie&rissues are raised
and arich decision making framework is presented but is intieoretical. Our
research represents a further investigation of some ofritieat issues raised
by them. Freuder, Minca and Wallace [2] have previously stigated meeting
scheduling within the DCR framework where the primary mation was to in-
vestigate tradeoffs between efficiency of scheduling ass & privacy, but not
issues of incremental problem solving or agent modelinghateddressed.

2 Meeting Scheduling as Distributed Constraint Reasoning

We view meeting scheduling as a distributed problem in we&th agent man-
ages and is responsible for its own calendar. A centralippdoach is also pos-
sible in which a single server is assumed to have accesshagaat's calendar
and makes scheduling decisions for all agents. Howeventsatized approach
has several drawbacks including that it requires agen&vieat potentially pri-
vate calendar information to the central server.

We use the Distributed Constraint Reasoning (DCR) paragligijto model
distributed meeting scheduling. DCR is defined by a set aélsbes where each
variable is assigned to an agent who has control of its valnd,agents must
choose values for their assigned variables so that a givesf senstraints are
satisfied or optimized. Constraints between variablegasdito the same agent
are calledntra-agentconstraints, while constraints between variables asdigne
to different agents are callédter-agentconstraints. To ensure that inter-agent
constraints are satisfied, agents must coordinate theicelod values for vari-
ables through a communication protocol.

2.1 The Multiagent Assignment Problem (MAP)

In this section, we introduce an important subclass of DCRlwkve call the
multiagent assignment proble(AP) . In MAP, we assume that agents must
map elements from one set, which are modeled as the variableements of

a second set, which are modeled as the values. Importarglgsaume multi-
ple agents need to agree on the assignment of a value to awgikiable. Since
decision-making control is distributed among the ageis, ‘tagreement” re-
quirement raises many unique challenges.

We define MAP as follows.

- A={A1, Ay, ..., A, } is a set ofagents

-V ={W,V,..,V,}is aset olvariables

— D ={dy,ds,...,dy} is a set olvalues

participant{V;) C A is a set of agents who are assigned the vari&hle
varg(4;) C Vis a set of variables assigned to agdnt

For each variablé/;, an inter-agenagreementonstraint is satisfied if and
only if the same value fror® is assigned td; by all the agents iparticipant{V;).
For each agenti;, an intra-agenmutual exclusiorconstraint is satisfied

if and only if no value fromD is assigned to more than one variable in
vars(4;).

MAP has some similarities to the classical “assignmentlerabfrom com-
binatorial optimization research[7]. Two key differenc® that a) MAP re-
quires distributed agents to agree on assignments and b) §t&B not yet

model degrees of solution quality, only valid and invalidusions. Further ex-
tension of MAP to model optimization problems is importautufe work.

2.2 Meeting Scheduling as MAP

We describe the multiagent meeting scheduling problenoviad by its for-
mulation as a MAP. Meeting scheduling requires meetingsetgdired with
timeslots subject to three constraints: a) each meetingsig@ed to exactly one
timeslot, b) each timeslot is paired with no more than onetimgeand c) all
the attendees of a given meeting agree on its assigned dim€&kk goal of the
following model is to represent these three constraints.

We define the meeting scheduling problem as follows.

- A={Ay, As,..., A, } is a set of agents.

- M = {My, My, ..., M,,} is a set of meetings. We assume each meeting has

the same duratiod.

attendee§\/;) C A are the attendees of meeting.

meeting$A;) C M are the meetings of whicH; is an attendee.

initiator (M;) € attendees(M;) is the designated initiator of meetirdg;.

-7 ={T1,T5,...,T,} is a set of discrete non-overlapping contiguous times-
lots of lengthd.

— Sinit = {51,952, ...,5,} is a set of calendars. Ea}) is a mapping from
the meetings imeetingsA;) to timeslots in7. A calendars; is valid if and
only if a) each meeting is mapped to exactly one timeslot antimeslot
has more than one meeting mapped to it, and b) for each mektingnd
for all attendeesd;, A; € attendeeg§\},), S;(My) = S;(Mjy). That is, the
calendars of all attendees of a meeting agree on its assigneslot.

The representation of meeting scheduling as MAP is strimighard. The
set of MAP variabled’ is given by the set of meeting$t and the set of MAP
valuesD is given by the set of timeslotg. The participants of variable V;
correspond to thattendee®f meetingM;. The MAP intra-agent mutual exclu-
sion constraint prevents a timeslot from being double-kdand the inter-agent
agreement constraint ensures that meeting attendeesamtiee time.

Figure 1 illustrates the multiagent assignment problend (& solution)
with three agentsl,, A,, As, five meetings\{y,Ms,M3,M4,Ms and four times-
lots. Note that for each agent, each meeting is assigned ifteeedt value in
order to satisfy the intra-agent mutual exclusion constréetween agents, the
variables corresponding to the same meeting are assigeesathe value in
order to satisfy the inter-agent agreement constraint.

Variables and Participants Solution:

Mo A AL [M [M, [Mg | |
. 1 1 2 5
3- 72, A M M M
e e 2T My [Mg [My
Mz A LA,
sh A A Ay M] WMy T M]
Values: T1 T, T3 T4

Fig. 1. Meeting Scheduling as the Multiagent Assignment Problem.

2.3 IL-MAP: MAP in Incremental, Limited Information Exchan ge
Domains

We further extend the scheduling problem to introduce thé/IAP problem
in which agents must solve MAP in an incremental fashion evhihiting the
information they can exchange. These two features areidedanext.

Incremental In an incremental MAP, new variables and associated contstra
are added to the problem over time and must be integratechmexisting
assignment. In meeting scheduling for example, new meetimge over
time and must be scheduled in the context of an existing dakein addition
to the elements of MAP defined above, in the incremental @ergie are
also given:

— Sinit = {(Vl, dl), (VQ, dj), ey (Vm, dk)} is an initial solution.

— Vi1 is a new variable to be assigned a value.

— participant{V,,+1) C Ais a set of agents who are assigned the variable

Vinat-

The key difficulty that arises in incremental MAP is that ¢ixig assign-
ments may need to be changed in order to successfully accdatenthe
new variable but it is difficult to determine in advance whafanges will
result in a set of valid schedules.

Limited Information Exchange Although agents must exchange some infor-
mation in order to obtain feasible solutions, the informatexchange pro-
cess is limited due to the distributed nature of the problerparticular, we
assume the following condition.

— Agents do not communicate information about a variable entggwho
are not participants in that variable.

For example, the id of a variable, its current value, or theigipants in
the variable are not communicated between agents who at®tiopartic-
ipants in the variable. A key challenge is to schedule dffelst under this
condition.

procedure initiate(lM;):

)
()
@)
(4)
®)
(6)
@)

initiator(M;) «— A;

t— GetTimeslot(M;)

if tis null:
return

status{/;,t) < PENDING

for each Aj € attendees(M;):
send (PROPOSEM;, t, A;) to A

procedur e when recei ved(PROPOSE,
M;, t, initiator):

(8)
9)
(10)

(11)
(12)
(13)
(14)
(15)
(16)
17)
(18)
(19)
(20)

if existsM}, where status{/y, t) is PENDING:

reply — IMPOSSIBLE
else ifexists M}, where
status(\/y, t) is CONFIRMED:
if BumpingRule(M;, M) is true:
status{/y,t) — BUMPED
status{/;,t) — PENDING
reply< PENDING
else
reply— IMPOSSIBLE
else
statusi/;,t) «— PENDING
reply— PENDING
send (REPLY, Mj, t, reply, A;) to initiator

procedur e when recei ved(REPLY,
M;, t, reply, Attendee):

(21)
(22)

(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)
(38)

agentView{/; t,Attendee) < reply

if exists t’ wherev A, € attendees(M;),

agentView(\/;, t', Ax) is PENDING

and statusi/;, t') is PENDING
statusf/;, t') «— CONFIRMED
resol ved(M;)
for each Ay € attendees(M;):

send (CONFIRM, M;, t') to A

if existsM}, where status{/y,t") is BUMPED:

reschedul e(My)
else
t” — GetTimeslot(M;)
if t"is null:
resol ved(Mj;)
for each Aj € attendees(M;):
send (FAIL, M;)to Ay
else
status{/;,t") — PENDING
for each Aj € attendees(M;):
send (PROPOSEM;, t", A;)to Ay

procedure when recei ved(CONFIRM, M;, t):
(39) status{/;, t) — CONFIRMED

(40) resol ved(M;)

(41) if existsM}, where status(/y,t) is BUMPED:
(42) r eschedul e(My)

procedure when recei ved(FAIL, M;):
(43) resol ved(M;)

procedure when recei ved(RESCHEDULE M;):
(44) reschedul e(M;y)

procedure reschedul e(M;):

(45) if A; equalsinitiator(M;):
(46) if exists t where status(; t) is
BUMPED or CONFIRMED:
(47) status{/;, t) — IMPOSSIBLE
(48) for each Aj € attendees(M;):
(49) for each t where agentView{(/;, t,Ax) is
IMPOSSIBLE or PENDING:
(50) agentView(/;, t ,Ax) «— POSSIBLE
(51) initiate(M;)
(52) else
(53) send (RESCHEDULE Mj) to initiator (Mj)

procedure resol ved(M;):
(54) for each t where status{/;, t) is PENDING:

(55) status{/;, t) — POSSIBLE
(56) if existsM}, where statusi/y, t) is BUMPED:
(57) statusi/y, t) « CONFIRMED

Fig. 2. Algorithm for AgentA;

3 A Solution Technique for IL-MAP in Meeting Scheduling

We are interested in solution techniques for IL-MAP in thateat of distributed
meeting scheduling. We first describe a basic negotiateimémvork upon which
our technigues are applied. Next, we describe the problerastcheduling ex-
isting meetings. Finally, we present our approach for ngkims rescheduling
decision effectively.

3.1 Basic Negotiation Protocol

Sen and Durfee [9] describe a basic negotiation protocahfeeting scheduling
in which agents negotiate imunds Each meeting has a designated initiator
who manages the negotiation of the meeting by proposingstane collecting
responses from the other attendees in a sequence of roarexH round, each
attendee responds with a PENDING (accept) or IMPOSSIBLE¢tEmessage
for the proposed time. The initiator collects the respoimseach round and does
a set intersection to try to find a mutually acceptable tirha time is found, the
meeting is CONFIRMED (scheduled) in one additional round Hre process
terminates. Otherwise, the process continues in roundkthaetinitiator runs
out of times to propose in which case the process terminatbadailure.

We adopt a variant of this basic protocol in which attendeay tantatively
bump a CONFIRMED meeting in favor of a new meeting in orderaordase
the possibility of scheduling failure. We say it is tentativbumped because an
agent waits until the new meeting is confirmed in the bumpeadiot before
initiating rescheduling of the bumped meeting. If the nevetimgy is confirmed
in some other slot or fails to be scheduled, the bumped neéatine-instated
into its original slot. If an agent needs to reschedule a mgeif which it is not
the original initiator, it sends a RESCHEDULE message toititeator, who
will be responsible for restarting a negotiation episodetie meeting.

Details of the algorithm are shown in Figure 2. Two functiGhgTimeslot
and BumpingRule are purposely left unspecified in Figure @etTimeslot
returns a free timeslot from the calendar or null if one damsemist. This func-
tion encapsulates a local optimization routine which raadkthe free timeslots
according to a complex set of user preferences, and retoertsp ranked time.
Further discussion is out of scope of this paper and we rbferdader to [6]
for more details. ThdBumpingRule function returns true or false, and encap-
sulates the reasoning of the agent about whether one meétindd be bumped
for another. A technique for making this decision is destim rest of this next
section.

3.2 The Problem of When to Reschedule

A key algorithmic decision to be made is when to bump an exgsineeting

in favor of a proposed meeting. More specifically, an attendemust make a
rescheduling decision when it receives a proposal for mgétf; at time slotl;

but A; already has a meetiny, confirmed in slofl;. A; has to decide between
accepting the proposal or rejecting it. If the agent decidescept the proposal,

it may need to reschedul®/> with the other attendees. This rescheduling may
cause the other attendees in turn to bump other meetingshwhin result in
cascading disruption costs throughout the set of agentsaltérnative is for4;

to reject the proposal fab/y, but this entails risk also because the scheduling of
M7 may ultimately fail. It is difficult to determine in advancénigh is the better
decision because other people’s schedules are not diudlrvable.

Fixed strategies such as always rejecting or always bunfpihip be effec-
tive. Table 1 shows a comparison of the average performainte dwo fixed
strategies. (The exact experimental set-up is describedoire detail in Sec-
tion 5. These results are with 20 agents who have initialnckle densities of
85%.) The “failures” column shows that for the Never-Bummatggy a mu-
tually free timeslot could not be found in 49 out of 50 casdse Ttimeouts”
column shows that for the Always-Bump strategy the nedotiafailed to ter-
minate after a given amount of time (10 minutes) in 50 out o€&€es. In these
cases, a cascading effect caused many meetings to be bumipedtimately a
maximum time limit was reached.

Table 1. Empirical analysis of two strawman strategies illustraties need for intelligent
rescheduling techniques

Strategy RoundsMsgg FailuresTimeoutg
Never-Bump | 6.88 | 44 | 49/50 -
Always-Bump 614 (2736 - 50/50

3.3 Modeling Scheduling Difficulty

We propose a method for making rescheduling decisions icwdigents use a
model of “scheduling difficulty” with other agents. Such netalcan be given
to an agent or they can be learned by the agent over time.drpéper we are
interested in how a scheduling difficulty model, once ol#dincan be used by
an agent to improve rescheduling decisions. Also, we naertfore complex
models of scheduling difficulty are possible than the onsgmted here. How-
ever, such models require more effort to construct and areyumaranteed to

A4

Fig. 3. A model of relative scheduling difficulty with four agentls,, A3, A4 and As.

improve scheduling. We opt for the following model which @wputationally
convenient and can be shown to improve scheduling perfarenan

Let SD; be a number denoting tleeheduling difficultyof an agent4;, i.e.,
if SD; > SD;, then scheduling a meeting with ageftis expected to be more
“difficult” than with agentA;. SD is measured in scheduling difficulty “units”.
We use this factor to encapsulate the many relevant feathatontribute to
scheduling difficulty with another agent. Assuming thatreagent is operating
on behalf of a humarn§' D could take into account factors such as stubbornness
or accessibility to email communication. We will considatendar density as
associated with position in a organization as a key facter.définek; ; as the
relative difficulty for scheduling a meeting with; versus scheduling a meeting
with A;. It makes natural sense for this relation to be multiplieatnd transi-
tive. That is, for three agentd,, A3, A4, we require thaky 3 x k3 4 = kg 4.

Example: Figure 3 showsA;’s model of relative scheduling difficulty with
a group of four other agent4,,A3,A44, andAs. The arrow fromAs to A4 with
magnitude 3 represents the relati® 4, = 3 x SDg,, i.e., scheduling a meet-
ing with A4 is 3 times “more difficult than” scheduling a meeting widlh.

Given a model of scheduling difficulty, we now have a way torteh deci-
sion rule for when to reschedule a meeting in favor of anotB&en a meeting
M;, Ay, computes the difficulty of schedulingy/; as

Difficulty(M;) = > SD; (1)
A;€cattendees(M;)—{ Ay}

Finally, the bumping rule is given as follows. An agent bunapmeeting
M; in favor of a meetingV/; if and only if the followingBumpingRuléM;, M)
evaluates tarue;

Difficulty(M;) < Difficulty(M;) 2

4 Example of a Meeting Scheduling Negotiation

We describe an example scheduling negotiation episodévingoan agent4;.
Figure 3 showsA;’s model of relative scheduling difficulty with four other
agentsA,, A3z, A4, and As. Details of the negotiation using this model is shown
in Figure 4. Each box represents the state of agkrd calendar at a given
time. Arrows denote incoming and outgoing messages. Eadsage is 3-
tuple of meeting id, time, and meeting status, where statstherpossible,
pending, bumped, confirmed impossible In this examplegattendees(M1) =
{41, Ag, A3}, attendees(M2) = { A1, A4}, andattendees(M3) = { A1, As}.

At time 1, A; has meeting M1 currently confirmed at time 10 am and re-
ceives a request from, who is the initiator of meeting M2. The time proposed
is 10 am, which conflicts with M14; must now decide whether to rejedt,’s
proposal, or accept it and bump meeting M1. Referring to feiliand Equa-
tion 1, A; computes the scheduling difficulty of M1 89Dy + SD3 =141 =2
and the scheduling difficulty of M2 a§D, = 3. Since Difficulty(M1) <
Difficulty(M2), A, decides to bump.

At time 2, A, changes the status of M1 to bumped, and sets status of M2 as
pending for 10 am, and a response is senifo At time 3, as an example of
concurrencyA; receives a request frod; for 10 am for a new meeting M3. At
time 4, A; responds impossible since 10 am is already pending for MliRg
meetings are never bumped (only confirmed meetings can bpdm)mAt time
5, A1 hears back from¥, that M2 should now be confirmed for the previously
proposed time of 10 am. At time 8!, sets the status of M2 to confirmed, and
begins the rescheduling of M1 by proposing a new time to thercattendees
A, and As. (This example has assumed tifgtis the initiator of M1. If it were
not, then in our protocold; would have sent a message to the initiator of M1
indicating that 10 am is now impossible, and the initiatotulgdbe responsible
for restarting the negotiation and rescheduling M1). Atetiify A; hears back
from A, that 11 am is pending in its calendar for meeting M1. At time43,
records this information in its current state. At time 9 ariy A, hears back
from A3z and records the response. At time M, has now heard back from
all attendees for meeting M1, and all have agreed on 114nsends the final
confirmation message to all attendees. We end the examp@ethatrealize that
since A; or A3 may have bumped meetings at 11 am to accommodai®
request for meeting M1, the scheduling episode may not be ove

5 Experimental Results

We present experimental results comparing rescheduliagegies that use a
model of “scheduling difficulty” with other agent versusadtrgies that do not. In

A4
i M2,10am,possible?

Ad
T M2,10am,pending

A5
i M3,10am,possible?

A5
T M3,10am,impossible

M1,10am,confirmed

M2,10am,pending
M1,10am,bumped

M2,10am,pending
M1,10am,bumped

M2,10am,pending
M1,10am,bumped

Time 1

Time 2

Time 3

Time 4

A4
i M2,10am,confirmed

A2 A3

T T M1,11am,possible?

A2
i M1,11am,pending

M2,10am,pending
M1,10am,bumped

M2,10am,confirmed
M1,11am,pending

M2,10am,confirmed
M1,11am,pending

M2,10am,confirmed
M1,11am,pending
A2,M1,11am,pending

Time 5

Time 6

Time 7

Time 8

A3
i M1,11am,pending

A2 A3
T T M1,11am,confirmed

M2,10am,confirmed
M1,11am,pending
A2,M1,11am,pending|

M2,10am,confirmed

M1,11am,pending
A2,M1,11am,pending|
A3,M1,11am,pending

M2,10am,confirmed
M1,11am,confirmed

Time 9

Time 10

Time 11

Fig. 4. An example negotiation between an agent and four other sigentis, A, and As.

the first strategy, denotedtt, agents simply compare the number of attendees
and bump the meeting with fewer attendees when there is aiatdpdtween
two meetings. They do not use knowledge about other agemtsking their
bumping decisions. In the second strategy, denstBdwe assume that agents
know the rank of other attendees and use this information akenbbumping
decisions, i.e., they can assign a “scheduling difficulty&ach attendee.

5.1 Experimental Setup

We evaluate each strategy by averaging measurements ousttegenof “runs”.

Each run consists of two phases: a problem generation plotleerdd by a
problem solving phase. We describe each phase in turn. laxpariments, we
report measurements from the problem solving phase only.

Phase 1The problem generation phase is centralized. We autonigtigan-
erate a set of agentd each with a desired initial schedule density. Each
agent's calendar has 50 timeslots to simulate a 5 day 10yotk week.
Next, we automatically generate and schedule meetingseleetwandom
subsets of the agents until all calendars are filled to thesirdd density.
The attendees of a given meeting are chosen according td@mrian-
dom distribution. The number of attendees for a given mgasnchosen
according to a distribution in which meetings of more peakeless likely
than meetings with fewer people. Every meeting has at leasattendees.
Finally, we generate one additional new meetidg,, 1 that must be sched-
uled in the problem solving phase. The attendees of the nestimgeare
chosen to be a random subset of the agents. In our experintiemtsumber
of attendees of the new meeting is fixed to 4. One of them isorahgdcho-
sen to be the initiator. Every generated problem is ensunave a solution.

Phase 2 The problem solving phase is completely distributed. Thal goto
find a timeslot for the new meeting/,,,.1 } while successfully reschedul-
ing any bumped existing meetings. That is, the goal is to fiméssign-
ment of timeslots to meetings i U {M,,,11 } that satisfy the intra-agent
and inter-agent constraints. We measure numb&ilofeswhich is defined
as the number of meetings ikt U {M,,+1} unassigned a timeslot after a
given amount of time. Failures may occur either becausenttiator gives
up scheduling the meeting or a max time elapses. Note thatuimber of
failures in a given run can be greater than one when multidetmgs are
bumped and fail to be rescheduled.

5.2 Experiments in a Hierarchical Agent Organization

Human organizations typically have hierarchies in whigjhler ranked people
have denser calendars than lower ranked ones. We hypothatsise density of

an agents calendar and thus her organizational rank, is & gealictor of the
difficulty of scheduling with that person.

To evaluate our hypothesis, we begin with an extreme casemymaestwo-
level organization hierarchy. We divide agents into twoaasize groups of
“busy” and “not busy” agents, where the initial density ofiedules is fixed to
90 percent and 30 percent, respectively. The schedulifigudty model used
by the S D strategy in this scenario is defined$8y,,s, = 3 x SDponbusy-

Figure 5 contrasts two strategies as we increase the tatabeuof agents.
The graph shows th& D strategy is more effective in terms of preventing
scheduling failures than thétt strategy. At 50 agents, theD strategy results
in a failure rate of 0.28 on average, while the simpler styatétt results in 0.76
failures on average. Failure rate is computed by summinguhaber of failures
over all runs and then dividing by the total number of runs.d&€50 runs for
each datapoint where each run follows the methodology iestabove. This
graph shows that the use of our scheduling difficulty modelhie to reduce
scheduling failures. Also, the high failure rate caused hgomtrolled cascad-
ing of bumps, as we saw in Table 1 for the Always-bump stratisggvoided.

Next, we evaluate the effect of varying our scheduling diffic model in
the busy/non-busy hierarchy. We use a scheduling diffiomodel defined as
SDpysy = k X SDponpusy @and examine the effects of varyikg The same set
of scheduling problems are used for each valué,ate., the only difference
is the rescheduling decision rule used by the agents. Weceitpat changes in
performance will level off as the scheduling difficulty miplier % is increased.
This is because after some point, an increasenio longer modifies an agents
rescheduling decisions. For example, a meefihgwith 4 non-busy attendees
will be bumped in favor a meeting/, with one busy attendee whén= 5.
M; will continue to be bumped it is increased. Thus increasirigshould
stop having an effect on agent decision making at some peigiire 6 shows
empirical data consistent with our hypothesis. An orgaitnaof 10 agents was
used. Each datapoint represents the average over 50 rumgrdjph shows that
the effect on failure rate levels off as predicted.

Finally, we experiment with a more complex scheduling diffig model
where there are four levels rather than just two. We use thanization hier-
archy shown in Figure 7 with 8 agents in each level, for a tof882 agents.
We experiment with four levels with initial schedule deiesitof 90,70,50,30
percent respectively. We defiteD,, = 2 x SDp,, . Thatis, the difficulty of
scheduling with an agent at levels twice as difficult as scheduling with an
agent at level 4+ 1. The empirical results over 500 runs are shown in Figure 8.
The failure rate is reduced from 0.28 using th& strategy to 0.02 using the

Number of Scheduling Failures
0.8

0.7 \\\) e
06 e

05

04

03 /

0.2

Avg Number of Failures

010 _eo— i

h . . .
4 10 20 30 40 50
Number of Agents

Fig. 5. Comparison of two rescheduling strategies (Att, SD) as atfan of organization size.
The average number of meetings that failed to be schedulgisn.

Effect of Multiplier on Failure Rate
0.6

0.4

0.2

Average Number of Failures

0
1 2 3 4 5 6 7 8 9 10
Scheduling Difficulty Multiplier (k)

Fig. 6. Effect of increasing value of scheduling difficulty muligd on scheduling performance.
The average number of meetings that failed to be schedukgisn.

SD strategy. We can conclude that tié strategy significantly reduces the

number of scheduling failures.

6 Conclusion

We have modeled the multiagent meeting scheduling probteanfarm of dis-
tributed constraint reasoning in which agents must assiget af values to a
set of variables. We presented a novel approach to the pnablevhich agents
use given or learned “scheduling difficulty” models of otlagents in order to
decide when to change their existing assignments in ordacdept proposals
from others. We have shown that this approach controls tfeiatrof bumping
so that the negotiation is able to terminate in a given amotine, while also
reducing the scheduling failure rate over an alternatiyer@gch that does not
take into account such models. In future work, we are intedeis how an agent
can automatically learn these models from past negotidiigtory.

References

1. C.Bessire, A. Maestre, and P. Meseguer. Distributedrdigbacktracking. Innternational
Joint Conference on Al Workshop on Distributed Constraieagoning 2001.

Hierarchy Level and Calendar Density

Scheduling Difficulty

L1: 90% sp, =8
L2: 70% SD, =4

L3: 50% SD3 =2

L4: 30% Sh, =1

Fig. 7. Agent hierarchy where higher ranked agents have highendatelensities.

32 Agent Four Level Hierarchy
0.5

Avg Number of Failures
o
Y
(&

Att SD
Rescheduling Strategy

Fig. 8. Comparison of two rescheduling strategies (Att, SD) in a fevel organization hierarchy.
The number of meetings that failed to be scheduled (avenage500 run) is shown.

2. Eugene C. Freuder, Marius Minca, and Richard J. Wallacwady/efficiency tradeoffs in
distributed meeting scheduling by constraint-based agein IJCAI-2001 Workshop on
Distributed Constraint Reasoning001.

3. Leonardo Garrido and Katia Sycara. Multi-agent meetitgeduling: Preliminary experi-
mental results. IfProceedings of the First International Conference on MAlgient Systems
(ICMAS’95) The MIT Press: Cambridge, MA, USA.

4. R. Mailler and V. Lesser. A mediation based protocol fatritbuted constraint satisfaction.
In The Fourth International Workshop on Distributed ConstitdReasoning2003.

5. P.J. Modi, W. Shen, M. Tambe, and M. Yokoo. Adopt: Asynclous distributed constraint
optimization with quality guaranteegitificial Intelligence 2004.

6. P.J. Modi, M. Veloso, S. Smith, and J. Oh. Cmradar: A peakassistant agent for calendar
management. IAgent Oriented Information Systems, (AOIS) 2(EBD4.

7. Christos H. Papadimitriou and Kenneth Steigli@ombinatorial optimization: algorithms
and complexity Prentice-Hall, Inc., 1982.

8. Sandip Sen and Edmund Durfee. A Contracting Model foriBlexDistributed Scheduling.
Annals of Operations Researdb:195-222, 1996.

9. Sandip Sen and Edmund H. Durfee. A formal study of disteduneeting scheduling. In
Group Decision and Negotiatipwolume 7, pages 265—-289, 1998.

10. M.C. Silaghi, D. Sam-Haroud, and Boi Faltings. Asynctmas search with aggregations. In
Proceedings of National Conference on Atrtificial Intellige 2000.

11. M. Yokoo. Distributed Constraint Satisfaction:Foundation of Coogtéon in Multi-agent
SystemsSpringer, 2001.

