Advice Generation from Observed Execution:
Abstract Markov Decision Process Learning

Patrick Riley and Manuela Veloso
Computer Science Department
Carnegie Mellon University
Pittsburgh, PA 15213-3891
pfr@cs.cmu.edu and mmv@cs.cmu.edu

Abstract continuous state spaces, abstraction can produce the nec-
An advising agent, a coach, provides advice to other essary generalization. Constructing an abstract model of
agents about how to act. In this paper we contribute an the environment is one way that a coach may generate
advice generation method using observations of agents advice. Markov Decision Processes (MDPs) are a well-
acting in an environment. Given an abstract state def- studied formalism for modeling an environment and finding
inition and partially specified abstract actions, the al- a good action policy. The use of state and action abstraction
gorithm extracts a Markov Chain, infers a Markov De- has gotten significant attention (Dearden & Boutilier 1997;
cision Process, and then solves the MDP (given an ar- Barto & Mahadevan 2003; Uther & Veloso 2002). Here we

bitrary reward signal) to generate advice. We evaluate
our work in a simulated robot soccer environment and
experimental results show improved agent performance

introduce an approach to construct an MDP that uses both
state abstraction and temporally extended abstract actions.

when using the advice generated from the MDP for both The MDP is learned by observation of past performance
a sub-task and the full soccer game. of agents in the domain, considered as a series of states

that do not include information about what (abstract) ac-

Introduction tions were performed. This type of data can be obtained

by an external observer with no access to the internal pro-
A coach agent provides advice to other agent(s) to improve cesses of the agents. Domain knowledge is used to transform
their performance. We focus on a coach that analyzes past states to abstract states and then to attach actions to transi-
performance to generate advice. The synthesis of observedtions, whose probabilities are estimated from observed data.
executions in a manner that facilitates advice generation is a This process of adding actions has much in common with
challenging problem. past work in plan recognition from observation (Kautz 1991,
Observations that do not explicitly include the actions Charniak & Goldman 1993).
taken by the agents are an additional challenge. The in- We used a simulated robot soccer environment as the
tended actions must be inferred from observed behavior. In testbed. The presence of a coach agent makes the environ-
this paper we present algorithms to learn a model, including ment well suited to this research. Past work on coaching for
actions, based on such observations. The model is then usedhis environment has mostly been on analysis of a particular
to generate executable advice for agents. team, with automated (Kuhlmann, Stone, & Lallinger 2004;
The areas of advice reception (e.g. Maclin & Shav- Riley, Veloso, & Kaminka 2002; Visser & Weland 2004)
lik 1996) and advice generation, in both Intelligent Tutor- Or non-automated (Raines, Tambe, & Marsella 2000) ad-
ing Systems (e.g. Paolucci, Suthers, & Weiner 1996) and Vice generation. We present experimental results for a coach
item recommendation (e.g. Shani, Brafman, & Hecker- agentlearning an MDP and improving performance for both
man 2002), have received attention in Al over many years. a restricted part of the game and in full games.
Our work in this paper further explores advice generation in
the context of agent to agent advice. Learning an Abstract MDP from Observation

In most coaching environments, it is impractical for the | this section we introduce our approach for creating a
coach to provide advice only at the most detailed level of \arkov Decision Process from observations. Our goal is
states and actions because of communication bandwidth or ;5 |earn arabstractMDP. The main steps of the process are:
observability constraints. Further, in domains with large or .]

e Transform observations into sequences of abstract states.

*This research was sponsored by Grants No. F30602-00-2- e Create a Markov Chain based on the observed transition
0549 and the Department of the Interior (DOI) - National Busi- frequencies among the abstract states.

ness Center (NBC) and the Defense Advanced Research Projects Transform the Markov Chain to a Markov Decision Pro-

Agency (DARPA) under contract no. NBCHC030029. The con- cess (MDP) by associating transitions to actions based on
tent of this publication reflects only the position of the authors. VIDF) by g .
Copyright © 2004, American Association for Artificial Intelli- a specification of the abstract actions to add.

gence (www.aaai.org). All rights reserved. e Add rewards to the MDP.

Sh— 84 — Sh — Sh... _ (A, Cp, Cs)
7 7 7 7 (S, Tyc) :
S —>833 — 85 — 8. §1 — 83 — S1... ’ Abstract Action
s; € So — 81 — Sa2... -
. 1 . cS - Markov Associate (S, A Tvpp, R)
Observatioh i Chain Actions
Data Observe) , | Abstract[(Abstract) MDP
T Extract %tate (Abstract) MDP) Y R
strac races with reward
State — Add rewards Reward
(S, A, Tupp, R)

(§,B: S - SuUl)

Figure 1: The process of a coach learning a Markov Decision Process from observation. The symbols are examples or types
based on the formalism presented. The boxes with italics indicate information that must be provided for the system.

Figure 1 depicts the processes and data involved and we now This estimation of7;- could possibly benefit from

describe the algorithms in detalil.

Observations to Markov Chain
There are two initial inputs to the process:

Observation dataconsisting of sequences of observed

states. These sequences can come from recordings of pas

performance or from online observation. L&be the ob-

smoothing or clustering techniques to deal with problems
of data sparsity. Our use of state abstraction already helps
to deal with this somewhat and our experimental results
demonstrate usefulness of the resulting model. More sophis-
ticated estimation is an avenue for future work.

Markov Chain to Markov Decision Process

Our algorithm now converts the Markov Chain into a

served state space. The observation data is then a list of Markov Decision Process. A Markov Decision Process is

sequences af, or in other words, a list af*.

State abstractionconsisting of an abstract state spate
and an abstraction functioB: S — S U (). Note thatB
can map elements & to the empty set, indicating there
is no corresponding abstract state. Naturally, this specifi-
cation can have a large impact on the overall performance
on the system. While we currently use our domain exper-
tise to specify the abstraction, learning techniques do exist
which may provide useful abstractions (e.g. Schweitzer,
Puterman, & Kindle 1985).

Observe and extracas shown in Figure 1 can then be
implemented in terms of the above3 is applied to every
element of every sequence in the observation data. Any ele-
ments that map t@ are removedObserve and extraaiut-
putsabstract state traceas a list ofS™*.

Given the state traces, tikembinealgorithm produces a
Markov Chain, a tupldS,Tx¢) whereS is the set of ab-
stract states andy;c: S x S — R is the transition func-
tion. Thrc(s1, s2) gives the probability of transitioning from
s1 10 so. Since the state spacefor the Markov Chain has
already been given, judt;- must be calculated.

The combinealgorithm estimates the transition probabil-
ities based on the observed transitions. The algorithm cal-
culates, for every pair of states,s, € S, a valuec,, s,
which is the number of times a transition framto s, was
observed. The transition function is théfs; , s; € S:

CS1-,52

Tare(s1,82) = D (1)

s€S Csy S

The following notation will be used in the remainder of the
paper. Sets will be set in script, e§, . The notationS* is used
to denote a sequence délements ofS. S* will denoteU;enS*.
The powerset of a s will be denoted byP(S). Functions will
be capital letters and in italics, e.§, C.

atuple(S, A, Typp, R). S is the set of abstract states,

is the set of (abstract) actiongy;pp: S x A xS — R

is the transition function, andk: S — R is the reward
function. Similar to a Markov Chain, the transition func-
tion T pp(s1,a, s2) gives the probability of transitioning
from s to sy given that actiom was taken.

Shani, Brafman, & Heckerman (2002) also explain a
mechanism for Markov Chain to Markov Decision Process
conversion. However, for them the Markov Chain describes
how the system acts with no agent actions. They use a sim-
ple proportional probability transform to add the actions.
Here, the Markov Chain represents the environment with
agent actions and we need to infer what those actions are.

In our approach, a set of abstract actions must be given
as a set of transitions between abstract states, divided into
primary and secondary transitions. The primary transi-
tions represent the intended or normal effects of actions
and the secondary transitions are other possible results of
the action. This distinction is similar to Jensen, Veloso, &
Bryant (2004).

We initially assign a zero reward function. Describing the
algorithms for associating actions and transitions takes up
the bulk of this section. We first illustrate the process using
the example shown in Figure 2, then provide the full details.

Our algorithm processes each abstract state in turn. Fig-
ure 2(a) shows the statg in the Markov Chain. It must be
determined which actions can be applied in each state and
how to assign the transitions and their probabilities to ac-
tions. SMURF The transitions for the actioag, a1, and
as are shown in Figure 2(b), with the primary transitions in
bold. An action is added for a state if any of the action’s
primary transitions exist for this state. In Figure 2(c), ac-
tions ag anda; have been added, but has not (since its
primary transitions, — s4 was not in the Markov Chain).
Once an action has been added, all transitions in the Markov

(a) Markov Chain

(b) Actions (c) MDP

Figure 2: Associating actions with the transitions from one
state in a Markov Chain to create a Markov Decision Process
state

Chain which are primary or secondary transitions for the ac-
tion are assigned to the action. It is fine for primary or sec-
ondary transitions that are part of the action definition to not
be in the Markov Chain (e.g. they — sg transition forag

and thes, — s5 for a;). Once all actions have been pro-
cessed, the probability mass for each transition is divided
equally among all repetitions of the transition and the result-
ing distributions are normalized. For example, in Figure 2,
the probability mass of 0.6 assigned to the — s; tran-
sition is divided by 2 for the 2 repetitions. The transitions
so — s1 andsy — s3 have, respectively, probabilities 0.3
and 0.1 before normalization and 0.75 and 0.25 after nor-
malization. -

Formally, an abstract action sétand functions giving the
primary C,: A — P(S x §)) and secondary({;: A —
P(S x 8)) transitions must be given. We will calculate an
unnormalized transition functiofi, , » which will be nor-
malized toTy;pp. The complete algorithm for adding ac-
tions to the Markov Chain is shown in Table 1.

Foralls e S
Let7 C P(S x S) be the transitions from
T = {(s,8:) | s € S, Tnsc(s,5) > 0}
Let V' C A be actions with primary transitions fer
N={aeA|Cya)NT # 0}
Foralls; € S
Let c,, be the number of actions fer— s;
co, = [{a € N[(s,5:) € Cpla) UCu(a)}]
Foralla ¢ N
Forall (s, s;) € Cp(a) U Cs(a)
Typp(s,a,si) = w
Add null action if needed (see te§<t)
NormalizeT}, ,p t0 Tarpp

Table 1: Associating actions to convert a Markov Chain to
an MDP.

As noted, a null action can be added. This occurs if a tran-
sition from the Markov chain is not part of any of the actions
created for this state (i.e. i, = 0 andTy (s, s;) # 0).

The definition of primary and secondary transitions and
the algorithm above support situations in which the possible

effects of an abstract action are known, but the probabilities
of occurrence of the various results are not.

Once we have a Markov Decision Process, we can add
additional rewards to whatever states desired. By changing
the reward function, the learned Markov process can be used
to produce different behaviors. This is explored further the
in empirical section below.

Learning In Simulated Robot Soccer

We used the Soccer Server System (Netlal. 1998) as
used in RoboCup (Kitanet al. 1997) as our implemen-
tation and testing environment. The Soccer Server System
is a server-client system that simulates soccer between dis-
tributed agents. Clients communicate using a standard net-
work protocol with well-defined actions. The server keeps
track of the current state of the world, executes the actions
the clients request, and periodically sends perceptions to the
agents. Agents receive noisy information about the direction
and distance of objects on the field (the ball, players, goals,
etc.); information is provided only for objects in the field of
vision of the agent. The agents communicate with the server
at the level of actions like turn, dash, and kick. Higher level
actions like passing or positioning on the field are imple-
mented as combinations of these lower level actions.

There are eleven independent players on each side, as well
as a coach agent who has a global view of the world, but
whose only action is to send advice to the players.

This environment has a standard advice language called
CLang, which is primarily rule based. Conditions are logical
connections of domain specific atoms like ball and player lo-
cation. Actions include the abstract soccer actions like pass-
ing and dribbling.

For the simulated soccer environment, only those states
where an agent can kick the ball are represented in the ab-
stract state space. We define the abstract state space in terms
of a set of factors and values:

GoalScore 0,1,null, if we, they, or no one scored.
DeadBall 0,1,null, if it is our, their, or no one’s free kick.

BallGrid Location of the ball on a discretized grid for the
field (see Figure 3).

BallOwner 0,1,2, if no one, our, or their team owns the ball.

PlayerOccupancy Presence of teammate and opponent
players in defined regions.

The regions for PlayerOccupancy for the opponents are
shown in Figure 4. The regions are centered around the ball
and oriented so that the right is always towards the attack-
ing goal. The regions for our team are the same except that
players which can currently kick the ball are ignored.

The abstract action spacé was constrained by the ad-
vice actions in CLang. CLang supports abstract actions like
passing, dribbling, and clearing (kicking the ball away). All
these actions can take a parameter of an arbitrary region of
the field. Actions should correspond to changes in the ab-
stract state space. Since many ClLang actions involve ball
movement, we chose to consider the ball movement actions
with regions from the discrete grid of ball locations (see Fig-
ure 3) as the parameters.

e| 1|2 3| a|ls|e|7|8]s CLang advice language. The goal is to structure the advice
such that it can be matched and applied quickly at run time
ei by the agents. We use the structured abstract state represen-

18| 11| 12| 13| 14| 15 16| 17 18| 19

28| 21| 22| 23| 24 25| 26| 27 23| 29

tation discussed above to construct a tree of CLang rules. At
each internal node, one factor from the state representation
wo| a1| ap| a3| aa| as| as| ar| lag| a9 is matched. At each leaf, a set of actions (for the abstract
state matched along the path to the leaf) is advised.

38| 31| 32| 33| 34 35| 3I6| 3IF| I8 39

58| 51| 52| 53| 54| 55| 96| 57| 58| 59

Empirical Validation

The learning and advice generation system is fully imple-
mented for the SoccerServer (Noegal. 1998). A version
of the system described here made up the bulk of the Owl
entry to the RoboCup 2003 coach competition. This section
describes our empirical work in validating the system.
Throughout, we have used two different teams of agents
which understand the advice language CLang: UTAustin
Villa from the University of Texas at Austin (UTA) and the
verns from Carnegie Mellon University (CM).
The data files, binaries, and configuration for all
f of these experiments can be found at the paper's on-
line appendix: http://www.cs.cmu.edu/ pfr/
appendices/2004aaai.html

Figure 3: The regions for the Figure 4: Player occu-
BallGrid state factor pancy regions

To construct the”,, andC; functions describing the pri-
mary and secondary transitions for the actions, we first clas-
sify the transitions (using the structured state representation
discussed above). Then, these functions can be describe
in terms of the transition classes they represent, rather than
writing out individual transitions. For example, we had
transition classes including successful shots, kicks out o
bounds, short passes, and failed passes.

Markov Decision Process to Advice . .

. . . Circle Passing
The final set of algorithms go from a Markov Decision Pro-)
cess to advice. The first step is to solve the MDP. Since we Ve constructed a sub-game of soccer in order to clearly eval-
have all transition probabilities, we use a dynamic program- uate the MDP learning from observed execution and the ef-
ming approach (Puterman 1994). This algorithm gives us a fect of automatically generated advice. While we are in-

Q table, where fos € S anda € A, Q(s, a) gives the ex- terested in m_odeling the entire soccer game, the number of
pected future discounted reward of taking actidn states factors affecting performance make it difficult to separately
and performing optimally afterwords. An optimal policy (a test effects. _ _ _ .
mapping froms to .4) can be extracted from th@ table by We set up agents in a circle around the middle of the field
taking the action with the highet value for a given state. and wrote a set of advice rules which cause the agents to

States and actions for advice must then be chosen. Ad- Pass in a circle, as shown in Figure 5. Stamina and offsides
vising about all states can overload the communication be- Were turned off and dead balls were put back into play after
tween the coach and agents (which is limited) and stress the 1 second. The goal was to use this data to learn a model
computational resources of the agent applying the advice. which then be used to generate advice for a different team.
Therefore, the scope of advice is restricted as follows: This team would not know of the performance of the original

) o team or even what the reward states in the model are. The
 Remove states which don’t have a minimum number of o3| was not to replicate this passing pattern, but to achieve
actions. For states with many p055|bl_e actions, the agents the reward specified.
will in gen_eral be in more need of advice from the coach. We ran 90 games of the UTA players executing this pass-
We experimented with different values here, but most of jhg pattern. Note that because of noise in the environment,
the time we only removed states without any actions. not every pass happens as intended. Agents sometimes falil
» Remove states whose optimal actions can't be translated g receive a pass and have to chase it outside of their normal
into the advice language. positions. Kicks can be missed such that the ball goes in

e Only advise actions which are close to optimal. We only a direction other than intended or such that it looks like the
want to advise “good” actions, but we must be specific agent is dribbling before it passes. These “errors” are impor-
about what good means. We only advise actions which are tant for the coach; it allows the coach observe other possible
within a given percentage of optimal for the given state. actions and results of the original advice.

Once the states and actions which to advise have been deter- We ran the process described above on the 90 games of

mined, they must be translated into the advice language. ~ data. Since there were no opponents on the field, the to-
tal possible size of the abstract state space was 5882 states.

Advising In Simulated Robot Soccer The effective state space size (states actually observed) was
For simulated robot soccer, we pruned any action dealing ;\3/|46kstatgs. .O'ur allzl)gorlthmfprodtl#eg 8; Markov Chain and a
with actions that the opponent takes. Clearly, we can not arkov Decision Frocess from this data.

advise the agents to perform these actions. 2While both these institutions contributed agents for the official

After pruning, we are left with a set of pairs of abstract RoboCup2003 coachable team, the versions of the agents used here
states and abstract actions. The advice is translated in to theare updated from those official releases.

Reward Grid Cell 13 3 34 14
e # rew. states observed5095 211 1912 2078
During Training -~~~ = 1 7] 1 Training Success % | 53% 4% 40% 44%
1 ‘ Advice Success % 77% 21% 88% 69%

| 1
AT

——

=

@
H/
N
"‘*
Iz}

-

Table 2: Performance for circle passing. The first row shows

»
&
»
X
"
i}

Percent Trials Completed
o
(&3
T T T T T T T T T

6
16
k=
b
4
a6

=\ 03 1 ES the number of times a reward state was seen during training.
0.2 (I o
al $ = 0.1 B% jyﬁ;* * 1
o w 00150 200 trials which received reward by that time. Graphs for the
ime sinoe beginning of tra other scenarios are similar.
Figure 5. Loca- Figure 6: Time taken for trials in the In all cases we see that agent execution is not perfect.
tions and direc- reward cell 34 scenario. The inter- This occurs for several reasons. Noise in the perception and
tions of passing vals are 95% confidence intervals. execution can cause actions to fail and have undesired ef-
for circle passing fects. Execution of some abstract actions (such as passing)
(cf Figure 3). requires more about the underlying states than what is ex-

pressed by the abstraction. In passing, another agent needs

to be in or near the target location in order to receive the

pass. Therefore, it can happen that the advised abstract ac-
We experimented with adding different reward functions. tion can not be done at this time.

In each case, reward was associated with all states in which The reward cell 3 scenario was the most difficult for the

the ball was in a particular grid cell (see Figure 5), namely: agents to achieve. It was also the set of reward states which

was least often seen in training. More examples of transi-
tions to reward states allow a better model to be created.

, These experiments demonstrate that the coach can learn
agent would normally be here, but some passes and mis- 5 model from observation which can then be used to im-
kicks will result in agents being in this square. prove agent performance. Changing the reward can allow

Cell 34 Near the middle of the field. Agents tend to move the same transition model to be used to generate different
towards the ball (especially to try and receive a pass) so advice. However, the more similar the training data is to the
agents often end up in this cell during training. desired execution, the more effective the advice is in helping

Cell 14 To the right of the upper left player. Since thisisin the agents achieve reward.
the normal path between two players passing, the ball will
frequently pass through this square. On a miskick, either Full Game

\?v?tf] ?rflethbeaﬂ’vo closest agents could end up in that square While the above experiments show that the MDP learning
. process described can extract a useful model and gener-

There are other reasonable reward functions. We chose theseate advice from it, providing advice for an entire soccer
to vary the degree to which the reward states were observedgame is a larger and more challenging task. This section
during training. Similar states around any one of the players demonstrates that our coach can produce positive effects on
would likely give similar results. ateam’s overall performance. While further experiments ex-

We ran with the CM agents receiving advice in each of ploring the limits and general effectiveness would be useful,
these scenarios. Actions were sent if they were within 99.9% these results are still a compelling example of improvement.
of optimal. We randomly chose 100 spots in the area around Another advantage of the simulated robot soccer environ-
the players and for each of the eight cases (4 different re- ment can also be leveraged here. Annual worldwide compe-
wards and training or with MDP advice) put the ball in each titions have been held since 1997 with a number of smaller
of those spots. The agents then ran for 200 cycles (20 sec- regional competitions over the last few years. Most of the
onds). A trial was considered a success if the agents got to lodfiles from these competitions have been preserved and are
any reward state in that time. The time bound is somewhat publicly available. This is a wealth of data of many different
arbitrary as varying the time bound somewhat does not sig- teams playing. We used all the logfiles from RoboCup2001
nificantly affect the relative results. Further, the completion and 2002, German Open 2002 and 2003, Japan Open 2002
results at a particular time are easier to present and discussand 2003, American Open 2003, and Australian Open 2003.
that the full series of rewards received. Table 2 shows the re- This is a total of 601 logfiles. We also analyzed 1724 log-
sults for the agents executing the learned advice for the four files from our previous experiments with a number of past
different reward cells. The “Training Success” line shows teams (Riley, Veloso, & Kaminka 2002).
the percent of trials which completed during the initial UTA While it may be better to only analyze games played be-
training games as a basis for comparison. tween these particular teams or at least just involving this

In all scenarios, the success percentage is higher with the particular opponent, we wanted to take advantage of the
MDP based advice. Figure 6 shows a different view of the wealth of past games available for analysis. Observing a
reward cell 34 scenario. The-axis is the time since the range of performance should hopefully allow an understand-
beginning of a trial and thg-axis is the percentage of the ing of the average case. While some of the knowledge

Cell 13 The cell where the upper left player usually stands.
Cell 3 The cell immediately above the previous one. No

learned could be internally inconsistent, we hope that most
such cases will average out over time. Use of additional ob-
servations of the particular teams in order to refine the model
is another avenue for further exploration.

Given the definition of the abstract state space above,
there are 184442 possible states. After analysis, the MDP
contained 89223 states. We associated a reward of 100 with
our team scoring a goal and -100 for being scored upon. We
also removed all transitions from these states. This allows
for faster convergence of the dynamic programming because
rewards do not have to be backed up through these states.

We tested two conditions: the CM team playing against
Sirim (one of the fixed opponents in the RoboCup2003
coach competition) with and without the MDP based advice.
With the MDP advice, actions were included if they were at
least 96% of optimal. Each condition was run for 30 games.
The results in Table 3 show that using the MDP improves the
score difference by an average of 1.6 goals. This difference
is significant at a< 1% level for a one-tailed-test.

With MDP
3[-35,-25]

| No MDP |
46[5.3, -3.8]

Score Difference

Table 3: Mean score difference of CM playing Sirim. Score
difference is CM’s score minus Sirim’s score. The interval
shown is the 95% confidence interval.

While these results do not demonstrate the coached team
moving from losing to winning, the results still show a sig-
nificant improvement in performance. The overall perfor-
mance of a simulated soccer team is a combination of many
factors, including low level system timing and synchroniza-
tion, implementation of basic skills like kicking and drib-
bling, and higher level strategy decisions. Coaching advice
can only affect the last of these. As far as we are aware, our
coach is the first for the simulated robot soccer environment
that advises about such a large portion of the behaviors of
the agents and does so in an entirely learned fashion.

Conclusion

This paper has examined the problem of learning a model
of an environment in order to generate advice. An MDP is
learned based on observations of past agent performance in
the environment and domain knowledge about the structure
of abstract states and actions in the domain. The MDP learn-
ing process first creates a Markov Chain. Domain knowl-
edge about actions is then used to successfully transform the
Markov Chain into an MDP. Implementation was done in a
simulated robot soccer environment. In two different scenar-
ios, the advice generated from the learned MDP was shown
to improve the performance of the agents.

This research provides a crucial step in agent to agent ad-
vice giving, namely the automatic generation of effective,
executable advice from raw observations.

References

Barto, A., and Mahadevan, S. 2003. Recent advances in hi-
erarchical reinforcement learnin@iscrete-Event Systems
Journal13:41-77.

Charniak, E., and Goldman, R. 1993. A Bayesian model
of plan recognition Artificial Intelligence64(1):53-79.

Dearden, R., and Boutilier, C. 1997. Abstraction and
approximate decision theoretic plannindrtificial Intel-
ligence89(1):219-283.

Jensen, R. M.; Veloso, M. M.; and Bryant, R. E. 2004.
Fault Tolerant Planning: Toward Probabilistic Uncertainty
Models in Symbolic Non-Deterministic Planning. In
ICAPS04

Kautz, H. A. 1991. A Formal theory of plan recogni-
tion and its implementation. In Allen, J. F.; Kautz, H. A,
Pelavin, R. N.; and Tenenberg, J. D., eeasoning About
Plans Los Altos, CA: Morgan Kaufmann. chapter 2.

Kitano, H.; Tambe, M.; Stone, P.; Veloso, M.; Coradeschi,
S.; Osawa, E.; Matsubara, H.; Noda, I.; and Asada, M.
1997. The RoboCup synthetic agent challengelJBAI-

97, 24-49.

Kuhlmann, G.; Stone, P.; and Lallinger, J. 2004. The cham-
pion UT Austin Villa 2003 simulator online coach team. In
Polani, D.; Browning, B.; Bonarini, A.; and Yoshida, K.,
eds.,RoboCup-2003: Robot Soccer World Cup.\Bérlin:
Springer Verlag. (to appear).

Maclin, R., and Shavlik, J. W. 1996. Creating advice-
taking reinforcement learnerdlachine Learning?2:251—
282.

Noda, I.; Matsubara, H.; Hiraki, K.; and Frank, I. 1998.
Soccer server: A tool for research on multiagent systems.
Applied Artificial Intelligencel2(2—-3):233-250.

Paolucci, M.; Suthers, D. D.; and Weiner, A. 1996. Au-
tomated advice-giving strategies for scientific inquiry. In
ITS-96 372-381.

Puterman, M. L. 1994Markov Decision Processe®ew
York: John Wiley & Sons.

Raines, T.; Tambe, M.; and Marsella, S. 2000. Automated
assistant to aid humans in understanding team behaviors.
In Agents-2000

Riley, P.; Veloso, M.; and Kaminka, G. 2002. An empirical
study of coaching. In Asama, H.; Arai, T.; Fukuda, T.;
and Hasegawa, T., ed®jstributed Autonomous Robotic
Systems BSpringer-Verlag. 215-224.

Schweitzer, P. L.; Puterman, M. L.; and Kindle, K. W.
1985. lterative aggregation-deaggregation procedures for
discounted semi-Markov reward procesg@perations Re-
search33:589-605.

Shani, G.; Brafman, R. I.; and Heckerman, D. 2002. An
MDP-based recommender system.UAI-2002 453-460.

Uther, W., and Veloso, M. 2002. TTree: Tree-based state
generalization with temporally abstract actions. Hro-
ceedings of SARA-2002

Visser, U., and Weland, H.-G. 2004. Using online learning
to analyze the opponent behavior. In Polani, D.; Bonarini,
A.; Browning, B.; and Yoshida, K., edsRoboCup-2003:
The Sixth RoboCup Competitions and ConfererBedin:
Springer Verlag. (to appear).

