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Abstract

SPIRAL is a generator of libraries of fast software impleta¢ions of linear signal processing trans-
forms. These libraries are adapted to the computing plattord can be re-optimized as the hardware is
upgraded or replaced. This paper describes the main comBooeSPIRAL: the mathematical frame-
work that concisely describes signal transforms and ttast &lgorithms; the formula generator that
captures at the algorithmic level the degrees of freedonxjmessing a particular signal processing
transform; the formula translator that encapsulates thepdation degrees of freedom when translating
a specific algorithm into an actual code implementation;, dindlly, an intelligent search engine that
finds within the large space of alternative formulas and @nm@ntations the “best” match to the given
computing platform. We present empirical data that denratest the high performance of SPIRAL
generated code.

1 Introduction

The short life cycles of modern computer platforms are a major problenef@idpers of high performance
software for numerical computations. The different platforms are ussallyce code compatible (i.e., a
suitably written C program can be recompiled) or even binary compatible {Elzased on Intel's x86
architecture), but the fastest implementation is platform-specific due toatiffes in, for example, microar-
chitectures or cache sizes and structures. Thus, producing optineateqaires skilled programmers with
intimate knowledge in both the algorithms and the intricacies of the target platfotmen\tthie computing
platform is replaced, hand-tuned code becomes obsolete.

The need to overcome this problem has led in recent years to a numbeeafai activities that are
collectively referred to as “automatic performance tuning.” Thesetsftarget areas with high performance
requirements such as very large data sets or real time processing.

One focus of research has been the area of linear algebra leadindpp dfficient automatically tuned
software for various algorithms. Examples include ATLAS [36], PHIPAT; §ad SPARSITY [17].

Another area with high performance demands is digital signal proced3®B)( which is at the heart
of modern telecommunications and is an integral component of different mutliantechnologies, such as
image/audio/video compression and water marking, or in medical imaging like ¢echipnage tomography
and magnetic resonance imaging, just to cite a few examples. The computatimoaliyntensive tasks
in these technologies are performed by discrete signal transforms. EBsimplude the discrete Fourier
transform (DFT), the discrete cosine transforms (DCTs), the Walstaiard transform (WHT) and the
discrete wavelet transform (DWT).

*This work was supported by DARPA through research grant DABI83-0004 administered by the Army Directorate of
Contracting.



The research on adaptable software for these transforms has to datedmparatively scarce, except
for the efficient DFT package FFTW [11, 10]. FFTW includes code nexjicalled “codelets,” for small
transform sizes, and a flexible breakdown strategy, called a “planiarfger transform sizes. The codelets
are distributed as a part of the package. They are automatically genanategtimized to perform well on
every platformi.e., they are not platform-specific. Platform-adaptation arises from tieebf plan, i.e.,
how a DFT of large size is recursively reduced to smaller sizes. FFTVWd®s used by other groups to
test different optimization techniques, such as loop interleaving [13Jttendse of short vector instructions
[7]; UHFFT [21] uses an approach similar to FFTW and includes sear¢hevcodelet level and additional
recursion methods.

SPIRAL is a generator for platform-adapted libraries of DSP transforms,it includes no code for
the computation of transforms prior to installation time. The users trigger thegsdgation process after
installation by specifying the transforms to implement. In this paper we descelb®adin components of
SPIRAL: the mathematical framework to capture transforms and their algoritimagormula generator,
the formula translator, and the search engine.

SPIRAL’s design is based on the following realization:

e DSP transforms have\eery largenumber of differentastalgorithms (the term “fast” refers to the oper-
ations count).

e Fast algorithms for DSP transforms can be representéoramilasin a concise mathematical notation
using a small number of mathematical constructs and primitives.

¢ In this representation, the different DSP transform algorithms can benatitally generated.

e The automatically generated algorithms carabeomatically translatedhto a high-level language (like

C or Fortran) program.

Based on these facts, SPIRAL translates the task of finding hardwapéegdmplementations into an
intelligent search in the space of possible fast algorithms and their implemenstation

The main difference to other approaches, in particular to FFTW, is thessonwathematical represen-
tation that makes the high-level structural information of an algorithm aitxessithin the system. This
representation, and its implementation within the SPIRAL system, enables the dotgemeration of the
algorithm space, the high-level manipulation of algorithms to apply varioushs@aethods for optimiza-
tion, the systematic evaluation of coding alternatives, and the extensiorlRAERo different transforms
and algorithms. The details will be provided in Sections 2—-4.

The architecture of SPIRAL is displayed in Figure 1. Users specify thefibam they want to implement
and its size, e.g., a DFT (discrete Fourier transform) of size 1024. Foheula Generator generates
one, or several, out of many possible fast algorithms for the transfotraseralgorithms are represented
as programs written in a SPIRAL proprietary language—the signal poageanguage (SPL). The SPL
program is compiled by th&ormula Translator into a program in a common language such as C or
Fortran. Directives supplied to the formula translator control implementatioices such as the degree of
unrolling, or complex versus real arithmetic. Based on the runtime of the@edeprogram, th&earch
Engine triggers the generation of additional algorithms and their implementations usasgppodifferent
directives. lIteration of this process leads to a C or Fortran implementationsthaiapted to the given
computing platform. Optionally, the generated code is verified for correstn8PIRAL is maintained at
[22].

Reference [19] first proposed, for the domain of DFT algorithms, tdarseula manipulation to study
various ways of optimizing their implementation for a specific platform. Otherrebeon adaptable pack-
ages for the DFT includes [1, 4, 16, 28], and for the WHT includes.[dBje use of dynamic data layout
techniques to improve performance of the DFT and the WHT has been sindiedcontext of SPIRAL in
[24, 25].

This paper is organized as follows. In Section 2 we present the matheniedio@work that SPIRAL
uses to capture signal transforms and their fast algorithms. This fratkneeostitutes the foundation for
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Figure 1: The architecture of SPIRAL.

SPIRAL's architecture. The following three sections explain the three n@aimponents of SPIRAL, the
formula generator (Section 3), the formula translator (Section 4), ancetirelsengine (Section 5). Sec-
tion 6 presents empirical runtime results for the code generated by SPIR¥LmMost transforms, highly
tuned code is not readily available as benchmark. An exception is the DRhioch we compared SPIRAL
generated code with FFTW, one of the fastest FFT packages available.

2 SPIRAL's Framework

SPIRAL captures linear discrete signal transforms (also called DSRdrars and their fast algorithms in
a concise mathematical framework. The transforms are expressed asxavectior product

wherez is a vector of» data points)\/ is ann x n matrix representing the transform, anis the transformed
vector.
Fast algorithms for signal transforms arise from factorizations of thefwam matrix\ into a product
of sparse matrices,
M =M, -My---M;, M;sparse. 2

Typically, these factorizations reduce the arithmetic cost of computing theforamfromO (n?), as required
by direct matrix-vector multiplication, t@(nlogn). It is a special property of signal transforms that these
factorizations exisandthat the matriced/; are highly structured. In SPIRAL, we use this structure to write
these factorizations in a very concise form.

We illustrate SPIRAL’s framework with a simple example—the discrete Fouriestoam (DFT) of size
four, indicated aPFT,. TheDFT, can be factorized into a product of four sparse matrices,

1 1 1 1 10 1 0 1000 1 10 O 1000
DFT4:1 i@ =1 = 101 0 1 0100 1 -10 0 0010 3)

1 -1 1 -1 10-1 0 0010 0 01 1 0100

1 — -1 4 01 0 -1 000 3 0 01 -1 0001



This factorization represents a fast algorithm for computing the DFT offsireand is an instantiation of
the Cooley-Tukey algorithm [3], usually referred to as the fast Fotna@sform (FFT). Using the structure
of the sparse factors, (3) is rewritten in the concise form

DFT; = (DFTy®]I,)-Ts- (I, @ DFTy) - L3, (4)
where we used the following notation. The tensor (or Kronecker) mtoafumatrices is defined by
AR B = [a;@g . B], whereA = [ak’g].

The symbold,,, L7*, T7° represent, respectively, thex n identity matrix, thers x rs stride permutation
matrix that maps the vector element indigess

L?: j—gj-rmodrs—1,forj=0,...,7s—2; rs—1+rs—1, (5)

and the diagonal matrix of twiddle factors & rs),
s—1 A A
T* = Pdiag(w, ..., w, 'Y, wn =" i=v-1, (6)
=0

where
A
st ]

denotes the direct sum a&f and B. Finally,

1 1
DFT, = [1 _1]
is the DFT of size 2.

A good introduction to the matrix framework of FFT algorithms is provided in 833, SPIRAL extends
this framework 1) to capture the entire class of linear DSP transforms amdasiealgorithms; and 2) to
provide the formalism necessary to automatically generate these fast atgoritfe now extend the simple
example above and explain SPIRAL’s mathematical framework in detail. Itiche2.1 we define the
concepts that SPIRAL uses to capture transforms and their fast algarif@ogon 2.2 introduces a number
of different transforms considered by SPIRAL. Section 2.3 discubsespace of different algorithms for a
given transform. Finally, Section 2.4 explains how SPIRAL'’s architedfsee Figure 1) is derived from the
presented framework.

2.1 Transforms, Rules, and Formulas

In this section we explain how DSP transforms and their fast algorithms ptared by SPIRAL. At the
heart of our framework are the conceptsroles andformulas In short, rules are used to expand a given
transform into formulas, which represent algorithms for this transformwiWenow define these concepts
and illustrate them using the DFT.
Transforms. A transformis a parameterized class of matrices denoted by a mnemonic expression, e.g.,
DFT, with one or several parameters in the subscript, PBT,,, which stands for the matrix
DFT, = [/ 4o -1, 0= V=L (7)

)

Throughout this paper, the only parameter will be the sizef the transform. Sometimes we drop the
subscript when referring to the transform. Fixing the parameter determ@uiniestantiation of the transform,
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e.g.,.DFTg by fixing n = 8. By abuse of notation, we will refer to an instantiation also as a transform. By
computing a transformd/, we mean evaluating the matrix-vector prodyct M - x in Equation (1).

Rules. A break-down ruleor simplyrule, is an equation that structurally decomposes a transform. The
applicability of the rule may depend on the parameters, i.e., the size of theommanshn example rule is
the Cooley-Tukey FFT for ®FT,,, given by

DFT,, = (DFT, ®1,) - T? (I, @ DFT,) - L, forn=r-s, ©)

where the twiddle matrix; and the stride permutation’ are defined in (6) and (5). A rule like (8) is
calledparameterizegdsince it depends on the factorization of the transform sizBifferent factorizations
of n give different instantiations of the rule. In the context of SPIRAL, a dd&ermines a sparse structured
matrix factorization of a transform, and breaks down the problem of congiltétransform into computing
possibly different transforms of usually smaller size (h&®&T, andDFT;). Weapply a ruleto a transform
of a given sizen by replacing the transform by the right hand-side of the rule (for t)is If the rule
is parameterized, an instantiation of the rule is chosen. As an example, ap(8yito DFTg, using the
factorization8 = 4 - 2, yields

(DFT,;®1y) - T5 - (14 @ DFTy) - LS. 9)

In SPIRAL’s framework, a breakdown-rule does not yet determinalgorithm. For example, applying the
Cooley-Tukey rule (8) once reduces the problem of computibg'd’,, to computing the smaller transforms
DFT, andDFT;. At this stage it is undetermined how these are computed. By recursivelyirsgprules
we eventually obtain base cases IIB€T>. These are fully expanded by trivial break-down rules,lihse
caserules, that replace the transform by its definition, e.g.,
1 1

DFT; =Fy, whereF; = [1 _1] . (20)
Note thatF; is nota transform, but a symbol for the matrix.

Formulas. Applying a rule to a transform of given size yield$camula Examples of formulas are (9)
and the right-hand side of (4). A formula is a mathematical expressionseiag a structural decomposi-
tion of a matrix. The expression is composed from the following:

e mathematical operatorike the matrix product, the tensor producd, the direct sun;
e transforms of a fixed sizich adDFT,, DCTY;
e symbolically represented matrickke I,,, L7*, T7%, Fa, or R, for a2 x 2 rotation matrix of anglex:
COS ¥ SN &«
Ra = {— sina  cos a] ’

e basic primitivessuch as arbitrary matrices, diagonal matrices, or permutation matrices.

On the latter we note that we representann permutation matrix in the forrr, n], whereo is the defining
permutation in cycle notation. For example= (2, 4, 3) signifies the mapping of indicé&s— 4 — 3 — 2,
and

1 000
0 0 01
0010
An example of a formula for a DCT of size 4 (introduced in Section 2.2) is
[(2> 3)7 4] ’ (dlag(l’ V 1/2) -Fo® R137r/8) : [(27 3)> 4—] ’ (12 ® F?) : [(27 4, 3)7 4] (11)



Algorithms. The motivation for considering rules and formulas is to provide a flexibleext®hsible
framework that derives and represents algorithms for transformsn@an of algorithms is best explained
by expanding the previous exampl#'Ts. Applying Rule (8) (with8 = 4 - 2) once yields Formula (9).
This formula does not determine an algorithm for €T, since it is not specified how to compudd T,
andDFTs. ExpandingDFT,4 using again Rule (8) (with = 2 - 2) yields

((DFTy®1p) - T3 (Is® DFTy) - L) ® Ir) - T3 (s @ DFTy) - LY.
Finally, by applying the (base case) Rule (10) to expand all occubif,’s we obtain the formula
(Fe®Ip) - T3- (I, ®F) - L3) ® Ip) - T3 -(Is ® Fa) - L, (12)

which does not contain any transforms. In our framework, we call suciimulafully expanded A fully
expanded formula uniquely determines an algorithm for the representefioman:

fully expanded formula— algorithm.

In other words, the transforms in a formula serve as place-holder tledt toebe expanded by a rule to
specify the way they are computed.

Our framework can be restated in terms of formal languages [27]. Weefame a grammar by taking
transforms as (parameterized) nonterminal symbols, all other constructsrinlas as terminal symbols,
and an appropriate set of rules as productions. The language tpehbyahis grammar consists exactly of
all fully expanded formulas, i.e., algorithms for transforms.

In the following section we demonstrate that the presented framework isstatted to the DFT, but is
applicable to a large class of DSP transforms.

2.2 Examples of Transforms and their Rules

SPIRAL considers a broad class of DSP transforms and associated &Esamples include the discrete
Fourier transform (DFT), the Walsh-Hadamard transform (WHT), tlserdte cosine and sine transforms
(DCTs and DSTSs), the Haar transform, and the discrete wavelet tramsfo
We provide a few examples. Th#'T,,, the workhorse in DSP, is defined in (7). The Walsh-Hadamard
transformWHT,: is defined as
WHTQk =F®...0F,.
k fold

There are sixteen types of trigonometric transforms, namely eight type€®§ @and eight types of DSTs
[35]. As examples, we have

DCTY = [cos((¢+1/2)kn/n)],

DCTY = [cos((k+1/2)(¢+1/2)7/n)], (13)
DSTY = [sin((k+1)({+1/2)7/n)],

DSTY = [sin((k+1/2)(¢+1/2)7/n)],

where the superscript indicates in romans the type of the transform, aimdéxerange i%, £ = 0,...,n—1
in all cases. Some of the other DCTs and DSTSs relate directly to the ones, dbogxample,

DCT! = (DCT™)",  and DST™ = (DST™)”, where(-)” = transpose.

The DCT"™ and theDCT®™ are used in the image and video compression standards JPEG and MPEG,
respectively [26].



The (rationalized) Haar transform is recursively defined by

RHT2 = FQ, RHT2k+1 = [ ng ®[1 1

]1]}, k>1.

We also consider the real and the imaginary part of the DFT,

CosDFT = ReDFT,), and

SinDFT = Im(DFT,). (14)

We list a subset of the rules considered by SPIRAL for the above transfin Equations (15)—(28). Due
to lack of space, we do not give the exact form of every matrix appgamithe rules, but simply indicate
their type. In particularp x n permutation matrices are denoted By, P, , P/, diagonal matrices by,,,
other sparse matrices I#y,, S/, and2 x 2 rotation matrices b)Rk,R,(j) . The same symbols may have
different meanings in different rules. BY” = P~! . A . P, we denote matrix conjugation; the exponéht
is always a permutation matrix. The exact form of the occurring matricebeémund in [34, 33, 6].

DFT, = F, (15)
DFT, = (DFT,®I,)-T" (I, @ DFT,)-L", n=r-s (16)
DFT, = CosDFT, +i-SinDFT, (17)
DFT, = L"-(I,®DFT,) -L*-T"-(I,@ DFT,)-L", n=r-s (18)
DFT, = (L®(l,p 1 ®Fs-diag(1,4))"™ - (DCTY , | &(DSTY /271)1”79/2—1) (19)
(L &L, 1 @F2), 2|n
CosDFT,, = Sn-(COSDFTn/Q@DCT%')M)-S;L- 5, 4|n (20)
SinDFT, = 8, - (SinDFT,;&DCTY ). S} L3, 4|n (21)
DCTY = diag(1,/1/2) - Fy (22)
DCTY = P, - (DCTY), &(DCTY),)") - (I, @F2), 2|n (23)
DCTY = S, -DCTY.D, (24)
DCT® = (Il@(ln/2,1®F2)@Il)-Pn.(DCTQ}Q@(DSTg;;z)Pé/z) (25)
(R @®...®R,)™, 2|0
DCTY = Py~ (Ri®...® Ryr) (26)

1
(12k7j71 ® F2 ®12j) . <12k7j71 ® <I2j @Rg-]) @ e @ R;?—l)) . ék

j=k—1
t
WHT,. = H (I2k1+~»+kj,1 @ WHT ®12kj+1+”‘+kt) , k=ki+-+k (27)
7=1
RAHTy = (RHTgeo1 ®Ip1)- (Fa®Ip1) LY, k>1 (28)

The above rule can be informally divided into the following classes.

e Base case rulesxpand a transform of (usually) size 2 (e.g., Rules (15) and (22)).

¢ Recursive ruleexpand a transform in terms of similar (e.g., Rules (16) and (27)) or diffefe.g.,
Rules (23) and (19)) transforms of smaller size.



DFT, size2* | DCT™, size2k
1 1

7 8

48 86

434 15,778

171016 ~ 5.0 x 10%
~ 3.4 x 10'2 ~ 5.3 x 1017
~ 3.7 x 10%8 ~ 5.6 x 10%°
~ 2.1 x 1062 ~ 6.2 x 107
~6.8x 101 | ~ 6.8 x 10143

©CoO~NO U~ WNPR|

Table 1: Number of algorithms for DFT amiCT®™ of size2*, fork =1,...,9.

e Transformation rulegxpand a transform in terms of different transforms of the same sizeRelgs (17)
and (24)).

e lterative rulescompletely expand a transform (e.g., Rule (26)).

Further we note the following important facts.

e Some rules arparameterizedi.e., they have different instantiations. For example, Rule (16) depands o
the factorizatiom = r - s, which in general is not unique.

e Forthe DFT there are rules that are substantially different from the ¢dalkey rule (16) (e.g., Rule (19),
which computes a DFT via DCTs and DSTS).

e The Cooley-Tukey variant proposed in [24] is represented by R@f (thich arises from Rule (16) by
replacingDFT, ® I, with L -(I, ® DFT,) - LY.

Inspecting rules 15 through 28 we confirm that these rules involve or@wadnstructs and primitives. In

particular, enlarging the transform domain from the DFT and the Cool&gyTiwle (16) to the trigonometric

transforms (Rules (23)—(26)) requires only the addition of the dirett suand of a few primitives like

diagonal and permutation matrices. Other rules that can be represeimgduoky the above constructs

include split-radix FFT, Good-Thomas FFT, and Rader FFT, see [3Xll&framework for FIR filters is

presented in [14].

2.3 The Algorithm Space

For a given transform there is freedom in how to expand, i.e., which remy. This freedom may arise
from the applicability of different rules or from the applicability of one rulatthas different instantiations.
As an example, ®F T4 can be expanded using Rule (16) or Rule (19). If Rule (16) is chdken,the
actual expansion depends on the factorization of the size 16, namelyf 8ne2o 4 - 4, 2 - 8. After the
expansion, a similar degree of freedom applies to the smaller transforimexhtd he net result is that, for
a given transform, there is a very large number of fully expanded fosnuka, algorithms. For example,
Table 1 shows the surprisingly large number of algorithms arising from flee nonsidered by SPIRAL,
for the DFT and theDCT" of small 2-power sizes.

The set of all algorithms for a given transform constitutesalymrithm spacehat SPIRAL searches
when generating an efficient implementation on a given platform. The nuritb@able 1 show that, even
for a modest transform size, an exhaustive search in this space sasdile.

It is important to note that the numerous fully expanded formulas, i.e., algorithengrated for a given
transform from a set of rules, have (almost) the same arithmetic cost (i.enuthber of additions and
multiplications required by the algorithm). They differ in the data flow during thrautation, which leads
to a large spread in the runtimes of the corresponding implementations, ewemyfemall transform sizes.
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Figure 2: Histogram of the runtimes (in nanoseconds) of all 45 algorithma WWHT,s, and all 15,778
algorithms for aDCT{Y, implemented in straight-line code on a Pentium 4, 1.8 GHz, running Linux.

As an example, Figure 2 shows a histogram of runtimes for all 45 algorithms W6HT,s and for all
15,778 algorithms for ®CT{Y implemented by SPIRAL in straight-line code (i.e., without using loops).
The platform is a Pentium 4, 1.8 GHz, running Linux, using gcc 2.95. EbitledVHT algorithms requires
precisely 80 additions and 80 subtractions. The runtimes range between/7&® and 1450 nanoseconds,
which is around a factor of 2. For tHeCT" algorithms the number of additions ranges from 96 to 104,
and the number of multiplications ranges from 48 to 56. The runtimes are beappeoximately 430 and
900 nanoseconds, more than a factor of 2. In both cases, the fdgtw#hans are rare. For example, for
the DCTIV, only about 1.5% of the algorithms are within a 10% runtime range of the fadtgsithm.

2.4 Framework Summary

The mathematical framework presented in this section provides a clear rpaniew to implement SPI-
RAL, a system that automatically searches the algorithm space of a ginsfotma for a fastest implemen-
tation on a given platform. At the core of SPIRAL is the representation afgorithmas a (fully expanded)
formula This representation connects the mathematical realm of DSP transformtratgowith the realm
of their actual C or Fortran implementations. Automation of the implementation [@rtives requires 1) a
computer representation of formulas, which in SPIRAL is achieved by tlgridge SPL; 2) the automatic
generation of formulas; and 3) the automatic translation of fully expandetutas into programs. Further,
to generate &ery fastmplementation, requires 4) a search module that controls the formula generatio
possible implementation choices, such as the degree of unrolling.

Taken together we obtain the architecture of SPIRAL displayed in Figurbd. following three sections
are devoted to the three key modules of SPIRAL: the formula generatctid88), the formula translator
(Section 4), and the search module (Section 5).

3 Formula Generator

The task of the formula generator module within SPIRAL (see Figure 1) isrtergée algorithms, given as
formulas, for a user specified transform. The formula generator isacexuifwith SPIRAL’s search module,
which controls the formula generation. In this section we overview the desidrithe main components of
SPIRAL’s formula generator.
The most important features of the formula generator are:
e Extensibility. The formula generator, and hence SPIRAL, can be easily expandettloging new
transforms and new rules.
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Figure 3: A fully expanded ruletree for thgFTs and the corresponding fully expanded formula; the rules
at the nodes are omitted.

e Efficiency.Formula generation is fast, i.e, does not constitute a bottleneck in SPIRAdlésgeneration
process, and it is storage efficient, an important feature for somehseaethods (e.g., STEER, see
Section 5), which concurrently work with a large number of algorithms.

In the following we overview how we realized these features by introduappgopriate data structures to

represent transforms, rules, and algorithms. We conclude with a skietch mternal architecture of the

formula generator and some notes on its implementation.

3.1 Extensibility: Databases of Transforms and Rules

SPIRAL’s framework (Section 2) shows that algorithms for a given fans arise from the successive
application of a small number of rules. This fact leads naturally t@edensibledesign of the formula
generator, in which transforms and rules are collected in respectivieada® An entry for a transform in
the transform database collects the information about the transform thetdassary for the operation of the
formula generator. For example, definition, parameters, and dimensioa thtisform have to be known.
Similarly, an entry for a rule in the rule database collects the necessaryiation about the rule, such as
the associated transform, applicability conditions, and the actual strudtinerle. Thus, extension of the
formula generator, and hence SPIRAL, with new transforms or rulasreethe user to create a new entry
in the respective database.

3.2 Efficiency: Ruletrees

The formula generator represents formulas by a recursive data sé&ruaitresponding to their abstract
syntax trees. For algorithms of large transform sizes this representattomies storage intensive. Further-
more, several search algorithms (Section 5) require the local manipuldtadgasithms, which is unduly
difficult if they are represented as formulas.

To overcome this problem, the formula generator uses a different espiagi®n for algorithms, namely
ruletrees Every algorithm for a transform is determined by the sequence of rpl@ed in the expansion
process. Thus we can represent an algorithm tedreein which each node contains the transform at this
stage and the rule applied to it. A ruletree is callelly expandedif all rules in the leaves are base case
rules. Fully expanded ruletrees correspond to fully expanded forrankhshus to algorithms.

As a simple example, Figure 3 shows a ruletree forlii€l's corresponding to Formula (12), which
was derived by two applications of Rule (16) and 3 applications of the(te&se) Rule (15); we omitted the
rule names in the nodes.

Ruletrees are storage efficient; each node only contains pointers toptupeate transform and rule in
the database. Furthermore, ruletrees can be easily manipulated, e.gpabgiey a subtree in a different
way. The efficient representation also leads to the very fast geneddtioketrees. On current computing
platforms, thousands of trees can be generated in a few seconds.
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Figure 4. Internal architecture of the formula generator including theeseaodule. The main components
are recursive data types for representing ruletrees and formuthextensible databases (dashed boxes) for
rules and transforms.

3.3 Infrastructure and Implementation

The internal architecture of the formula generator, including the seargimes is displayed in Figure 4.
The dashed boxes indicate databases. A user specified instantiatiomo$f@im is expanded into one or
several ruletrees using known rules. The choice of rules is controjlédebsearch engine. The ruletrees
are translated into formulas and exported to the formula translator, whichilesrtipem into C or Fortran
programs (explained in Section 4). The runtime of the generated prograetarised to the search engine,
which controls the generation of the next set of ruletrees (see Section 5)

Formula generation and formula manipulation fall into the realm of symbolic computatiach led us
to choose the language and computer algebra system GAP [12], incluBiBE® £5], as an implementation
platform. GAP provides the infrastructure for symbolic computation with a taofalgebraic objects. The
GAP share package AREP is focused on structured matrices and thelgymbnipulation. A high level
language like GAP facilitates the implementation of the formula generator. Asditioadl advantage,
GAP providesxactarithmetic for square roots, roots of unity, and trigonometric expressiansrthke up
the entries of most DSP transforms and formulas.

4 Formula Translator

The task of the formula translator module within SPIRAL is to translate fully estpdfiormulas generated
by the formula generator into programs. Currently, the translated progreaveither C or Fortran proce-
dures, though other languages including assembly or machine code eguidduced. Once a formula has
been translated into a program, it can be executed and timed by the perferevaheation component and
the resulting time returned to the search engine. This allows SPIRAL to skearelst implementations of
DSP transforms using the mathematical framework presented in Section 2.

The formulas input to the formula translator are represented in the SPLagagBPL is a domain-
specific language for representing structured matrix factorizationsb8Paws concepts from TPL (Tensor
Product Language) [1]. SPL programs consist of formulas thatyemdalic representations of structured
matrix factorizations of matrices with fixed row and column dimensions. Eachular corresponds to a
fixed transform matrix, which can be obtained by evaluating the formula. rtaely, the formula can be
interpreted as an algorithm for applying the transform represented igrthala to an arbitrary input vector.
Using the structure in a formula, the SPL compiler translates the formula intaccadgure for applying the
corresponding transform to the input vector.

A key feature of the SPL compiler is that the code generation proces®a@mnbrolled by the user with-
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out modifying the compiler. This is done through the use of compiler directindsa template mechanism
called meta-SPL. Meta-SPL allows SPIRAL, in addition to searching througisghce of algorithms, to
search through the space of possible implementations for a given formiky ¥esearch question is to de-
termine which optimizations should be performed by default by the SPL compitewhich optimizations
should be controlled by the search engine in SPIRAL. Some optimizatiorsasu@mommon subexpression
elimination, are always applied; however, other potential optimizations, asiébop unrolling, for which
it is not clear when and to what level to apply, are implementation parametettsefgsearch engine to ex-
plore. It is worth noting that it is necessary for the SPL compiler to applydstahcompiler optimizations
such as common subexpression elimination, rather leaving them to the b&tkeertran compiler, since
these compilers typically do not fully utilize these optimizations on the type of coatuped by the SPL
compiler [38].

The SPL representation of algorithms around which SPIRAL is built is véfgrdnt from FFTW’s
codelet generator, which represents algorithms as a collection of arithmyet@ssion trees for each output,
which then is translated into a dataflow graph using various optimizations [daQjoth cases, the repre-
sentation is restricted to a limited class of programs corresponding to lineautatiops of a fixed size,
which have simplifying properties such as no side-effects and no coraldiohis opens the possibility
for domain-specific optimizations. Advantages of the SPL representat@igafthms as generated by the
formula generator include the following: 1) Formula generation is sepafiatedformula translation and
both the formula generator and formula translator can be developed, mahtaird used independently. In
particular, the formula generator can be used by DSP experts to incladeamsforms and algorithms. SPL
provides a natural language to transfer information between the two comtgor® The representation is
concise. The arithmetic expression tree representation used in FFT\&egpreach output as linear func-
tion of alln inputs and thus grows roughly @&n? log(n)), which restricts its application to small transform
sizes (which, of course, is the intended scope and sufficient in FFE))igh-level mathematical knowl-
edge is maintained, and this knowledge can be used to obtain optimizationsogndnprtransformations
not available using standard compiler techniques. This is crucial, for dgafop short-vector code gen-
eration (Section 4.4). 4) The mathematical nature of SPL allows other pnggia our case the formula
generator, to easily manipulate and derive alternate programs. Morafy@ithms are expressed naturally
using the underlying mathematics. 5) SPL provides hooks that allow altezretdle generation schemes
and optimizations to be controlled and searched externally without modifyingptheiler.

In the following three subsections we describe SPL, meta-SPL, and the®@#tiler, respectively. An
overview of the language and compiler will be given, and several examylebe provided, illustrating
the syntax of the language and the translation process used by the corAgitional information may
be found in [38] and [37]. We conclude with a brief overview of an egien to the SPL compiler that
generates short vector code for last generation platforms that feéaiMi@ (single-instruction multiple-
data) instruction set extensions.

41 SPL

In this section we describe the constructs and syntax of the SPL langBggeax is described informally
guided by the natural mathematical interpretation. A more formal treatment alth@ BNF grammar
is available in [37]. In the next section we describe meta-SPL, a meta-lgadhat is used to define the
semantics of SPL and allows the language to be extended.

SPL programs consist of the following: 1) SPL formulas, representilig éqpanded formulas in the
sense of Section 2.1; 2) constant expressions for entries appearfiognulas; 3) define statements for
assigning names to formulas or constant expressions; and 4) compitgiveiseand type declarations. Each
formula corresponds to a factorization of a real or complex matrix of a fikeel The size is determined
from the formula using meta-SPL, and the type is specified as real or completa-SPL is also used
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to define the symbols occurring in formulas. Rather than constructing matneta-SPL is used by the
compiler to generate a procedure for applying the transform (as eepiegsby a formula) to an input vector
of the given size and type.

Constant expressions.The elements of a matrix can be real or complex numbers. Complex humbers
a+by/—1 are represented by the pair of real numter$). In SPL, these numbers can be specified as scalar
constant expressions, which may contain function invocations and synebaolitants likei. For example,

12, 1.23, 5*pi, sqrt(5), and (cos(2*pi/3.0),sin(2*pi/3)) are valid scalar SPL expressions. All
constant scalar expressions are evaluated at compile-time.

SPL formulas. SPL formulas are built from general matrix constructions, parameterizatas de-
noting families of special matrices, and matrix operations such as matrix compesitiect sum, and the
tensor product. Each construction has a list of arguments that uniquelyrdiee the corresponding matrix.
The distinction between the different constructions is mainly conceptualevewt also corresponds to
different argument types.

SPL uses a prefix notation similar to Lisp to represent formulas. The follolgtsgexample construc-
tions that are provided from each category. However, it is possiblefioedeew general matrix construc-
tions, parameterized symbols, and matrix operations using meta-SPL.

General matrix constructions. Let a;; denote an SPL constant ang j., ando;, denote positive
integers. Examples include the following.

e (matrix (a1 ... aip) ... (@m1 ..  amp)) -them x n matrix [ai]’]lgignﬂh 1<j<n-

e (sparse (i1 ji @ij,) ... G ji aq5.)) - them x n matrix wherem = max(i1,... ), n =
max(ji,...,Jj;) and the non-zero entries atg ;, fork =1,...,¢.

e (diagonal (a1 ... ay)) -then x ndiagonal matridiag(ai,...,a,).

e (permutation (o7 ... o04,)) -then x n permutation matrixk — oy, fork =1,... n.

Parameterized SymbolsParameterized symbols represent families of matrices parameterized by inte-

gers. Examples include the following.

e (I n) -then x n identity matrixI,.

(F n) -then x n DFT matrixF,,.

(L n s) -then x n stride permutation matrik!’, wheres|n.

(T n s) -then x n twiddle matrixT?, wheres|n.

Matrix operations. Matrix operations take a list of SPL formulas, i.e. matrices, and construct an
other matrix. In the following examplesi and A; are arbitrary SPL formulas anél is an SPL formula
corresponding to a permutation matrix.

e (compose A; ... A;) -the matrix productd; - - - A;.
e (direct-sum A; ... A;)-thedirectsumd; & --- P A;.
e (tensor Ay ... A;) -thetensorproduct; ® --- ® A;.

e (conjugate A P) -the matrix conjugatioml” = P~1. A . P, whereP is a permutation.
Define Statementsre provided for assigning names to formulas or constant expres$ioeyg provide
a short-hand for entering subformulas or constants in formulas.
e (define name formula)
e (define name constant-expression)
Compiler Directives. There are two types of compiler directives. The first type is used to ypibeif
matrix type, and the second type is used to influence the code produces dyntipiler.
e #datatype REAL | COMPLEX - set the type of the input and output vectors.
e #subname name - name of the procedure produced by the compiler for the code that follows
e #codetype REAL | COMPLEX - if the datatype is complex, indicate whether complex are real variables
will be used to implement complex arithmetic in the generated code.
e #unroll ON | OFF - if ON generate straight-line code andHF generate loop code.
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#datatype COMPLEX #datatype REAL

#codetype REAL #unroll ON
#unroll ON #subname DCT2_4
(define F4 (compose
(compose (permutation (1 3 2 4))
(tensor (F 2) (I 2)) (direct_sum
(T 4 2) (compose (diagonal (1 sqrt(1/2))) (F 2))
(tensor (I 2) (F 2) (matrix
(L 4 2)) ( cos(13*pi/8) sin(13*pi/8))
#subname F_8 (-sin(13*pi/8) cos(13*pi/8))
#unroll OFF )
(compose )
(tensor F4 (I 2)) (permutation (1 3 2 4))
(T 8 2) (tensor (I 2) (F 2))
(tensor (I 4) (F 2)) (permutation (1 4 2 3))
(L 8 4)) )

Figure 5: SPL expressions foFTs andDCTY.

Figure 5 shows SPL expressions for the fully expanded formulas farahsformsDFTs andDCTY”,
corresponding to (12) and (11), respectively. These exampledlusetze components of SPL including
parameterized symbols, general matrix constructions, matrix operatiorgtaobexpressions, define state-
ments, and compiler directives. These SPL formulas will be translated inté-Qrvan procedures with the
namesF_8 andDCT2_4 respectively. The procedure8 has a complex input and output of size 8 and uses
a mixture of loop and straight-line code. Complex arithmetic is explicitly computed wéharithmetic
expressions. The procedweT2_4 has a real input and output of size 4 and is implemented in straight-line
code.

4.2 Meta-SPL

The semantics of SPL programs are defined in meta-SPL using a template rmech&mplates tell the

compiler how to generate code for the various symbols that occur in SRiufas. In this way, templates
are used to define general matrix constructions, parameterized symbofsadrix operations, including

those built-in and those newly created by the user. They also provide aamsehto compute the input
and output dimensions of the matrices corresponding to a formula. In adttittemplates, meta-SPL can
define functions (scalar, vector, and matrix) that can be used in tempfai&ides. Finally, statements are
provided to inform the parser of the symbols that are defined by templates.

Symbol definition, intrinsic functions, and templates. Meta-SPL provides the following directives
to introduce parameterized matrices, general matrix constructions, matre¢aysg intrinsic functions and
templates.

e (primitive name shape) - introduce new parameterized symbol.

(direct name size-rule) - introduce a new general matrix construction.

(operation name size-rule) - introduce new matrix operation.

(function name <arguments> <dimension> expression) - define an intrinsic function.

(template formula [condition] (i-code-list)) - define atemplate.

The parametershape andsize-rule specify how the row and column dimensions of the represented
matrix are computed.
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(template (T n
[n>=1&& s

( coldim = n
rowdim = n

s) ;; ——-—- n and s are integer parameters
>= 1 && nis == 0]

for i=0,...,n-1
y(i) = w(n,i*s) * x(i)
end ) )

Figure 6: Template fofT n s).

A template contains a pattern followed by an optional guard condition andeassmpience using an in-
termediate code representation called i-code. When the SPL compiler éerscamexpression that matches
the pattern and satisfies the guard condition, it inserts the corresponchag into the translated program,
where the parameters are replaced by the values in the matched expression

Templates use the convention that the input and output vectors are aiferyred to by the names x and
y and have sizes given lypldim androwdim. Intermediate code can refer to x, y, the input parameters,
and temporary variables. The code consists of a sequence of twad@esignments and conditionals are
not allowed. Loops are allowed; however, the number of iterations, threceemplate is instantiated will
always be constant.

The following examples illustrate how templates are used to define parametgyinbols and matrix
operations. A detailed description of templates is provided in [37]. Note thatythtax used here is slightly
simplified to allow for a more accessible presentation. Also row and column diomsnare computed
explicitly rather than relying on size and shape rules.

Figure 6 shows the template definition for the parameterized syfibal s). The patter(T n s) will
match any SPL expression containing the synibiol the first position followed by two integer parameters.
The guard condition specifies that the two integer parameters are posititkeasecond parameter divides
the first. The resulting code multiplies the input vectdry constants produced from intrinsic function calls:
w(n, k) = wk,

Figure 7 provides template definitions for the matrix operationgose andtensor. These examples
show how to apply matrix operations to code sequences and is the founfiatibwe translation process.
Given i-code for the sub-expressions representing the operatitsmftrix operation, the code construction
creates a code sequence for the matrix obtained by applying the operatienojgerand matrices.

The code for the matrix compositian= (AB)x is obtained by applying the code fé to the inputz
and assigning the output to the temporary vee¢tamtroduced bydeftemp, and then applying the code for
Atotto getthe outpuy . The i-code for the matched parametdrandB is called using the call statement.
The call is inlined with appropriate parameter substitution and index adjustmenteEtor indexing we
use the notation start:stride:end, elg:2: 7=1,3,5,7.

The code for the tensor product of am x n matrix A and ap x ¢ matrix B is obtained from the
factorizationAd ® B = (A ® I,) (I, ®B). The two factors are combined using composition. The first factor
simply loops ovem calls to the code foiB, and the second factor loops overcalls to the code for;
however, in the latter case, the data is accessed at gtride

4.3 SPL Compiler

This section describes the organization of the SPL compiler and illustratesoitesp used to translate SPL
formulas into programs. In addition, mechanisms are described that alldRABRb search over different
implementation strategies.
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(template (compose A B) ; y = (AB) x=ABKX)).
( deftemp t(B.rowdim)
coldim = A.rowdim
rowdim = B.coldim
t(0:1:B.rowdim-1)
y(0:1:A.rowdim-1)

call B(x(0:1:B.coldim-1))
call A(t(0:1:B.rowdim-1)) ) )

(template (tensor A B) ; y = (A temsor B) x
( rowdim = A.rowdim * B.rowdim
coldim = A.coldim * B.coldim
deftemp t(A.coldim*B.rowdim)

for i=0:A.coldim-1
t(i*B.rowdim:1: (i+1)*B.rowdim-1) =
call B(x(i*B.coldim:1:(i+1)*B.coldim-1));
end
for j=0:B.rowdim-1
y(j*A.rowdim:B.rowdim: (j+1)*A.rowdim-1) =
call A(t(j*A.coldim:B.rowdim: (j+1)*A.coldim -1 )
end ) )

Figure 7: Templates fotompose andtensor.

The SPL compiler translates an SPL formula (matrix factorization) into an effipr@gram (currently
in C or Fortran) to compute the matrix-vector product of the matrix given bystPe formula. Transla-
tion proceeds by applying various transformations, corresponding eddkbraic operators in SPL, to code
segments starting with code for the matrices occurring in the SPL formula.ofleesegments and transfor-
mations are defined by the template mechanism in meta-SPL discussed in thegpsadbon. Meta-SPL
also provides a mechanism to control the optimization and code generati@gistsaused by the compiler.

The input to the SPL compiler consists of an SPL program, a meta-SPL templdte, set of inter-
spersed compiler directives. The SPL program and meta-SPL can baiigdrin the input so long as the
definition of any new symbol appears before its use. The output of thee&MRpiler is a set of Fortran or
C procedures which compute the matrix-vector products correspondaibaiothe top level SPL formulas
in the SPL program. The compiler proceeds in five steps: 1) parsing; 2)nietiate code generation; 3)
intermediate code restructuring; 4) optimization; and 5) target code diemeras illustrated in Figure 8.

Parsing. The parser creates three data structures from the input SPL and niefa®ffam: a set
of abstract syntax trees (AST), a table containing templates, and a syrbbml taach SPL formula is
translated into an abstract syntax tree (AST). The leaf nodes of an &&@&io primitive matrices and the
internal nodes correspond to matrix operators. The AST is a binaryriraey, formulas, such aScompose
A1 ... An) are associated right-to-left. Template definitions are stored in the templateEalle entry
in the template table contains an AST which represents the pattern, an arithnpgssian tree which
represents the condition, and a linked-list that holds the i-code. Eachdefined bydefine, primitive,
operation, direct, Or function is stored in the symbol table.

Intermediate Code Generation.l-code is generated for each AST created from the SPL program using
the necessary symbol values and template definitions obtained from the lsgntbtemplate tables. A
recursive top-down pattern matching algorithm is used to match the symbolgiongcim the AST with
templates in the template table. After matching a template, parameters are evaldatezitamplate i-code
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SPL and MetaSPL program

SPL formula | | symbol definition | template definition

Parsing

abstract syntax treey ¢ Symbol table y template table

Intermediate Code Generation
y i-code
Intermediate Code Restructuring
i i-code
Optimization
i i-code
Target Code Generation

C or Fortran

Figure 8: The SPL compiler.

is inserted into the i-code for the AST from the bottom up. The i-code forde mothe AST is constructed
according to the matching template definition from the i-code of its children. Asdbde is combined it
may be necessary to rename variables, in-line call statements, and uniégsdapressions.

Intermediate Code Restructuring. Several code transformations, depending on the compiler options
and directives, are performed. These transformations include loaplingr complex to real arithmetic
conversion and intrinsic function evaluation.

Optimization. After the code restructuring the compiler performs some basic optimization dicdiole
sequence. These optimizations, which include constant folding, copagation, common subexpression
elimination, and dead code elimination, have proven to be necessary toegoies performance when
the target C/Fortran compiler is not aggressive enough with its optimizati@ten®y, code reordering (or
scheduling) for locality was included as optional optimization [23] but is igdu$sed in this paper.

Target Code Generation. The optimized i-code is translated to the target language, currently C or
Fortran.

An Example. We illustrate the entire compilation process for the SPL formula

(compose (tensor (F 2) (I 2)) (T 4 2) (temsor (I 2) (F 2)) (L 4 2))

corresponding to the formula forlaF'T4 given in Equation (4). Figure 9 shows the AST for this formula.
Since theDF T, is a complex transform, the formula is compiled with the flaigtatype COMPLEX (see
Section 4.1). Accordingly, the i-code generated in the compilation stepatepamn complex numbers.

The SPL compiler processes the AST in Figure 9 bottom-up starting with theslddsang the template
definitions forF, L, andT, the following code is produced. The const&at0,1.0) denotes = /—1.

F2 := T42 := L42 :=

y(2) = x(1) - x(2) y(1) = x(1) y(1) = x(1)

y(1) = x(1) + x(2) y(2) = x(2) y(2) = x(3)
y(3) = x(3) y(3) = x(2)
y(4) = (0.0,1.0)*x(4) y(4) = x(4)
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® L42

I2 F2

Figure 9: The abstract syntax tree (AST) for IDET, formula in (4).

Next, templates for the special caseg®,4 and B®1, of the tensor product are used to construct code for
(tensor (I 2) (F 2)) and(tensor (F 2) (I 2)), respectively. The code fdicompose (tensor
(I 2) (F 2)) (L 4 2)) is obtained by concatenating the code faensor (I 2) (F 2)) with the
code for(L 4 2)). An optimization removes unnecessary temporaries, i.e., the permutation iatedns
into a readdressing of the input variables faensor (I 2) (F 2)) according to(L 4 2). We display
the i-code generated for all internal nodes in the AST in Figure 9.

F2 ® I2 := (I2 ® F2)L42 := T42(I2 ® F2)L42 :=
y(1) = x(1) + x(3) y(1) = x(1) + x(3) y(1) = x(1) + x(3)
y(3) = x(1) - x(3) y(2) = x(1) - x(3) y(2) = x(1) - x(3)
y(2) = x(2) + x(4) y(3) = x(2) + x(4) y(3) = x(2) + x(4)
y(4) = x(2) - x(4) y(4) = x(2) - x(4) f =x(2) - x(4)

y(4) = (0.0,1.0)*f

Finally the code for the root node is generated. At this stage the abovemashtiptimizations are
applied including common subexpression elimination or (the optional) conuefrsim complex to the in-
terleaved format (alternately real and imaginary part) invoked by the#dad@etype REAL. In our example
the following code is generated fétodetype COMPLEX and#codetype REAL, respectively:

F4 := F4 :=
f0 = x(1) - x(3) f0 = x(1) - x(5)
f1 = x(1) + x(3) f1 = x(2) - x(6)
2 = x(2) - x(4) f2 = x(1) + x(5)
£f3 = x(2) + x(4) f3 = x(2) + x(6)
y(3) = f1 - £3 f4 = x(3) - x(7)
y(1) = f1 + £3 f5 = x(4) - x(8)
f6 = (0.0,1.0) * f2 f6 = x(3) + x(7)
y(4) = £f0 - £f6 7 = x(4) + x(8)
y(2) = £f0 + f6 y(5) = £2 - f6
y(6) = £3 - 7
y(1) = £2 + 16
y(2) = £3 + 17
y(7) = £0 + £5

y(8) = f1 - f4
y(3) = f0 - £5
y(4) = f1 + f4
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Loop Code. The code generated in the previous example consists entirely of straiglebliiee The
SPL compiler can be instructed to generate loop code by using templates withslodp as those for the
twiddle symbol and the tensor product. Using these templates, the SPL conguilglates the expression
(compose (F 2) (I 4)) (T 8 4)) into the following Fortran code.

do i0 = 0, 7

t0(i0+1) = T8_4(i0+1) * x(i0+1)
end do
do i0 = 0, 3

y(i0+5) = t0(i0+1) - t0(i0+5)
y(i0+1) = t0(i0+1) + t0(i0+5)
end do

Since loops are used, constants must be placed in an array so thatriieyiodexed by the loop variable.
Initialization code is produced by the compiler to initialize arrays containingtaats In this example, the
constants fronT§ are placed in the arra§g_4.

Observe that the data must be accessed twice: once to multiply by the twiddle aradriznce to
computeFs ® I4. By introducing an additional template that matches the expression that cahbind,
and the preceding twiddle matrix, the computation can be performed in one pass

do i0 = 0, 3
rl =4 + 10
fO = T8_4(r1+1) * x(i0+5)
y(i0+5) = x(i0+1) - £O
y(i0+1) = x(i0+1) + fO
end do

This example shows how the user can control the compilation process thiteeigse of templates.

In order to generate efficient code it is often necessary to combine lnag @and straight-line code.
This can be accomplished through the use of loop unrolling. After matchingldée pattern with loops
the instantiated code has constant loop bounds. The compiler may be diceateadll the loops, fully or
partially to reduce loop overhead and increase the number of choicedrimctitn scheduling. When the
loops are fully unrolled, not only is the loop overhead eliminated but it alsornes possible to substitute
scalar expressions for array elements. The use of scalar variabdisstteimprove the quality of the code
generated by Fortran and C compilers which are usually unable to analges containing array subscripts.
The down side of unrolling is the increase in code size.

In SPL, the degree of unrolling can be specified for the whole progmafara single formula. For
example, the compiler optiorB32 instructs the compiler to fully unroll all loops in those sub-formulas
whose input vector is smaller than or equal to 32. Individual formuladeamrolled through the use of the
#unroll directive. For example

#unroll on

(define I2F2 (temsor (I 2) (F 2)))
#unroll off

(tensor (I 32) I2F2)

will be translated into the following code.
do i0 = 0, 31
y(4*%i0+2) = x(4*i0+1) - x(4%i0+2)
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y (4%i0+1)

x(4*%i0+1) + x(4%i0+2)

y(4*%i0+4) = x(4%i0+3) - x(4xi0+4)
y(4%i0+3) = x(4%i0+3) + x(4%i0+4)
end do

The ability to control code generation through the use of compiler optiomapiter directives and
templates allows the SPIRAL system to search over implementation strategietiby sempiler flags,
inserting directives, and inserting template definitions.

4.4 Short Vector Extension of the SPL Compiler

Most recent micro-architectures feature special instruction sets thath@potential to considerably speed-
up computation. Examples include fused multiply-add instructions and shadn@&IMD (single instruc-
tion, multiple data) instructions. Examples for the latter include SSE on Pentiuamdl4 and SSE2 on
Pentium 4. For example, using SSE, four single-precision floating podtiti@as or multiplications can be
performed in a single instruction and, on Pentium 1l1/4, in one cycle.

Compiler vectorization to date is limited to very simply structured code and loopittgrps and fails
on more complex algorithms such as fast DSP transforms. Thus, to obtain bpérfamance for these
algorithms, careful hand-tuning, often in assembly code, is necess§8y9] we have extended SPIRAL to
automatically generate short-vector code for various architecturesgéiferated code is very competitive
with the best available code including the short-vector DFT library provimjelhtel. The key to obtaining
this high-performance is automatic formula manipulation that transforms a fgismunla, using mathemat-
ical rules, into a form suitable for mapping into short-vector code. This méatipn is enabled through the
mathematical representation of formulas and is not feasible using, for éxaan@ code representation of
an algorithm. We do not explain the approach to greater detail in this papeefer the reader to [8, 9].

5 Search Engine

To find a platform-adapted implementation for a given transform, SPIRAkidens the space of algorithms
and their possible implementations. On the algorithmic level, the degrees abifinesa@ given by the many
possible fully expanded formulas (or ruletrees) for the transform. fgrem formula, there are degrees of
freedom in generating code, one important example being the choice airbléng strategy. The space of
alternative implementations is too large to be tested exhaustively (e.g., Tabie &ylibits a wide variation
in runtimes (e.g., Figure 2).

The formula generator (Section 3) and the formula translator (Sectiom4)erzerate any of these dif-
ferent possible implementations. The task of the search enginénitetligently search the space of imple-
mentations for the optimal one for the given platform. The search is pertbimeefeedback loop; runtimes
of previously generated implementations are used to control formula giemeaand code generation for
further implementations.

We have implemented a number of different search methods within SPIRAluding exhaustive
search, dynamic programming, random search, hill climbing search, BBEFS, a stochastic evolution-
ary search algorithm. Further, we have developed a “meta-searchithigahat searches for the fastest
implementation for a specified length of time using a combination of the searclitlahgsindicated above.
Each of the search algorithms operates with the ruletree representatigoithens (see Section 3.2) and
optionally searches over implementation degrees of freedom. These impl&éoreakeices are either var-
ied globally, i.e., for entire ruletrees, or applied to specific nodes in the ealbty setting appropriate flags.
For example, a flag “unrolling” in a node of a ruletree ensures that the gederated for that node contains
no loops.
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The different search algorithms are described in more detail below.

5.1 Exhaustive Search

Exhaustive search is straightforward. It generates all the possiblermaptations for a given transform and
times each one to determine the fastest one. This search method is only fé@asilgley small transform
sizes, as the number of possible algorithms for most transforms growsexally with the transform
size. For example, Table 1 shows that exhaustive search becomestiogbfac DFTs of size2® and for
DCT™’s of size2’.

5.2 Dynamic Programming

Dynamic programming (DP) is a common approach to search in this type of dot&it], 16, 28]. DP

recursively builds a table of the best ruletrees found for each trans# given transform is expanded once

using all applicable rules. The ruletrees, i.e., expansions, of the obtzhildcen are looked up in the table.

If a ruletree is not present, then DP is called recursively on this child llfitiae table is updated with the

fastest ruletree of the given transform. DP usually times fewer ruletraadhie other search methods.
Dynamic programming makes the following assumption:

Dynamic Programming Assumption: The best ruletree for a transform is also the best way to
split that transform in a larger ruletree.

This assumption does not hold in general; the performance of a ruletries gaeatly depending on its
position in a larger ruletree due to the pattern of data flow and the internalo$tdte given machine. In

practice, though, DP usually finds reasonably fast formulas. A vaoidDP considered by SPIRAL keeps
track of then best ruletrees found at each level, thus relaxing the DP assumption.

5.3 Random Search

Random search generates a number of random ruletrees and ctimofesgest. Note that it is a nontrivial
problem to uniformly draw ruletrees from the space of all possibilities, i.eoriéfigms. Thus, in the current
implementation, a random ruletree is generated by choosing (uniformly)damarule in each step of the
expansion of the given transform.

Random search has the advantage that it times as few or as many formthlasiasr desires, but leads
to poor results if the fast ruletrees are scarce.

5.4 STEER

STEER (Split Tree Evolution for Efficient Runtimes) uses a stochastidugenary search approach [29,
30]. STEER is similar to genetic algorithms [15], except that, instead of usibit) ector representa-
tion, it uses ruletrees as its representation. Unlike random search,FSUi§#S evolutionary operators to
stochastically guide its search toward more promising portions of the sp&memflas.
Given a transform and size of interest, STEER proceeds as follows:

Randomly generate a populatiéof legal ruletrees of the given transform and size.

For each ruletree if, obtain its running time.

Let Prastestbe the set of thé fastest trees .

Randomly select fron®, favoring faster trees, to generate a new populatiQq.

Cross-over random pairs of trees ifpew.

Mutatem random trees iPhew.

o0 s wNE
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7. LetP < Pastestd Prew-
8. Repeat step 2 and following.

All selections are performed with replacement so tRaty, may contain multiple copies of the same tree.
Since timing ruletrees is expensive, runtimes are cached and only neveesl&i” at step 2 are actually
timed.

During this process, the ruletrees may not be optimized as a whole, but dtiflnsubtrees that are
very efficient. Crossover [15] provides a method for exchangingreeb between two different ruletrees,
potentially allowing one ruletree to take advantage of a better subtree in anoliteee. Crossover on a
pair of ruletreeg; andt, proceeds as follows:

1. Letny; andns be random nodes ity andt, respectively such that; andn. represent the same
transform and size.

2. If non; andnsy exists, then the trees can not be crossed-over.
3. Otherwise, swap the subtrees rootedaandns.

Mutations [15] make changes to ruletrees to introduce new diversity to fhdaiemn. If a given ruletree
performs well, then a small modification to the ruletree may perform even beitetations provide a
method for searching the space of similar ruletrees. STEER uses theewlifinutations:

e Regrow:Remove the subtree under a node and grow a new random subtree.

e Copy: Find two nodes within the ruletree that represent the same transform andCsipy the subtree
underneath one node to the subtree of the other.

e Swap:Find two nodes within the ruletree that represent the same transform andsiap the subtrees
underneath the two nodes.

These mutations are illustrated in Figure 10.

DCT IV 2
RuleDCT4_3 perw
RuleDCT2_2 RuleDST2_3 RB%DQTZS ) RDlﬁeD”S% 3
DCT Il 2 DCT IV 2 DSTIV2Z  DSTIZ /\ 2
RuleDCT2_2 RuleDCT4 4 RuleDSTA_ 1  RuleDST2_3 RDu(,:eD”C%Zz 5 F?Lﬁe[,"éé 4 R[L,SeDg’Tiz 1 ASTLZN
DCTI2 DCTIV2 DSTIV2 DSTII2 DC‘IJIVZ2 DSTIV2 DSTII2 DCTImVZ DSTIV2 DSTII2 DC'I"IVZZ DCTIl 2
Wj RuleDCT4_3 [ RuleDCT2_2
DCTIi2 DSTH2 DCT2 DSTI2\DCTII2 DETIVZ
Original Regrow
pCT IV 2 DCT Iv 2
RuleDCT4_3 RuleDCT4_3
DCT Il B DST Il B DCT Il B DST Il B
RuleDCT2_2 RuleDST2_3 RuleDCT2_2 RuleDST2_3

DCT Il 2 DCTHV DST IV 2 DST Il 2 DCT Il 2 DET IV DST IV 2 DST Il 2
R/uleD\CTz_z R’ul/e[)@_ RuITDST4_1 }ne{su_s RUEDCT2 W‘ RuITDSTA_l }JIS\DSTZ_S’
DCTII2 DCTIV2 \DCTII2 DSTI2/ DCTIVZ DSTIV2 DSTII2 DCTII2 DCTIV2 \DCTII2 DSTI2/_BeTivZ  DSTIV2 DSTII2
RuleDCT4_3 RuleDCT4 4
DCTi2 DSTI2 DSTIV2 DSTI2

Copy Swap

Figure 10: Examples of mutations performed on the tree labeled “Originadag\of interest are circled.

As with the other search methods, STEER optionally searches over implemergptions such as
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the unrolling strategy. For example, enabling a “local unrolling” option deitees, for each node in the
ruletree, whether it should be translated into loop code or unrolled cdue uirolling decisions within a
ruletree are subject to mutations within reasonable limits.

STEER explores a larger portion of the space of ruletrees than dynaogcapnming, while still re-
maining tractable. Thus, STEER often finds faster formulas than dynangcgmmning, at the small cost
of a more expensive search.

5.5 Hill Climbing Search

Hill climbing is a refinement of random search, but is not as sophisticat&T BER. First, hill climbing
generates a random ruletree and times it. Then, it randomly mutates this rulélréiee mutations defined
for STEER, and times the resulting ruletree. If the new ruletree is fastetlihibbing continues by applying
a mutation to the new ruletree and the process is repeated. Otherwise, ifgimalauletree was faster,
hill climbing applies another random mutation to the original ruletree and theegsds repeated. After a
certain number of mutations, the process is restarted with a completely nesntaintbtree.

5.6 Timed Search

When there is a limited time for search, SPIRAL'’s search engine has andtéd@pproach that combines
the above search methods to find a fast implementation in the given time. Timeti t&lags advantage
of the strengths of the different search methods, while limiting the search.cttimpletely configurable,
so that a user can specify which search methods are used and howdgraye¢hallowed to run. SPIRAL
provides reasonable defaults. These defaults first run a randoohsmeaer a small number of ruletrees to
find a reasonable implementation. Then it calls dynamic programming since thit seethod often finds
good ruletrees in a relatively short time. Finally, if time remains, it calls STEER&och an even larger
portion of the search space.

5.7 Integration and Implementation

All search methods above have been implemented in SPIRAL. As with the fogeakrator (Section 3),
the search engine is implemented entirely in GAP. The search engine usesetneerrepresentation of
algorithms as its only interface to the formula generator. Thus, all search dseth®immediately available
when new transforms or new rules are added to SPIRAL.

6 Experimental Results

In this section, we present a number of experiments we have conduatgdius SPIRAL system version
3.1 [22]. Table 2 shows the computing platforms we used for the experimbntbe remainder of this
section we refer to the machines by the name given in the first column.

All timings for the transform implementations generated by SPIRAL are obtdigpedking the mean
value of a sufficiently large number of repeated evaluations. As C comptems, we used “-O6 -fomit-
frame-pointer -malign-double -fstrict-aliasing -mcpu=pentiumpro” for gdast -xO5 -dalign” for cc, and
“-G6 -03” and “-G7 -O3" for the Intel compiler on the Pentium Il and thenflum 4, respectively.

The experimental data presented in this section, as well as in Section 2.3aiduste following key
points: 1) The fully-expanded formulas in the algorithm space for DSRBfvams have a wide range of
performance and formulas with the best performance are rare (see B)jg2) The best formula is platform
dependent. The best formula on one machine is usually not the best fosmalaother machine. Search
can be used to adapt the given platform by finding formulas well suited tgptadorm. This is shown
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name CPU and speed RAM (O C compiler

athlon Athlon, 1100 MHz 512 MB Linux 2.2.16 gcc 2.95.2
p4linux  Pentium 4, 1400 MHz 1024 MB  Linux 2.4.2 gcc 2.95.2
p4dwin  Pentium 4, 1400 MHz 1024 MB  Win 2000 Intel 5.0

sun UltraSparc Il, 450 MHz 1536 MB  SunOS 5.7 cc 6 update 2 C 5.3
p3linux  Pentium Il 900 MHz 256 MB  Linux 2.2.17 gcc 2.91.66
p3win Pentium Ill, 650 MHz 256 MB Win 2000 Intel 5.0

Table 2: Computing platforms for experiments.

in Section 6.1. 3) Intelligent search can be used to find good formulas whiyeconsidering a small
portion of the entire search space. This is shown in Section 6.2 by pregéhérbest runtimes found
and the number of formulas considered for IhBT and DCT® using different search methods. This
is crucial due to the large number of possible formulas (see Table 1). @jdition to considering the
space of formulas, the SPIRAL search engine can also search thattegtative implementations. SPIRAL
does this by searching over alternative SPL compiler directives and tesipfateexample is presented in
Section 6.3 where SPIRAL searches also explores the degree of unrahal by the SPL compiler. 5) The
resulting performance produced by SPIRAL is very good. This is sHovection 6.4 by comparing the
implementations produced by SPIRAL for thé'T to FFTW [11], one of the best available FFT packages.
In Section 6.5, the performance of a wide range of transforms is compatedt of theDFT. The results
show that the performance that SPIRAL obtains is generally available toS#l ttansforms and does not
arise from special cases available only to the FFT.

6.1 Architecture Dependence

The best implementation of a given transform varies considerably betwageputing platforms. To illus-
trate this, we generated an adapted implementatioid 8,20 on four different platforms, using a dynamic
programming search (Section 5.2). Then we timed these implementations onféhelother platforms.
The results are displayed in Table 3. Each row corresponds to a timingrpladfach column corresponds to
a generated implementation. For example, the runtime of the implementation geriergilihux, timed
on athlon is in row 3 and column 2. As expected, the fastest runtime in eacis mwthe main diagonal.
Furthermore, the other implementations in a given row perform significanilyeslo

fast implementation for

p3linux p4linux athlon sun
p3linux 0.83 1.08 099 1.10
p4linux 0.97 0.63 0.73 1.23
athlon 1.23 1.23 1.07 1.22

sun 0.95 1.67 142 0.82

timed on

Table 3: Comparing fast implementationsIoFT,20 generated for different machines. The runtimes are
given in seconds.

6.2 Comparison of Search Methods

Figures 11 and 12 compare several search methods presented in Secktom considered transforms are

DF Ty, fork = 1,...,17, andDCTY), for k = 1,...,7. The experiment is run on p3linux. The target
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language is C, and the default global unrolling of all nodes of 8zand smaller is used, except for the
timed search. Further, for tHeFT of large size £¥ > 32) we consider only the Cooley-Tukey Rule (16)
and its variant (18), excluding Rules (17), (19), and others, whicfope poorly for large sizes. This
considerably cuts down tHeFT algorithm space.

There are two different types of plots shown in these figures. Theryppes, respectively, show the
runtimes of the fastest implementation found by different search methadidediby the runtimes for the
best implementation found by 1-best dynamic programming (that is, the ddfenatnic programming that
only keeps the single best formula for each transform and size). Tdwer points correspond to faster
formulas found. The bottom plots, respectively, show the number of impletiems timed by the different
search methods. Most of the search time is spent on timing the implementationsthiénusimber of
implementations timed is a good measure of the total time spent by the search algdtithryraxis is in
logarithmic scale. The plots include an additional line indicating the total numbgeossible algorithms
using the rules in SPIRAL. The timed search may time the same formula multiple times,istcalls
various search methods, and thus, at small sizes, may time more implementatiopsdsidle algorithms.
For dynamic programming, the number of implementations of smaller size timed is aladadc We
omitted random search since it always times 100 implementations.

For theDFT, both random search and hill climbing search find rather slow formulasnipadson to
the other search methods at many of the larger sizes. In several otdsesehowever, the algorithms found
by random search are still within a reasonable 30-40% of the best. This i®dwo reasons. First, as said
above, we turned off some rules for large sizes that are known torgegdoorly. Second, we do not draw
uniformly from the algorithm space (see Section 5.3), which, in this cagewalks in favor for the random
search. (The majority dDF T ruletrees based on Rule (16) have a balanced top-level split, whichtteads
bad performance.)

It is surprising that hill climbing search performs so poorly, sometimes ewasiderably worse than
random search. Hill climbing search initially generates fewer random eeletthan random search; if
these are poorly chosen, the search may not find mutations that proolodeugetrees. Thus, STEER has
an important advantage over hill climbing in that it generates and uses a japgelation; also, STEER
has an advantage over random search in that it uses evolutionagtapdo intelligently search for fast
implementations.

For theDF'T, there is no one search method that consistently finds faster formulas ¢éhatihér meth-
ods. In fact, for the considered transforms and rules, plain 1-bestniz programming does not perform
much worse than the other methods; it is sometimes 10% slower than some of theeatftdh methods.
Generally, either STEER, timed search, or 4-best dynamic programmirggfiedastest formula for a given
DFT size in the experiments reported here.

For theDCT™, STEER finds faster formulas or equally fast formulas than all of the c#each meth-
ods. For siz€7, STEER is able to find a formula that is 20% faster than that found by 1dyestmic
programming.

These plots show that the number of possible formulas grows very quizklefy small sized trans-
forms, forcing the search algorithms to only consider a very small portidgheopace of formulas. For
dynamic programming, it is clear that increasing the number of best formajasdr each transform and
size increases the number of formulas that must be timed. For small sizes, &arel ssually times the
most formulas as it calls several search algorithms. Since, in the presgptriments, timed search is only
allowed 30 minutes, it begins to time slightly fewer formulas at larger sizes aguires more time to run
larger sized formulas. For larger sizes of IDET, 4-best dynamic programming times the most formulas
of all the search algorithms. FEXCT" sizes2® to 27, STEER times the most formulas.
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Figure 11: Comparison of search methods for the DFT on p3linux.
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6.3 Searching over Local Unrolling Settings

Figure 13 compares several of the search methods when also searehirigcal unrolling settings for the
DFT. STEER and 1-best and 4-best dynamic programming were run samtemachine as the experiments
in Section 6.2; this time, the search methods also explored the possible loolihgrsettings. Sections 4
and 5 describe how this is accomplished. The plots in Figure 13 comparenthesens against the previous
runs that used a fixed global unrolling setting.

For many of the smaller sizes of the DFT, the searches that explored tiblpdscal unrolling set-
tings found faster implementations than those that used a fix global unrollimgserhe price paid is the
number of timed formulas, which is much larger compared to searching with dikdél unrolling set-
ting. Thus, if search time is not an issue, allowing a search over locallingrsettings can produce faster
implementations.

6.4 Comparison with FFTW

Figure 14 compares the performance of the best SPIRAL implementation bitti¢o FFTW 2.1.3 on all

of the computing platforms considered for siZésto 222. For other transforms highly tuned code is not
readily available. We observe that for various machines and variousSRERAL is faster than FFTW and
vice versa. For smaDFT sizes, FFTW code is slower due to its more complicated infrastructure. The
same reason seems to favor SPIRAL code on p4win where the Intelnemmpiler can perform additional
optimizations on SPIRAL'’s simple loop code. The main point in this comparisort thabone is faster than

the other (without additional analysis and careful consideration of @riming experiments a definitive
conclusion can not be drawn presently), but rather that the runtimdaged by the general SPIRAL system
are comparable across a range of platforms and transform sizes to.FFTW

6.5 Performance of Different Transforms

Figure 15 shows the performance of the best implementations of diffeegrsforms found by SPIRAL on

the Sun machine. The transforms include different types of trigonometnisftnans, the Walsh-Hadamard
transform and the (rationalized) Haar transform. The performancessétiransforms for sizes 2 to 64 is
compared to the best time for theFT of the same size. Since the performance of these transforms are
comparable to that of theF'T and it was shown in Section 6.4 that the SPIRBET times are comparable

to the best available FFT packages, we can conclude that good penfgrisaobtained across transforms.
Figure 15 shows that the other transforms are faster thab i beyond size 4, with th& HT andRHT

being the fastest. This is to be expected since these transforms operatel alata whereas theFT
operates on complex data. That IDET is faster for sizes 2 and 4 may be due to special optimizations that
have been applied to tHeFT.

7 Conclusions

We presented the main components of SPIRAL, a system that automaticallagsnplatform-adapted
implementations of linear DSP transforms. At the core of SPIRAL is the reptaton ofalgorithms
for transforms as mathematidarmulasusing afew constructs and primitives. This insight motivates the
design of the language SPL, which is a domain-specific language forr{liD&P algorithms. The SPL
compiler translates algorithms, written in SPL, into C or Fortran procedunelsthaus connects the math-
ematical realm of algorithms with the realm of concrete implementations. The spatgorithms for a
given transform is very large, and yet generated froemall set ofrules which makes possible the au-
tomatic generation of these algorithms, and, furthermore, makes it easy tdanodw transforms. Since
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algorithms can be automatically generated and implemented, SPIRAL is ablegearshto find a “good
match” of algorithm and platform. Thus, the code optimization is performed maialytagh,” algorithmic,
level. The distinguishing difference between algorithms generated fomathe fransform is the data flow
(not the arithmetic cost), which, on modern architectures, has a strongtimpaerformance. SPIRAL's
search directly addresses the problem of finding the best dataflow.

Since SPIRAL's methodology is based on a description of the algorithmsndtisansform specific,
which distinguishes it from other approaches. Every algorithm that eamritten using the provided con-
structs can be included. New constructs can be added if necessdeyebitarget languages or code types
can be included by expanding the SPL compiler.

We believe that our approach has the potential to solve the problem afegjaegesfficient DSP imple-
mentations across different DSP algorithms and different computing astthigs.
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