
Learning Template Planners from Example Plans

Elly Winner and Manuela Veloso
Computer Science Department

Carnegie Mellon University
5000 Forbes Avenue

Pittsburgh, PA 15213-3891, USA
(412) 268-4801

{elly,mmv}@cs.cmu.edu

June 26, 2004

Abstract

Planners are powerful tools for problem solving because they provide a com-
plete sequence of actions to achieve a goal from a particular initial state. Classical
planning research has addressed this problem in a domain-specific manner—the
same algorithm generates a complete plan for any domain specification. This gen-
erality comes at a cost; domain-independent planners have difficulty with large-
scale planning problems. To deal with this, researchers have resorted to hand writ-
ing domain-specific planners to solve them. An interesting alternative is to use
example plans to demonstrate how to solve problems in a particular domain and to
use that information to automatically learn domain-specific planners that model the
observed behavior. In this paper, we present the ITERANT algorithm for identifing
repeated structures in observed plans and show how to convert looping plans into
domain-specific template planners, or dsPlanners. Looping dsPlanners are able to
apply experience acquired from the solutions to small problems to solve arbitrarily
large ones. We show that automatically learned dsPlanners are able to solve large-
scale problems much more quickly than state-of-the-art general-purpose planners
and are able to solve problems many orders of magnitude larger than general-
purpose planners can solve.

1 Introduction

Intelligent problem solving requires the ability to select actions autonomously from
a specific state to reach objectives. Planning algorithms provide approaches to look
ahead and select a complete sequence of actions. Given a domain description consist-
ing of preconditions and effects of the actions the planner can take, an initial state, and
a goal, a planning program returns a sequence of actions to transform the initial state
into a state in which the goal is statisfied. Classical planning research has addressed
this problem in a domain-independent manner—the same algorithm generates a com-
plete plan for any domain specification. However, domain-independent planners have

1

traditionally had difficulty with large-scale planning problems, although many large-
scale problems have a repetative structure, because they do not capture or reason about
such repetition. Instead, to solve large-scale problems, programmers have had to rely
on the tedious and difficult process of hand writing special-purpose planners that may
precisely encode the repeated structure. However, example plans are often available,
and can demonstrate this structure.

In previous work, we introduced the concept of automatically-generated domain-
specific template planning programs (or dsPlanners) and showed how to use example
plans to learn non-looping dsPlanners, which can solve problems of limited size [11].
Here, we present the novel ITERANT algorithm for automatically identifing the re-
peated structure of example plans to learn looping dsPlanners that model the behavior
demonstrated in the observed plans. DsPlanners execute independently of a general-
purpose planning program and are very efficient; they return a solution plan in time
that is linear in the size of the dsPlanner and of the problem, modulo state-matching
effort. We show that looping dsPlanners can solve large-scale planning problems more
quickly than can general-purpose planners and that they can solve much larger prob-
lems than can general-purpose planners. And because dsPlanners are learned directly
from example plans, there is no need for tedious hand coding.

Identifying loops in observed plans allows the plans to be reused to quickly solve ar-
bitrarily large similar problem instances. Our research focuses on compressing looping
plans into compact domain-specific template planning programs that can solve larger
and more complex problems than can current general-purpose planning techniques.
However, loop identification could also be used for other purposes, such as improving
the performance of case-based or analogical planning methods or identifying promising
candidates for macro learning.

We first discuss related work. Then we discuss classes of loops, describe our al-
gorithm for identifying parallel non-nested one-variable loops in observed plans, and
illustrate its behavior with examples. Next we present the results of using plans with
identified loops as planners and compare this to using state-of-the-art general-purpose
planners. Finally, we present our conclusions.

2 Related Work

Many research efforts have sought to automatically improve general-purpose planning
efficiency, most commonly by using learned or hand-written domain knowledge to
reduce generative planning search e.g. [3]. We focus here on methods that learn and
exploit repeated structure within plans.

Case-based and analogical reasoning, e.g., [9], apply planning experience from
solving previous problems to solving a new one. Similarly, the internal analogy tech-
nique [4] reuses the planning experience gleaned from solving one part of a particular
problem to solving other parts of the same problem.

Iterative and recursive macro operators and control rules, e.g., [7], capture repeti-
tive behavior and can drastically reduce planning search by encapsulating an arbitrarily
long string of operators. However, unlike our approach, this technique does not attempt
to replace the generative planner, and so does not eliminate planning search.

2

Some work, like our own, has focussed on analyzing example plans to reveal a
strategy for planning in a particular domain. One example of this approach is BAG-
GER2, which learns recurrences that capture some kinds of repetition [8]. BAGGER2
was able to learn recurrences from very few example plans, but relied on background
knowledge and wasn’t able to capture parallel repetition.

Another example of the strategy-learning approach is the decision list [5]: a list of
condition-action pairs derived from example state-action pairs. This technique also re-
lies on background knowledge, is able to solve fewer than 50% of 20-block Blocksworld
problems, and requires over a thousand state-action pairs to achieve that coverage [5].

Finally, many researchers have explored hand writing domain-specific planners,
e.g., [1]. These planners are able to solve more problems than general-purpose plan-
ners, and are able to solve them more quickly [6], but often require months or years to
create.

3 Identifying Loops in Example Plans

The current version of the ITERANT algorithm identifies all non-nested parallel loops
over one variable in an observed plan. In the remainder of this section, we discuss
some relevant definitions, describe in detail the two main portions of the ITERANT —
identifying loop candidates and creating a loop from a candidate)—and illustrate the
operation of ITERANT with two examples.

3.1 Definitions

Subplans are connected components within in a partially-ordered plan when the ini-
tial and goal states are excluded (otherwise every set of steps would be a connected
component). They are illustrated in Figure 1.

paint(obj1)
Initial:
at(paint, loc1)
at(obj1, loc1)
at(obj2, loc1)
at(obj3, loc1)
at(truck, loc1)

at(paint, loc1)
at(obj1, loc1)

load(obj1, truck, loc1)

load(obj2, truck, loc1)

paint(obj3)

at(obj2, loc1)
at(truck, loc1)

at(paint, loc1)
at(obj3, loc1)

Goal:
painted(obj1)
painted(obj3)
inside(obj1, truck)
inside(obj2, truck)

at(obj1, loc1)
at(truck, loc1)

threat

painted(obj1)

inside(obj1, truck)

inside(obj2, truck)

painted(obj3)

Figure 1: An example plan in a painting and transport domain is shown. In the given
plan, some objects need to be painted and some need to be loaded into a truck. Painting
must be done before loading. Three different subplans are surrounded by dotted lines.
There are many other possible subplans, but the stepspaint(obj1) andpaint(obj3) are
not a subplan, since they are not a connected component within the partial ordering.

3

Matching Subplans are subplans that satisfy the following criteria:

• they are non-overlapping,

• they consist of the same operators,

• the operators in each subplan are causally linked to each other in the same way,

• they have the same conditions and effects in the plan,

• they unify.

We also use the term “matching steps” as a special case of matching subplans (in
which the subplans are of length one). The two load operators in Figure 1 are matching
steps (as shown in Figure 3, as are the two paint operators.

Parallel Subplans are causally- and threat-independent of each other. Figure 2 shows
three parallel subplans within an example plan.

paint(obj1)
Initial:
at(paint, loc1)
at(obj1, loc1)
at(obj2, loc1)
at(obj3, loc1)
at(truck, loc1)

at(paint, loc1)
at(obj1, loc1)

load(obj1, truck, loc1)

load(obj2, truck, loc1)

paint(obj3)

at(obj2, loc1)
at(truck, loc1)

at(paint, loc1)
at(obj3, loc1)

Goal:
painted(obj1)
painted(obj3)
inside(obj1, truck)
inside(obj2, truck)

at(obj1, loc1)
at(truck, loc1)

threat

painted(obj1)

inside(obj1, truck)

inside(obj2, truck)

painted(obj3)

Figure 2: Three parallel subplans are surrounded by dotted lines.

An Unrolled Loop is a set of matching subplans. One of two unrolled loops in the
painting and transport example is shown in Figure 3.

paint(obj1)
Initial:
at(paint, loc1)
at(obj1, loc1)
at(obj2, loc1)
at(obj3, loc1)
at(truck, loc1)

at(paint, loc1)
at(obj1, loc1)

load(obj1, truck, loc1)

load(obj2, truck, loc1)

paint(obj3)

at(obj2, loc1)
at(truck, loc1)

at(paint, loc1)
at(obj3, loc1)

Goal:
painted(obj1)
painted(obj3)
inside(obj1, truck)
inside(obj2, truck)

at(obj1, loc1)
at(truck, loc1)

threat

painted(obj1)

inside(obj1, truck)

inside(obj2, truck)

painted(obj3)

Figure 3: Two matching subplans of length 1 are surrounded by dotted lines and repre-
sent an unrolled loop.

4

A Loop replaces an unrolled loop in the plan. The body of the loop consists of the
common subplan in the unrolled loop, but with the differing variable converted into a
loop variable. The conditions on its execution are that the goal state contains all goal
terms that are supported by steps within the unrolled loop and that the current state
when the loop is executed contains all the conditions for the steps within the unrolled
loop to execute correctly and support the goals of the plan. The loop represented by
the unrolled loop shown in Figure 3 is shown in Figure 4.

Initial:
at(paint, loc1)
at(obj1, loc1)
at(obj2, loc1)
at(obj3, loc1)
at(truck, loc1)

Goal:
painted(obj1)
painted(obj3)
inside(obj1, truck)
inside(obj2, truck)

paint(obj1)

load(?1, truck, loc1)

LOOP

conditions:
cur: at(?1, loc1)
cur: at(truck, loc1)
goal: inside(?1, truck)

at(obj1, loc1)
at(obj2, loc1)
at(truck, loc1)

at(paint, loc1)
at(obj1, loc1)

at(paint, loc1)
at(obj3, loc1)

inside(obj1, truck)
inside(obj2, truck)

paint(obj3)

painted(obj1)

painted(obj3)

threat

Figure 4: The painting and transport problem after the load loop is identified. The loop
is surrounded by dotted lines. The loop variable is written as?1, and ranges over all
values that meet the conditions of the loop (in this case,obj1 andobj2). Conditions
for the loop are shown above the loop.

A Parallel Loop is a loop in which each iteration of the loop is causally independent
from the others—the iterations may be executed in any order. The loop shown in
Figures 3 and 4 is a parallel loop. A loop may also have a multi-step body with complex
causal structure; it may even include other loops.1 The current version of ITERANT is
able to identify all non-nested parallel loops in observed plans.

A Serial Loop is a loop in which each iteration of the loop is causally linked to
the others—there is a specific order in which the iterations must be executed. For
example, in a package-transport domain, one loop may describe a particular delivery
vehicle visiting different locations, loading and unloading packages at each one. Each
iteration of the loop consists of loading and unloading packages and then moving from
the current location to a new one. These iterations must be executed in a specific order
since themove operations are causally linked.

3.2 TheITERANT Algorithm

The ITERANT algorithm can handle domains with conditional effects, but we assume
that it has access to a minimal annotated consistent partial ordering of the observed
total order plan. Previous work has shown how to find minimal annotated consistent
partial orderings of totally-ordered plans given a model of the operators [10] and has

1Note that an observed total-order execution of a multi-step parallel loop need not present the steps of the
loop in a specific order—it could be any topological sort of the loop.

5

shown that STRIPS-style operator models are learnable through examples and experi-
mentation [2].

The ITERANT algorithm, formalized in Algorithm 1, first identifies an unrolled loop
(described in the Section “Identifying Unrolled Loops”) and then converts it into a loop
(described in the Section “Converting Unrolled Loops into Loops”). The unrolled loop
is then removed from the plan and replaced by the loop.

Algorithm 1 ITERANT : Identify non-nested one-variable parallel loops in an observed
plan.
Input: Minimal annotated partially ordered planP.
Output: P with all non-nested one-variable parallel loops identified.

for all stepsi in P do
Mi ← all parallel matching steps with i inP
if Mi 6= ∅ then
C ← LargestCommonSubplan(Mi + i, P)
L ← MakeLoop(C)
P ← P − C
P ← P + L

end if
end for

3.3 Identifying Unrolled Loops

The first step in the ITERANT algorithm is to identify a parallel unrolled loop: a set
of parallel matching subplans within the observed plan. This process begins with the
identification of a set of parallel matching steps, as described in Algorithm 1. Next,
ITERANT finds the largest parallel matching subplan common to at least two of those
steps. This process takes place in the procedure LargestCommonSubplan, formalized
in Algorithm 2. LargestCommonSubplan recursively tries every possible expansion of
the existing subplan and returns the one with the most steps per parallel track. First, it
identifies the sets of steps that supply conditions to the steps in each parallel track of the
existing subplan (StepBack) and the set of steps that rely on effects of the steps in each
parallel track of the existing subplan (StepAhead). The initial and goal states are not
considered as steps ahead or back. Then, it explores each of these steps as a possible
way to expand the subplan. For each step inStepBackandStepAheadfor each track, it
finds which other tracks also have a matching step inStepBackor StepAhead. If there
is at least one other track, the current subplans with the new steps added are recorded
as a new unrolled loop. At the end of this process, there is a set of new unrolled loops.
LargestCommonSubplan is then recursively applied to each of these to further expand
them. The largest resulting candidate is then returned by the algorithm as the final
unrolled loop.

6

Algorithm 2 LargestCommonSubplan: Identify largest parallel matching subplans of
an observed plan common to at least two of the given parallel matching subplans.
Input: setA of parallel matching subplansS1..Sm, minimal annotated partially or-

dered planP.
Output: Set of largest parallel matching subplans of planP common to at least two

of S1..Sm.
for all Si in S1..Sm do

StepAheadSi
← steps causally linked fromSi

StepBackSi
← steps causally linked toSi

end for
UnrolledLoops← A
for i = 1 to m do

for NewSteps← first StepAheadSi , thenStepBackSi do
for all s in NewStepsSi

do
NewExpLoop← {Si + s}
for all j 6= i do

if ∃ parallel matching steps′ in NewStepsSj then
NewExpLoop← NewExpLoop + {Sj + s′}
NewStepsSj

← NewStepsSj
− s′

end if
end for
if |NewExpLoop| > 1 then

UnrolledLoops← UnrolledLoops + NewExpLoop
NewStepsSi ← NewStepsSi − s

end if
end for

end for
end for
for all setsN 6= A in UnrolledLoops do
N ← LargestCommonSubplan(N ,P)

end for
return setN in UnrolledLoops with the largest subplan

7

3.4 Converting Unrolled Loops into Loops

Once an unrolled loop is identified, it must be converted into a loop. As previously
defined, an unrolled loop is a set of matching subplans differing in only one variable.
The body of the loop is the subplan—with a new loop variable replacing the differing
variable. The conditions for the loop’s execution are requirements on the goal state and
on the current state while the loop is executing, as described in the Section “Defini-
tions”. The unrolled loop subplans are then removed from the plan and replaced by the
new loop.

Algorithm 3 MakeLoop: Create the loop described by the given unrolled loop.
Input: Unrolled loop: set of matching subplansS1..Sm, minimal annotated partially

ordered planP.
Output: The loop described byS1..Sm.

let vi be the variable inSi that∀j is not inSj

let vloop be the loop variable
Loop.body ← S1 with vloop replacingv1

Loop.conditions← ∅
for all stepss in Loop.body do

for all conditionsc of s not satisfied by steps inLoop.body do
Loop.conditions← Loop.conditions + CurrentStateContains(c)

end for
for all goal termsg dependent ons do

Loop.conditions← Loop.conditions + GoalStateContains(c)
end for

end for

3.5 A Rocket-Domain Example

We will now describe the operation of the ITERANT algorithm on a simple example
plan from the rocket domain, illustrated in Figure 5. First, ITERANT searches for sets
of parallel matching steps. It finds the stepsload(o1, r, s), load(o2, r, s), andload(o3,
r, s), which differ only in one variable, which ranges over the valueso1, o2, ando3.2

These three one-step parallel matching subplans are then sent to LargestCommonSub-
plan, which searches for a larger subplan common to at least two of them.

LargestCommonSubplan begins by finding theStepAheadset for each parallel
track. There is one step inStepAheadfor each track: the correspondingunload opera-
tor. The stepfly(r, s, d) is not a possible step ahead since it is not causally linked to the
load operators. LargestCommonSubplan also finds theStepBackset for each track. It
is empty; since these are the first three steps in the plan and are parallel to each other,
they do not depend on any other plan steps. Theunload steps cannot be added to the
subplans, although they are matching, since they are not threat-independent. Largest-
CommonSubplan thus returns the original one-step subplan.

2It could also have identified theunload loop first.

8

at(o2, s)
at(r, s)

at(o1, s)
at(r, s)

at(o3, s)
at(r, s)

at(o1, d)

at(o2, d)

at(o3, d)

Goal:
at(o1, d)
at(o2, d)
at(o3, d)

at(r, s)

Initial:
at(s, o1)
at(s, o2)
at(s, o3)
at(s, r)

load(o1, r, s)

load(o2, r, s)

load(o3, r, s)

in(o1, r)

in(o3, r)

at(r, d)

at(r, d)

at(r, d)

in(o2, r)

threat

threat

fly(r, s, d)
threat

unload(o1, r, d)

unload(o2, r, d)

unload(o3, r, d)

(a)

Initial:
at(o1, s)
at(o2, s)
at(o3, s)
at(r, s)

at(o1, s)
at(o2, s)
at(o3, s)
at(r, s)

in(o1, r)
in(o2, r)
in(o3, r)

at(o1, d)
at(o2, d)
at(o3, d)

Goal:
at(o1, d)
at(o2, d)
at(o3, d)fly(r, s, d)

threat

at(r, s)

at(r, d)
load(lv1, r, s) unload(lv2, r, d)

conditions:

cur: at(r, s)

conditions:

cur: at(r, d)
cur: at(lv1, s)

goal: at(lv1, d)

cur: in(lv2, r)

goal: at(lv2, d)

(b)

Figure 5: An example plan in the rocket domain that involves moving objects o1, o2,
and o3 from location s to location d using rocket r. The minimal annotated partial
ordering of the plan is shown in (a). The plan after loops are identified is shown in (b).
Loops are surrounded by dotted lines. The loop variables are written aslv1 and lv2,
and range over all values that meet the conditions of the loops (in these cases,o1, o2,
ando3). Conditions for the loops are shown above them.

A new loop is then created to represent the common one-step subplan. The loop
body is created by replacing the differing values (o1, o2, ando3) with the new loop
variable, lv1: load(lv1, r, s). The conditions of the loop are that the current state
satisfies the conditions of the steps within it (at(lv1, s) andat(r, s)) and that the goal
state contains the goals supported by the steps in the loop body (at(lv1, d)).

This process repeats to uncover theunload loop, and the resulting plan is shown in
Figure 5(b).

3.6 A Multi-Step Loop Example

The ITERANT algorithm is also able to detect multi-step loops. We now describe its
operation on an example plan from an artificial domain, illustrated in Figure 6. First,
ITERANT searches for a set of parallel matching steps. It finds the stepsop1(x) and
op1(y), which differ only in the valuesx andy. These two one-step parallel matching
subplans are then sent to LargestCommonSubplan, which searches for a larger subplan
common to both of them.

LargestCommonSubplan begins by finding theStepAheadset for each parallel
track. There is one step inStepAheadfor each track:op3(x) andop3(y), respectively.
There are no elements in theStepBackset, since neither of these steps depends on any
other plan step. Because adding these steps preserves the parallelism and matching of
op1(x) andop1(y), they can be added to the subplans. This is the only way to expand

9

Initial:
s(x)
s(y)

Goal:
g(x)
g(y)

a1(x)

a1(y)

a2(x)

a2(y)

s(x)

s(y)

s(y)

s(x)

g(x)

g(y)

op1(x)

op2(x)

op1(y)

op2(y)

op3(y)

op3(x)

Figure 6: An example annotated partially
ordered plan in an artificial domain that
includes a multi-step loop consisting of
the steps op1, op2, and op3. The original
totally ordered plan could have been any
topological sort of this partial ordering.

op1(lv)

op2(lv)

Initial:
s(x)
s(y)

op3(lv)

s(x)
s(y)

s(x)
s(y)

Goal:
g(x)
g(y)

g(x)
g(y)

cur: s(lv)
goal: g(lv)

conditions:

a1(lv)

a2(lv)

Figure 7: The example plan shown in
Figure 6 after the loop has been identi-
fied. The loop is surrounded by dotted
lines. The loop variable is written aslv,
and ranges over all values that meet the
conditions of the loop (in this case,x and
y). The conditions of the loop are shown
above it.

the original subplans, and so is the only element in the list of unrolled loops.
LargestCommonSubplan is then executed recursively on this new set of subplans.

There are now no elements inStepAheadfor any track, but there is one inStepBackfor
each parallel track:op2(x) andop2(y), on whichop3(x) andop3(y) depend. Adding
these steps also preserves the parallelism and matching of the existing subplans, so they
are added as well. Again, this is the only way to expand the given subplan. Largest-
CommonSubplan is executed one last time on this new loop expansion and is unable to
find any possible “steps ahead” or “steps back,” so this loop expansion is returned.

A new loop is then created to represent the common branching three-step subplan.
The loop body is assigned to the common subplan, with a new loop variable,lv, replac-
ing the differing values,x andy. The conditions of the loop are that the current state
satisfies the conditions of the steps within it (s(lv)) and that the goal state contains the
goals supported by the steps in the loop body (g(lv)). The resulting plan is shown in
Figure 7.

4 Using Looping Plans as Domain-Specific Template Plan-
ners

Here, we briefly describe how to convert a looping plan into a looping dsPlanner ca-
pable of solving similar problems of arbitrary size. First, the plan is parameterized:
values are replaced by variables.3 The planner is a total ordering of the partially or-
dered plan. Loops are described as while statements: while the conditions for the loop
hold, execute the body of the loop. We describe how to identify loops and their con-
ditions above in the Section, “Identifying Loops in Example Plans”. Plan steps not
contained within loops are part of if statements: if the conditions of the steps hold, ex-

3Two discrete objects in a plan are never allowed to map onto the same variable. As discussed in [3], this
can lead to invalid plans.

10

ecute the steps. The conditions of a set of steps are the current-state terms required for
the steps to execute correctly and support the goals of the problem and the goal-state
terms that the steps support. We then have our own executor of these dsPlanners.

5 Results

We compare general-purpose planning to planning using learned looping dsPlanners.4

To illustrate the effectiveness of identifying loops in plans, our tests focus on per-
formance on large-scale problems of the same form as the example plans. We show
that the learned dsPlanners capture the structure of the example plans and are able to
apply this knowledge very efficiently to solving much larger problems. In these situa-
tions, planning using dsPlanners scales orders of magnitude more effectively than does
general-purpose planning.

5.1 Rocket-Domain Results

The dsPlanner learned from the rocket domain example shown in Figure 5 is shown
in dsPlanner 1. The problems on which we tested the planners vary in the number
of objects but consist of the same initial and goal states: the initial state consists of
at(rocket, source), and for all objectsobj in the problem, the initial state contains
at(obj, source) and the goal state containsat(obj, destination). Figure 5.1 shows the
results of executing several different general-purpose planners and thelearneddsPlan-
ner on large-scale problems of this form. The learned dsPlanner is orders of magnitude
more efficient on large problems than these general-purpose planners, and is able to
solve problems with more than 60,000 objects in under a minute.

DsPlanner 1dsPlanner based on the rocket domain problem shown in Figure 5. The
variable in each loop is indicated by a “v” preceeding its name.

while in current state (at(?v1:object, ?2:location)) and in current state
(at(?3:rocket, ?2:location)) and in goal state(at(?v1:object, ?4:location)) do

load(?v1:object ?3:rocket ?2:location)
end while
if in current state(at(?1:rocket ?2:location)) and in current state(in(?3:object
?1:rocket)) and in goal state(at(?3:object ?4:location)) then

fly(?1:rocket ?2:location ?4:location)
end if
while in current state (in(?v1:object, ?2:rocket)) and in current state
(at(?2:rocket ?3:location)) and in goal state(at(?v1:object, ?3:location)) do

unload(?v1:object ?2:rocket ?3:location)
end while

4We used the latest versions of several of the best-performing general-purpose planners from the third
international planning competition in 2002:VHPOP version 3.0,MIPS version 3,FF version 2.3, andLPG

version 1.2.1.

11

��������� 	�
���
 ��	�������� ������	�� ��� ��
 ��� ����
! "$#%! "$#&"'! "$#&"$("$#&"$(

)�"�" "$#*(!�#+)�,)�#%!.-
/ "�" "$#10 / 2 #103(!�03#%!.-
-�"�" "$#+4�() 2 #+)�- (�-�#&"'!
2 "�" "$#+4 2 -�(�# /�/
!5"�"�" !�#%!�(
!5"�"�"�" (�# 2 (
,�"�"�"�" !.-�#+)�,
-�"�"�"�" ,�03# 2 !

!.)603#+-7! !�,�03#+) 2
/)�-�#*,�(!�0 2 # /�/
!5"�"�03# 2 !) /)�#*(/

8 9;:<: =<:>: ?<:>: @>:>: 8A:>:<: 8B:<:>:<: CD:<:>:>: ?>:>:<:>:: E
8B:8 E
9;:9 E
CD:C E
=<:= EE
:E>E
?>:? E
F :

GIHKJMLONQPSRTHVUXWZY�[

\^]�_a` bDcAcedgfheijlk mB]

n3oqp�r.s t�uwvlx yztK{*|Vp~}�p�r>��t��^�1v��

� �� �
�� ��
�� ��
� ��
���
� ��

Figure 8: Timing results of several general-purpose planners and of the learned dsPlan-
ner shown in DsPlanner 1 on large-scale rocket-domain delivery problems. All timing
results were obtained on an 800-MHz pentium II with 512 MB of RAM.

5.2 Multi-Step Loop Domain Results

The dsPlanner learned from the multi-Step loop domain example shown in Figures 6
and 7 is shown in DsPlanner 2. As with the rocket domain, the problems on which
we tested the planners vary in the number of objects but consist of the same initial and
goal states: for all objectsobj in the problem, the initial state containss(obj) and the
goal state containsg(obj). Figure 5.2 shows the results of executing several different
general-purpose planners and the learned dsPlanner on large-scale problems of this
form. ThelearneddsPlanner scales much better to large problems than these general-
purpose planners, and is able to solve problems with as many as 40,000 objects in under
a minute.

DsPlanner 2DsPlanner based on the multi-step loop domain problem shown in Fig-
ures 6 and 7.

while in current state(s(?v1:type1) and in goal state(g(?v1:type1))) do
op1(?v1:type1)
op2(?v1:type1)
op3(?v1:type1)

end while

6 Conclusion

In this paper, we contribute the ITERANT algorithm for automatically recognizing tem-
plate planners from example plans in a specific domain. In particular, we focus on iden-

12

� ����� ����� ����� 	����
���� �������
������ �������
� 	������
��
���
���
���
	
�

��
� �
� �
� �
� �
�����
�����

����� ���������! #"%$'&(&)"%*+&-,�./��0

1�243�5 6�7�7�8�9:�:<;>=�? @A!B�3
CD3E;�@�? FG�3�HI;�J�? =�? J

KMLONQPSR TVUXWZY [ZT-\^])N`_aNEP�b�TSced�W�f

g hi j
kl hm
kl no
p qo
rhm
s qt

Figure 9: Timing results of several general-purpose planners and of the learned dsPlan-
ner shown in dsPlanner 2 on large-scale multi-step loop domain problems.

tifying loops in observed plans and on converting looping plans into looping domain-
specific template planning programs (dsPlanners). The ITERANT algorithm identifies
loops by finding sets of parallel matching subplans and then converting each set into a
loop. Our results show that the looping dsPlanners learned by the ITERANT algorithm
are able to take advantage of the repeated structures in some planning problems and
solve those problems more quickly than can current state-of-the-art general-purpose
planners. In these situations, planning using dsPlanners scales more effectively than
general-purpose planning and extends the solvability horizon by solving much larger
problems than general-purpose planners can handle.

References

[1] Fahiem Bacchus and Michael Ady. Planning with resources and concurrency: A
forward chaining approach. InProceedings of the International Joint Conference
on Artificial Intelligence (IJCAI-2001), pages 417–424, Seattle, August 2001.

[2] Jaime G. Carbonell and Yolanda Gil. Learning by experimentation: The oper-
ator refinement method. In R. S. Michalski and Y. Kodratoff, editors,Machine
Learning: An Artificial Intelligence Approach, Volume III, pages 191–213. Mor-
gan Kaufmann, Palo Alto, CA, 1990.

[3] Richard E. Fikes, Peter E. Hart, and Nils J. Nilsson. Learning and executing
generalized robot plans.Artificial Intelligence, 3(4):251–288, 1972.

[4] Angela Hickman and Marsha Lovett. Partial match and search control via internal
analogy. InProceedings of the 13th Annual Conference of the Cognitive Science
Society, pages 744–749, Chicago, 1991.

13

[5] Roni Khardon. Learning action strategies for planning domains.Artificial Intel-
ligence, 113(1-2):125–148, 1999.

[6] Derek Long and Maria Fox. The 3rd international planning competition: Re-
sults and analysis.Journal of Artificial Intelligence Research, 20:1–59, December
2003.

[7] Ute Schmid.Inductive Synthesis of Functional Programs. Number 2654 in Lec-
ture Notes in Artificial Intelligence (LNAI). Springer-Verlag, 2003.

[8] Jude W. Shavlik. Acquiring recursive and iterative concepts with explanation-
based learning.Machine Learning, 5:39–50, 1990.

[9] Manuela M. Veloso.Planning and Learning by Analogical Reasoning. Springer
Verlag, December 1994.

[10] Elly Winner and Manuela Veloso. Analyzing plans with conditional effects. In
Proceedings of the Sixth International Conference on Artificial Intelligence Plan-
ning and Scheduling (AIPS-02), pages 271 – 280, Toulouse, France, April 2002.

[11] Elly Winner and Manuela Veloso. DISTILL: Learning domain-specific planners
by example. InProceedings of the Twentieth International Conference on Ma-
chine Learning (ICML-2003), Washington, D.C., August 2003.

14

