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Abstract. In this chapter we describe the Trajectory Tree, or TTree,
algorithm. TTree uses a small set of supplied policies to help solve a
Semi-Markov Decision Problem (SMDP). The algorithm uses a learned
tree based discretization of the state space as an abstract state descrip-
tion and both user supplied and auto-generated policies as temporally
abstract actions. It uses a generative model of the world to sample the
transition function for the abstract SMDP defined by those state and
temporal abstractions, and then finds a policy for that abstract SMDP.
This policy for the abstract SMDP can then be mapped back to a pol-
icy for the base SMDP, solving the supplied problem. In this chapter
we present the TTree algorithm and give empirical comparisons to other
SMDP algorithms showing its effectiveness.

1 Introduction

Both Markov Decision Processes (MDPs) and Semi-Markov Decision Processes
(SMDPs), presented in [1], are important formalisms for agent control. They
are used for describing the state dynamics and reward structure in stochastic
domains and can be processed to find a policy; a function from the world state
to the action that should be performed in that state. In particular, it is useful to
have the policy that maximizes the sum of rewards over time. Unfortunately, the
number of states that need to be considered when finding a policy is exponential
in the number of dimensions that describe the state space. This exponential state
explosion is a well known difficulty when finding policies for large (S)MDPs.

A number of techniques have been used to help overcome exponential state
explosion and solve large (S)MDPs. These techniques can be broken into two
main classes. State abstraction refers to the technique of grouping many states
together and treating them as one abstract state, e.g. [2-4]. Temporal abstraction
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refers to techniques that group sequences of actions together and treat them
as one abstract action, e.g. [5-9]. Using a function approximator for the value
function, e.g. [10], can, in theory, subsume both state and temporal abstraction,
but the authors are unaware of any of these techniques that, in practice, achieve
significant temporal abstraction.

In this chapter we introduce the Trajectory Tree, or TTree, algorithm with
two advantages over previous algorithms. It can both learn an abstract state
representation and use temporal abstraction to improve problem solving speed.
It also uses a new format for defining temporal abstractions that relaxes a major
requirement of previous formats — it does not require a termination criterion as
part of the abstract action.

Starting with a set of user supplied abstract actions, TTree first generates
some additional abstract actions from the base level actions of the domain. TTree
then alternates between learning a tree based discretization of the state space
and learning a policy for an abstract SMDP using the tree as an abstract state
representation. In this chapter we give a description of the behavior of the al-
gorithm. Moreover we present empirical results showing TTree is an effective
anytime algorithm.

2 TTree

The goal of the TTree algorithm is to take an SMDP and a small collection
of supplied policies, and discover which supplied policy should be used in each
state to solve the SMDP. We wish to do this in a way that is more efficient than
finding the optimal policy directly.

The TTree algorithm is an extension of the Continuous U Tree algorithm [3].
In addition to adding the ability to use temporal abstraction, we also improve the
Continuous U Tree algorithm by removing some approximations in the semantics
of the algorithm.

TTree uses policies as temporally abstract actions. They are solutions to sub-
tasks that we expect the agent to encounter. We refer to these supplied policies
as abstract actions to distinguish them from the solution — the policy we are
trying to find. This definition of “abstract actions” is different from previous
definitions. Other definitions of abstract actions in reinforcement learning, e.g.
[5, 6], have termination criteria that our definition does not. Definitions of ab-
stract actions in planning, e.g. [11], where an abstract action is a normal action
with some pre-conditions removed, are even further removed from our defini-
tion. This ‘planning’ definition of abstract actions is closer to the concept of
state abstraction than temporal abstraction.

Each of the supplied abstract actions is defined over the same set of base-
level actions as the SMDP being solved. As a result, using the abstract actions
gives us no more representational power than representing the policy through
some other means, e.g. a table. Additionally, we ensure that there is at least one
abstract action that uses each base-level action in each state, so that we have



no less representational power than representing the policy through some other
means.

We noticed that a policy over the abstract actions has identical representa-
tional power to a normal policy over the states of an SMDP. However, if we have
a policy mapping abstract states to abstract actions, then we have increased
the representation power over a policy mapping abstract states to normal ac-
tions. This increase in power allows our abstract states to be larger while still
representing the same policy.

3 Definitions

An SMDP is defined as a tuple (S, A, P, R). S is the set of world states. We will
use s to refer to particular states, e.g. {s, s’} € S. We also assume that the states
embed into an n-dimensional space: S = S! x 8% x 83 x - - - x S™. In this chapter
we assume that each dimension, S?, is discrete. A is the set of actions. We will
use a to refer to particular actions, e.g. {ag,a1} € A. Defined for each state
action pair, P; 4(s',t) : S x Ax S x R — [0, 1] is a joint probability distribution
over both next-states and time taken. It is this distribution over the time taken
for a transition that separates an SMDP from an MDP. R(s,a) : S x A — R
defines the expected reward for performing an action in a state.’

The agent interacts with the world as follows. The agent knows the current
state: the world is Markovian and fully observable. It then performs an action.
That action takes a length of time to move the agent to a new state, the time
and resulting state determined by P. The agent gets reward for the transition
determined by R. As the world is fully observable, the agent can detect the new
world state and act again, etc.

Our goal is to learn a policy, 7 : S — A, that maps from states to actions.
In particular we want the policy, 7*, that maximizes a sum of rewards. To keep
this sum of rewards bounded, we will introduce a multiplicative discount factor,
v € (0,1). The goal is to find a policy that maximizes Y-,y r; where 7; is the
time that the agent starts its " action, and r; is the reward our agent receives
for its i*" action. Note that sometimes it will be useful to refer to a stochastic
policy. This is a function from states to probability distributions over the actions.

We can then define the following standard functions:

Q(s,a) = R(s,a) + Y _ / b Py o(s', )7V (s")dt (1)
s'es /t=0

Vi(s)=Q(s,m(s)) (2)

m*(s) = argmax Q* (s, a) (3)

acA

1 R can also depend upon both next state and time for the transition, but as these in
turn depend only upon the state and action, they fall out of the expectation.



‘We now introduce a related function, the T™ function. This function is defined
over a set of states S C S. It measures the discounted sum of reward for following
the given action until the agent leaves S’, then following the policy 7.

T3 (s,a) = R(s,a)
o0
+ Z / Py o(8', )Y TE (s',a) dt
t=0

er (4)
+ 0y / P, o(s' )y V™ (s') dt
s'e(s—sr) 7 t=0

We assume that instead of sampling P and R directly from the world, our
agent instead samples from a generative model of the world, e.g. [12]. This is
a function, G : S x A — § x R x R, that takes a state and an action and
returns a next state, a time and a reward for the transition. Our algorithm uses
G to sample trajectories through the state space starting from randomly selected
states.

4 The TTree Algorithm

TTree works by building an abstract SMDP that is smaller than the original,
or base, SMDP. The solution to this abstract SMDP is an approximation to the
solution to the base SMDP. The abstract SMDP is formed as follows: The states
in the abstract SMDP, the abstract states, are formed by partitioning the states in
the base SMDP; each abstract state corresponds to the set of base level states in
one element of the partition. Each base level state falls into exactly one abstract
state. Each action in the abstract SMDP, an abstract action, corresponds to
a policy, or stochastic policy, in the base SMDP. The abstract transition and
reward functions are found by sampling trajectories from the base SMDP.

We introduce some notation to help explain the algorithm. We use a bar over
a symbol to distinguish the abstract SMDP from the base SMDP, e.g. 5 vs. s,
or A vs. A. This allows us a shorthand notation: when we have a base state, s,
we use § to refer specifically to the abstract state containing s. Also, when we
have an abstract action a we use m; to refer to the base policy corresponding
to a and hence 75(s) is the corresponding base action at state s. Additionally,
we sometimes overload § to refer to the set of base states that it corresponds to,
e.g. s € 5. Finally, it is useful, particularly in the proofs, to define functions that
describe the base states within an abstract state, s, but only refer to abstract
states outside of 5. We mark these functions with a tilde. For example, we can
define a function related to Tis/(s,a) in equation 4 above, Ts(s, a).



Ts(s,a) = R(s,a)

+Z/ Pso(s', 1)y Ts(s', a) dt
s'es /=0 (5)

- /tzops,a(s’,t)ﬁ/(s‘/)dt

s'es’,s'#§

Note that the Tg function is labelled with a tilde, and hence within the
abstract state 5 we refer to base level states, outside of § we refer to the abstract
value function over abstract states.

We describe the TTree algorithm from a number of different viewpoints. First
we describe how TTree builds up the abstract SMDP, (S, A, P, R). Then we
follow through the algorithm in detail, and finally we give a high level overview
of the algorithm comparing it with previous algorithms.

4.1 Defining the Abstract SMDP

TTree uses a tree to partition the base level state space into abstract states.
Each node in the tree corresponds to a region of the state space with the root
node corresponding to the entire space. As our current implementation assumes
state dimensions are discrete, internal nodes divide their region of state space
along one dimension with one child for each discrete value along that dimension.
It is a small extension to handle continuous and ordered discrete attributes in
the same manner that Continuous U Tree [3] does. Leaf nodes correspond to
abstract states; all the base level states that fall into that region of space are
part of the abstract state.

TTree uses a set of abstract actions for the abstract SMDP. Each abstract
action corresponds to a base level policy. There are two ways in which these
abstract actions can be obtained; they can be supplied by the user, or they can be
generated by TTree. In particular, TTree generates one abstract action for each
base level action, and one additional ‘random’ abstract action. The ‘random’
abstract action is a base level stochastic policy that performs a random base
level action in each base level state. The other generated abstract actions are
degenerate base level policies: they perform the same base level action in every
base level state: Vs; g, (s) = a1, 7a, (S) = ag,...,7aq (s) = ax. These generated
abstract actions are all that is required by the proof of correctness. Any abstract
actions supplied by the user are hints to speed up the algorithm and are not
required for correctness.

Informally, the abstract transition and reward functions are the expected re-
sult of starting in a random base state in the current abstract state and following
a trajectory through the base states until we reach a new abstract state. To for-
malize this we define two functions. Rg(s, a) is the expected discounted reward
of starting in state s and following a trajectory through the base states using 75
until a new abstract state is reached. If no new abstract state is ever reached,



then R is the expected discounted reward of the infinite trajectory ]557,3(3_’ ,t) is
the expected probablhty, over the same set of trajectories as R; (s,a), of reach-
ing the abstract state s’ in time ¢. If s’ is 5 then we change the definition; when
t = 00, P, 4(s,t) is the probability that the trajectory never leaves state 5, and
P, a(s',t) is 0 otherwise.

We note that assigning a probability mass to t = oo is a mathematically sus-
pect thing to do as it assigns a probability mass, rather than a density, to a single
‘point’ and, furthermore, that ‘point’ is co. We justify the use of 1557;1(5, 00) as
a notational convenience for “the probability we never leave the current state”
as follows. We note that each time P is referenced with s’ = 3, it is then multi-
plied by 4%, and hence for ¢+ = oo the product is zero. This is the correct value
for an infinitely discounted reward. In the algorithm, as opposed to the proof,
t = oo is approximated by ¢ € (MAXTIME, co). MAXTIME is a constant in
the algorithm, chosen so that yMAXTIME myltiplied by the largest reward in the
SMDP is approximately zero. The exponential discounting involved means that
MAXTIME is usually not very large.

The definitions of P and R are expressed in the following equations:

Ruls,0) = R ma() + Y [ P (500 Bals' ) (©)
s'eg’t=
Z Ps,ﬂ'a(s)(sllat)
s'es’ - y
~ Ps Mg (s // I) ~S”,t_z(§l7 t— t/) dt/
Py li( s/ t) 9”69‘/t/ _ (7)
=3t # 00
1—2/ (s",t)dt s/ = §,t =00
s/ £5 =

Here R is recursively defined as the expected reward of the first step plus
the expected reward of the rest of the trajectory. P also has a recursive formula.
The first summation is the probability of moving from s to s’ in one transition.
The second summation is the probability of transitioning from s to another state

" € 5 in one transition, and then continuing from s” on to s’ in a trajectory
using the remaining time. Note, the recursion in the definition of Pis going to
be bounded as we disallow zero time cycles in the SMDP.

We can now define the abstract transition and reward functions, P and R,
as the expected values over all base states in the current abstract state of P and

R:

Psa(s't) = B P a(st) (8)

R(s,a) = B Ry(s,a) (9)



In English, P and R are the expected transition and reward functions if we
start in a random base level state within the current abstract state and follow
the supplied abstract action until we reach a new abstract state.

4.2 An Overview of the TTree Algorithm

In the algorithm P and R are not calculated directly from the above formulae.
Rather, they are sampled by following trajectories through the base level state
space as follows. A set of base level states is sampled from each abstract state.
From each of these start states, for each abstract action, the algorithm uses the
generative model to sample a series of trajectories through the base level states
that make up the abstract state. In detail for one trajectory: let the abstract
state we are considering be the state s. The algorithm first samples a set of base
level start states, {so, s1,..., Sk} € 8. It then gathers the set of base level policies
for the abstract actions, {74, 7g,- .., 7aq |- For each start state, s;, and policy,
Ta;, in turn, the agent samples a series of base level states from the generative
model forming a trajectory through the low level state space. As the trajectory
progresses, the algorithm tracks the sum of discounted reward for the trajectory,
and the total time taken by the trajectory. The algorithm does not keep track
of the intermediate base level states.

These trajectories have a number of termination criteria. The most important
is that the trajectory stops if it reaches a new abstract state. The trajectory also
stops if the system detects a deterministic self-transition in the base level state, if
an absorbing state is reached, or if the trajectory exceeds a predefined length of
time, MAXTIME. The result for each trajectory is a tuple, (Sstart, Gj; Sstop; t5 7)),
of the start base level state, abstract action, end base level state, total time and
total discounted reward.

We turn the trajectory into a sample transition in the abstract SMDP, i.e. a
tuple (Sstart, @, Sstop, t, 7). The sample transitions are combined to estimate the
abstract transition and reward functions, P and R.

The algorithm now has a complete abstract SMDP. It can solve it using
traditional techniques, e.g. [13], to find a policy for the abstract SMDP: a func-
tion from abstract states to the abstract action that should be performed in
that abstract state. However, the abstract actions are base level policies, and
the abstract states are sets of base level states, so we also have a function from
base level states to base level actions; we have a policy for the base SMDP — an
approximate solution to the suppled problem.

Having found this policy, TTree then looks to improve the accuracy of its
approximation by increasing the resolution of the state abstraction. It does this
by dividing abstract states — growing the tree. In order to grow the tree, we need
to know which leaves should be divided and where they should be divided. A
leaf should be divided when the utility of performing an abstract action is not
constant across the leaf, or if the best action changes across a leaf.

We can use the trajectories sampled earlier to get point estimates of the T
function defined in equation 4, itself an approximation of the utility of perform-
ing an abstract action in a given state. First, we assume that the abstract value



Table 1. Constants in the TTree algorithm

| Constant |Definition ‘

N, The number of trajectory start points sampled from the entire space
each iteration

N; The minimum number of trajectory start points sampled in each leaf

Ny The number of trajectories sampled per start point, abstract action pair

MAXTIME|The number of time steps before a trajectory value is assumed to have
converged. Usually chosen to keep yMAXTIMEy /(1 _ A1) < ¢ where r and
t are the largest reward and smallest time step, and € is an acceptable
error

function, V, is an approximation of the base value function, V. Making this sub-
stitution gives us the T function defined in equation 5. The sampled trajectories
with the current abstract value function allow us to estimate T. We refer to
these estimates as 7. For a single trajectory (s;, d;, Sstop,7,t) We can find Sss0p
and then get the estimate?:

Tg(siadj) = 7’+’Yt‘7(§stop) (10)

From these T'(s,a) estimates we obtain three different values used to divide
the abstract state. Firstly, we divide the abstract state if maxg T(s,&) varies
across the abstract state. Secondly, we divide the abstract state if the best action,
argmax; T(s, a), varies across the abstract state. Finally, we divide the abstract
state if T(s, a) varies across the state for any abstract action. It is interesting to
note that while the last of these criteria contains a superset of the information in
the first two, and leads to a higher resolution discretization of the state space once
all splitting is done, it leads to the splits being introduced in a different order.
If used as the sole splitting criterion, T(s, a) is not as effective as max; T(s, a)
for intermediate trees.

Once a division has been introduced, all trajectories sampled within the leaf
that was divided are discarded, a new set of trajectories is sampled in each of
the new leaves, and the algorithm iterates.

4.3 The TTree Algorithm in Detail

The TTree algorithm is shown in Procedure 1. The various constants referred to
are defined in Table 1.

The core of the TTree algorithm is the trajectory. As described above, these
are paths through the base-level states within a single abstract state. They are
used in two different ways in the algorithm; to discover the abstract transition

2 It has been suggested that it might be possible to use a single trajectory to gain
T estimates at many locations. We are wary of this suggestion as those estimates
would be highly correlated; samples taken from the generative model near the end
of a trajectory would affect the calculation of many point estimates.



Procedure 1 Procedure TTree(S, A, G,7)

1: tree «+— a new tree with a single leaf corresponding to S
2: loop
3. Sq—{s1,...,5n,} sampled from S
for all s € S, do
SampleTrajectories(s, tree, A, G, ) {see Procedure 2}
end for
UpdateAbstractSMDP (tree, A, G, ) {see Procedure 3}
GrowTTree(tree, A, ) {see Procedure 4}
end loop

function and to gather data about where to grow the tree and increase the
resolution of the state abstraction. We first discuss how trajectories are sampled,
then discuss how they are used.

Trajectories are sampled in sets, each set starting at a single base level state.
The function to sample one of these sets of trajectories is shown in Procedure 2.
The set of trajectories contains N; trajectories for each abstract action. Once
sampled, each trajectory is recorded as a tuple of start state, abstract action, re-
sulting state, time taken and total discounted reward, (Sstart, @, Sstop; ttotals total)s
with sgtqr+ being the same for each tuple in the set. The tuples in the trajec-
tory set are stored along with sg4+ as a sample point, and added to the leaf
containing Sgyq.t -

The individual trajectories are sampled with the randomness being controlled
[12, 14]. Initially the algorithm stores a set of N; random numbers that are used
as seeds to reset the random number generator. Before the j' trajectory is
sampled, the random number generator used in both the generative model and
any stochastic abstract actions is reset to the j*" random seed. This removes some
of the randomness in the comparison of the different abstract actions within this
set of trajectories.

There are four stopping criteria for a sampled trajectory. Reaching another
abstract state and reaching an absorbing state are stopping criteria that have
already been discussed. Stopping when MAXTIME time steps have passed is an
approximation. It allows us to get approximate values for trajectories that never
leave the current state. Because future values decay exponentially, MAXTIME
does not have to be very large to accurately approximate the trajectory value
[12]. The final stopping criterion, stopping when a deterministic self-transition
occurs, is an optimization, but it is not always possible to detect deterministic
self-transitions. The algorithm works without this, but samples longer trajecto-
ries waiting for MAXTIME to expire, and hence is less efficient.

The TTree algorithm samples trajectory sets in two places. In the main pro-
cedure, TTree randomly samples start points from the entire base level state
space and then samples trajectory sets from these start points. This serves to in-
crease the number of trajectories sampled by the algorithm over time regardless
of resolution. Procedure 3 also samples trajectories to ensure that there sampled
trajectories in every abstract state to build the abstract transition function.



Procedure 2 Procedure SampleTrajectories(sszqrt, tree, A, G,7)

1:

— = =
w2 o

15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:

Initialize new trajectory sample point, p, at sstare {p will store N; trajectories for
each of the |A| actions}
Let {seed1,seeds,...,seedn,} be a collection of random seeds
| «+ LeafContaining(tree, Sstart)
for all abstract actions @ € A do
let sz be the base policy associated with a
for j =1 to N do
Reset the random number generator to seed;
S «— Sstart
ttotal — 07 Ttotal < 0
repeat
(s,t, 1) — G(s,ma(s))
ttotal — ttotal + t
Tiotal < Tiotal + Yy tlr
until s € [, or tiota > MAXTIME, or
(s, %, %) = G(s,ma(s)) is deterministic and s = s, or s is an absorbing state
if the trajectory stopped because of a deterministic self transition then
Ttotal < Ttotal + 'Y(ttOMH_t)T/(l - ’Yt)
ttotal — 00
else if the trajectory stopped because the final state was absorbing then
tiotal <— OO
end if
Sstop < S
Add (Sstart, @, Sstop, trotals Ttotal) 1O the trajectory list in p
end for
end for
Add ptol

Procedure 3 Procedure UpdateAbstractSMDP (tree, A, G, )

1
2
3
4
5:
6
7
8

for all leaves [ with fewer than N; sample points do
Sy — {s1,...,8n, } sampled from [
for all s € S, do
SampleTrajectories(s, tree, A, G, ) {see Procedure 2}
end for

: end for

: P «— 0 {Reset abstract transition count}

: for all leaves [ and associated points p do
9:
10:
11:
12:
13:
14:
15:

for all trajectories, (Sstart, @, Sstops ttotals Ttotal), N p dO
lstop < LeafContaining(tree, sstop)
P —PU{{,a,lstop, tiotal, Ttotal) }
end for
end for
Transform P into transition probabilities
Solve the abstract SMDP




As well as using trajectories to find the abstract transition function, TTree
also uses them to generate data to grow the tree. Here trajectories are used to
generate three values. The first is an estimate of the T" function, T, the second
is an estimate of the optimal abstract action, #(s) = argmax, 7(s,a), and the
third is the value of that action, maxg T (s,a). As noted above, trajectories are
sampled in sets. The entire set is used by TTree to estimate the T values and
hence reduce the variance of the estimates.

As noted above (equation 10 — reprinted here), for a single trajectory, stored
as the tuple (Sstare, @, Sstop, T, t), we can find 54, and can calculate T:

Ts 0 (Sstart, @) = 7 + ’th(gstop) (11)

For a set of trajectories all starting at the same base level state with the
same abstract action we find a better estimate:

Ny
Ts i (Sstart; @) = Nit 2 [7s + 7V (85t0p,)] (12)
=
This is the estimated expected discounted reward for following the abstract
action a starting at the base level state sg 44, until a new abstract state is
reached, and then following the policy defined by the abstract SMDP. If there
is a statistically significant change in the T value across a state for any action
then we should divide the state in two.
Additionally, we can find which abstract action has the highest? T estimate,
#, and the value of that estimate, V:

V(Sstart) = Imax T(Sstarh EL) (13)

7?r(sstart) - arg{naXT(sstm‘ta EL) (14)

If the V or # value changes across an abstract state, then we should divide
that abstract state in two. Note that it is impossible for #(s) or V(s) to change
without T(s, @) changing and so these extra criteria do not cause us to introduce
any extra splits. However, they do change the order in which splits are intro-
duced. Splits that would allow a change in policy, or a change in value function,
are preferred over those that just improve our estimate of the Q function.

The division that maximizes the statistical difference between the two sides
is chosen. Our implementation of TTree uses a Minimum Description Length
test that is fully described in [8] to decide when to divide a leaf.

As well as knowing how to grow a tree, we also need to decide if we should
grow the tree. This is decided by a stopping criterion. Procedure 4 does not
introduce a split if the stopping criterion is fulfilled, but neither does it halt the
algorithm. TTree keeps looping gathering more data. In the experimental results
we use a Minimum Description Length stopping criterion. We have found that

3 Ties are broken in favor of the abstract action selected in the current abstract state.



Procedure 4 Procedure GrowT Tree(tree, A, )

DT « () {Reset split data set. D7 is a set of states with associated 7' estimates.}
DT 0

DY 0

for all leaves | and associated points p do {a point contains a set of trajectories
starting in the same state}

5: T(smm, D0 {T(sstm, .) is a new array of size |A|}

6: for all trajectories in p, (Ssiart, @, Sstop,t,7) do {N; trajectories for each of |A|
actions}

7 lftap — LeafCoPtaining(tree, Sstop)

8: T(Sstarty a) — T(Sst(u't; C_L) + (7” + ’th(lstop))/Nt

9:  end for

10: DT — DT U {(sstart, T)} {add T estimates to data set}

11: V< max, T(sftart, a)

12: 7t « argmaxg, T (Sstart, @)

13: DY — DY U{(s,V)} {add best value to data set}

14: D™ — D" U{(s,7)} {add best action to data set}

15: end for

16: for all new splits in the tree do

17:  EvaluateSplit(DYV UD™ UD?) {Use the splitting criterion to evaluate this split }

18: end for

19: if ShouldSplit(DY U D™ U DT) then {Evaluate the best split using the stopping
criterion}

20:  Introduce best split into tree

21:  Throw out all sample points, p, in the leaf that was split

22: end if

the algorithm tends to get very good results long before the stopping criterion is
met, and we did not usually run the algorithm for that long. The outer loop in
Procedure 1 is an infinite loop, although it is possible to modify the algorithm
so that it stops when the stopping criterion is fulfilled. We have been using the
algorithm as an anytime algorithm.

4.4 Discussion of TTree

Now that we have described the technical details of the algorithm, we look at the
motivation and effects of these details. TTree was developed to fix some of the
limitations of previous algorithms such as Continuous U Tree [3]. In particular we
wanted to reduce the splitting from the edges of abstract states and we wanted to
allow the measurement of the usefulness of abstract actions. Finally, we wanted
to improve the match between the way the abstract policy is used and the way
the abstract SMDP is modelled to increase the quality of the policy when the
tree is not fully grown.

Introducing trajectories instead of transitions solves these problems. The T
values, unlike the g values in Continuous U Tree, vary all across an abstract
state, solving the edge slicing issue. The use of trajectories allows us to measure



the effectiveness of abstract actions along a whole trajectory rather than only for
a single step. Finally, the use of trajectories allows us to build a more accurate
abstract transition function.

Edge slicing was an issue in Continuous U Tree where all abstract self-
transitions with the same reward had the same ¢ values, regardless of the dy-
namics of the self-transition. This means that often only the transitions out of
an abstract state have different ¢ values, and hence that the algorithm tends to
slice from the edges of abstract states into the middle. TTree does not suffer
from this problem as the trajectories include a measure of how much time the
agent spends following the trajectory before leaving the abstract state. If the
state-dynamics change across a state, then that is apparent in the T values.

Trajectories allow us to select abstract actions for a state because they pro-
vide a way to differentiate abstract actions from base level actions. In one step
there is no way to differentiate an abstract action from a base level action. Over
multiple steps, this becomes possible.

Finally, trajectories allow a more accurate transition function because they
more accurately model the execution of the abstract policy. When the abstract
SMDP is solved, an abstract action is selected for each abstract state. During
execution that action is executed repeatedly until the agent leaves the abstract
state. This repeated execution until the abstract state is exited is modelled by
a trajectory. This is different from how Continuous U Tree forms its abstract
MDP where each step is modelled individually. TTree only applies the Markov
assumption at the start of a trajectory, whereas Continuous U Tree applies it
at each step. When the tree is not fully grown, and the Markov assumption
inaccurate, fewer applications of the assumption lead to a more accurate model.

However, the use of trajectories also brings its own issues. If the same action
is always selected until a new abstract state is reached, then we have lost the
ability to change direction halfway across an abstract state. Our first answer to
this is to sample trajectories from random starting points throughout the state,
as described above. This allows us to measure the effect of changing direction in
a state by starting a new trajectory in that state. To achieve this we require a
generative model of the world. With this sampling, if the optimal policy changes
halfway across a state, then the T values should change. But we only get T
values where we start trajectories.

It is not immediately obvious that we can find the optimal policy in this
constrained model. In fact, with a fixed size tree we usually can not find the
optimal policy, and hence we need to grow the tree. With a large enough tree the
abstract states and base level states are equivalent, so we know that expanding
the tree can lead to optimality. However, it is still not obvious that the T values
contain the information we need to decide if we should keep expanding the tree;
i.e. it is not obvious that there are no local maxima, with all the T values equal
within all leaves, but with a non-optimal policy. We prove that no such local
maxima exist in Section 5 below.

The fact that we split first on V = max; 7(.,a) and # = argmax, 7(.,a)
values before looking at all the T values deserves some explanation. If you split



on T values then you sometimes split based on the data for non-optimal abstract
actions. While this is required for the proof in Section 5 (see the example in
Section 5.2), it also tends to cause problems empirically [8]. Our solution is to
only split on non-optimal actions when no splits would otherwise be introduced.

Finally, we make some comments about the random abstract action. The
random abstract action has 7" values that are a smoothed version of the reward
function. If there is only a single point reward there can be a problem finding
an initial split. The point reward may not be sampled often enough to find a
statistically significant difference between it and surrounding states. The random
abstract action improves the chance of finding the point reward and introducing
the initial split. In some of the empirical results we generalize this to the notion
of an abstract action for exploration.

5 Proof of Convergence

Some previous state abstraction algorithms [2, 3] have generated data in a man-
ner similar to TTree, but using single transitions rather than trajectories. In
that case, the data can be interpreted as a sample from a stochastic form of
the Q-function (TTree exhibits this behavior as a special case when MAXTIME
= 0). When trajectories are introduced, the sample values no longer have this
interpretation and it is no longer clear that splitting on the sample values leads
to an abstract SMDP with any formal relation to the original SMDP. Other state
abstraction algorithms, e.g. [4], generate data in a manner similar to TTree but
are known not to converge to optimality in all cases.

In this section, we analyze the trajectory values. We introduce a theorem
that shows that splitting such that the 7' values are equal for all actions across a
leaf leads to the optimal policy for the abstract SMDP, 7*, also being an optimal
policy for the original SMDP. The complete proofs are available at [8]. We also
give a counter-example for a simplified version of TTree showing that having
constant trajectory values for only the highest valued action is not enough to
achieve optimality.

5.1 Assumptions

In order to separate the effectiveness of the splitting and stopping criteria from
the convergence of the SMDP solving, we assume optimal splitting and stopping
criteria, and that the sample sizes, N; and Ny, are sufficient. That is, the splitting
and stopping criteria introduce a split in a leaf if, and only if, there exist two
regions, one on each side of the split, and the distribution of the value being
tested is different in those regions.

Of course, real world splitting criteria are not optimal, even with infinite
sample sizes. For example, most splitting criteria have trouble introducing splits
if the data follows an XOR or checkerboard pattern. Our assumption is still
useful as it allows us to verify the correctness of the SMDP solving part of the
algorithm independently of the splitting and stopping criteria.



This proof only refers to base level actions. We assume that the only abstract
actions are the automatically generated degenerate abstract actions, and hence
Va,Vs, mz(s) = a and we do not have to distinguish between a and a. Adding
extra abstract actions does not affect the proof, and so we ignore them for
convenience of notation.

Theorem 1. If the T samples are statistically constant across all states for all
actions, then an optimal abstract policy is an optimal base level policy. Formally,

Va € A, V5 € S,Vs, €5,Vsy € 5,T(s1,a) =T(s9,a) = 7 (s1) = 7(s1) (15)

We first review the definition of T introduced in equation 5:

Ts(s,a) = R(s,a)

+Z/ P,.o(s' )V Ts(s', a) dt
t=0

s'es

+ > /tZORg,a(s’,t)ytV(s?)dt

s'es’,s'#5

(16)

This function describes the expected value of the T samples used in the
algorithm, assuming a large sample size. It is also closely related to the T" function
defined in equation 4; the two are identical except for the value used when the
region defined by &’ or 5 is exited. The T function used the value of a base level
value function, V, whereas the 7' function uses the value of the abstract level
value function, V.

We also define functions V= (s) and Qs (s,a) to be similar to the normal
V* and @Q* functions within the set of states corresponding to s, but once the
agent leaves 5 it gets a one-time reward equal to the value of the abstract state
it enters, V.

Qs (s,a) = R(s,a)

—i—Z/ Ps,a(s',t)’yt‘;'s—*(s’)dt
t

s'eg”/t=0 (17)
+ 0> / P, (s, )7tV (s) dt
s'€s’ 8 #5 t=0

V; (s) = maxQ; (s, a) (18)

Intuitively these functions give the value of acting optimally within §, assum-
ing that the values of the base level states outside § are fixed.

We now have a spectrum of functions. At one end of the spectrum is the
base Q* function from which it is possible to extract the set of optimal policies



for the original SMDP. Next in line is the Q* function which is optimal within
an abstract state given the values of the abstract states around it. Then we
have the T function which can have different values across an abstract state, but
assumes a constant action until a new abstract state is reached. Finally we have
the abstract Q* function which does not vary across the abstract state and gives
us the optimal policy for the abstract SMDP.

The outline of the proof of optimality when splitting is complete is as follows.
First, we introduce in Lemma 1 that T really is the same as our estimates, T for
large enough sample sizes. We then show that, when splitting has stopped, the
maximum over the actions of each of the functions in the spectrum mentioned
in the previous paragraph is equal and is reached by the same set of actions.
We also show that Q* < Q*. This implies that an optimal policy in the abstract
SMDP is also an optimal policy in the base SMDP. The proofs of the lemmas 1
and 3 are available at [8].

Lemma 1. The T samples are an unbiased estimate of T. Formally,

. . . TE(Sad) = §(Sva> (19)
trajectories starting at s
(s,a,s’,r,t)

Lemma 2. Vs € 5,Ya, Q5 (s,a) > Ts(s, a)

This is true by inspection. Equations 5 and 17 are reprinted here for reference:

Tg(s, a) = R(s,a)

+ 0> /OOPS,a(s',t)fytV(g’)dt

t=0

s'€s’ s #5

Substituting V5 (s) = max, Q= (s,a) into equation 21 makes the two func-
tions differ only in that @ has a max where T' does not. Hence Q > T'. g.e.d.

Lemma 3. If Tg is constant across § for all actions, them max, Tg(.7a) =
max, QS—*(., a) and argmax, T5(.,a) = argmax,, QS—*(., a).

Lemma 4. If Ts is constant across the abstract state § for all actions then
Q(5,a) = Ts(s,a) for all actions.



During the proof of lemma 1 we show,

Ty(s,a) = Rs(s,a +Z/ P, o(s', 0V (s') dt

s'es

-E [Rg(s,a)} +3 /t mkeg []537,1(3_’,15)} MVT(E) A (23)

sESs e —0 S
1 ~
= ﬁ R§(87CL)
sESs - (24)
+Z/ S D Pals ) [ AV(s) d
s7es57/t=0 5] sE€S
1 .
= 5 Rs(s,a)
s
sESs
1 oo - _ (25)
+ = / Py o(s, )y V(") dt
|3] ses yeg =0
1 _
= 1 R§(S7a)
|S| sES
00 (26)
+ Py o (s, )YV (s) dt]
Sog /=0
- Efi(s.0 (27)

_ Given that Ts(s,a) is constant across s € 5, then Vs' € 3, Eseg [5(s,a) =
Ts(s',a). g.e.d.

Lemma 5. If Ts is constant across the abstract state K for all actions, and
V(s') = V*(s') for all base states in all abstract states s', s' # 5, then V(5) =
V*(s) in 5.

Substituting V(s') = V*(s’) for other states into equation 17, we see that
Q* = Q* for the current state and so V* = V* for the current state. Also,
argmax, Q*(s,a) = argmax, Q*(s,a) and so the policies implicit in these func-
tions are also equal.



Moreover, because T is constant across the current abstract state, we know,
by Lemma 4, that Q(5,a) = Ts(s,a). For the same reason we also know by

Lemma 3 that max, T5(s,a) = Vg* (s).

Q(5,a) =Ts(s,a) (28)
thereforeV (5) = max Ts(s,a) (29)
=V (s) (30)

—V(s) (31)

q.e.d.

Lemma 6. If_fg is constant across each abstract state for each action, then
setting V* =V is a consistent solution to the Bellman equations of the base
level SMDP.

This is most easily seen by contradiction. Assume we have a tabular repre-
sentation of the base level value function. We will initialize this table with the
values from V. We will further assume that 7% is constant across each abstract
state for each action, but that our table is not optimal, and show that this leads
to a contradiction.

As in lemma 5, because T is constant across the current abstract state, we
know, by Lemma 4, that Q(5,a) = Ts(s,a). For the same reason we also know

by Lemma 3 that max, T5(s,a) = Vg*(s)

This means that our table contains VS—* for each abstract state. Hence, there
is no single base level state that can have its value increased by a single bellman
update. Hence the table must be optimal.

This optimal value function is achieved with the same actions in both the
base and abstract SMDPs. Hence any optimal policy in one is an optimal policy
in the other. g.e.d.

5.2 Splitting on Non-Optimal Actions

We did not show above that the T and Q* functions are equal for non-optimal
actions. One might propose a simpler algorithm that only divides a state when
T is not uniform for the action with the highest value, rather than checking
for uniformity all the actions. Here is a counter-example showing this simplified
algorithm does not converge.

Consider an MDP with three states, s1, so and s3. s3 is an absorbing state
with zero value. States s; and so are both part of a single abstract state, sz is in
a separate abstract state. There are two deterministic actions. a; takes us from
either state into s3 with a reward of 10. as takes us from s; to so with a reward
of 100, and from s» to s3 with a reward of —1000. Table 2 shows the T and Q*
values for each state when v = 0.9. Note that even though the T'(s,a;) values
are constant and higher than the T(s,as) values, the optimal policy does not
choose action a; in both states.



Table 2. T, @ and V for sample MDP

[Function|| s, [ s2 |
Q(s,a1) || 9 9

79 19
Q(s, az2) ||108.1]-900
T(s, az) || -710 |-900
V(s) |[108.1] 9

6 Empirical Results

We evaluated TTree in a number of domains. For each domain the experimental
setup was similar. We compared mainly against the Prioritized Sweeping algo-
rithm [13]. The reason for this is that, in the domains tested, Continuous U Tree
was ineffective as the domains do not have much scope for normal state abstrac-
tion. It is important to note that Prioritized Sweeping is a certainty equivalence
algorithm. This means that it builds an internal model of the state space from
its experience in the world, and then solves that model to find its policy. The
model is built without any state or temporal abstraction and so tends to be
large, but, aside from the lack of abstraction, it makes very efficient use of the
transitions sampled from the environment.

The experimental procedure was as follows. There were 15 learning trials.
During each trial, each algorithm was tested in a series of epochs. At the start
of their trials, Prioritized Sweeping had its value function initialized optimisti-
cally at 500, and TTree was reset to a single leaf. At each time step Prioritized
Sweeping performed 5 value function updates. At the start of each epoch the
world was set to a random state. The algorithm being tested was then given
control of the agent. The epoch ended after 1000 steps were taken, or if an ab-
sorbing state was reached. At that point the algorithm was informed that the
epoch was over. TTree then used its generative model to sample trajectories,
introduce one split, sample more trajectories to build the abstract transition
function, and update its abstract value function and find a policy. Prioritized
Sweeping used its certainty equivalence model to update its value function and
find a policy. Having updated its policy, the algorithm being tested was then
started at 20 randomly selected start points and the discounted reward summed
for 1000 steps from each of those start points. This was used to estimate the
expected discounted reward for each agent’s current policy. These trajectories
were not used for learning by either algorithm. An entry was then recorded in
the log with the number of milliseconds spent by the agent so far this trial (not
including the 20 test trajectories), the total number of samples taken by the
agent so far this trial (both in the world and from the generative model), the
size of the agent’s model, and the expected discounted reward measured at the
end of the epoch. For Prioritized Sweeping, the size of the model was the number
of visited state/action pairs divided by the number of actions. For TTree the size



of the model was the number of leaves in the tree. The trial lasted until each
agent had sampled a fixed number of transitions (which varied by domain).

The data was graphed as follows. We have two plots in each domain. The
first has the number of transitions sampled from the world on the z-axis and
the expected reward on the y-axis. The second has time taken by the algorithm
on the z-axis and expected reward on the y-axis. Some domains have a third
graph showing the number of transitions sampled on the z-axis and the size of
the model on the y-axis.

For each of the 15 trials there was a log file with an entry recorded at the end
of each epoch. However, the number of samples taken in an epoch varies, making
it impossible to simply average the 15 trials. Our solution was to connect each
consecutive sample point within each trial to form a piecewise-linear curve for
that trial. We then selected an evenly spaced set of sample points, and took the
mean and standard deviation of the 15 piecewise-linear curves at each sample
point. We stopped sampling when any of the log files was finished (when sampling
with time on the x-axis, the log files are different lengths).

6.1 Towers of Hanoi

The Towers of Hanoi domain is well known in the classical planning literature for
the hierarchical structure of the solution; temporal abstraction should work well.
This domain consists of 3 pegs, on which sit N disks. Each disk is of a different
size and they stack such that smaller disks always sit above larger disks. There
are six actions which move the top disk on one peg to the top of one of the
other pegs. An illegal action, trying to move a larger peg on top of a smaller
peg, results in no change in the world. The object is to move all the disks to
a specified peg; a reward of 100 is received in this state. All base level actions
take one time step, with v = 0.99. The decomposed representation we used has
a boolean variable for each disk/peg pair. These variables are true if the disk is
on the peg.

The Towers of Hanoi domain had size N = 8. We used a discount factor,
v = 0.99. TTree was given policies for the three N = 7 problems, the com-
plete set of abstract actions is shown in Table 3. The TTree constants were,
N, = 20, N; = 20, N; = 1 and MAXSTEPS = 400. Prioritized Sweeping used
Boltzmann exploration with carefully tuned parameters (v was also tuned to
help Prioritized Sweeping). The tuning of the parameters for Prioritized Sweep-
ing took significantly longer than for TTree.

Figure 1 shows a comparison of Prioritized Sweeping and T'Tree. In Figure 1b
the TTree data finishes significantly earlier than the Prioritized Sweeping data;
TTree takes significantly less time per sample. Continuous U Tree results are
not shown as that algorithm was unable to solve the problem. The problem has
24 state dimensions and Continuous U Tree was unable to find an initial split.

We also tested Continuous U Tree and TTree on smaller Towers of Hanoi
problems without additional macros. TTree with only the generated abstract
actions was able to solve more problems than Continuous U Tree. We attribute
this to the fact that the Towers of Hanoi domain is particularly bad for U Tree



Table 3. Actions in the Towers of Hanoi domain

Expected Discounted Reward

Expected Discounted Reward

Base Level Actions l A Set of Abstract Actions
Action Move Disc l Action| Effect
From Peg[To Peg | Generated abstract actions
ao Do it} ao |Perform action ao in all states
a P L] a1 |Perform action a; in all states
az P D as |Perform action a- in all states
as ! Do az |Perform action as in all states
a4 P L) a4 |Perform action a4 in all states
a5 Py o as |Perform action as in all states
Gr |Choose uniformly from {ao,...,as} in all states
l Supplied abstract actions
arp, |If the 7 disc stack is on Py then choose uniformly
from {ao, ..., as}, otherwise follow the policy that
moves the 7 disc stack to Pp.
arp, |If the 7 disc stack is on P; then choose uniformly
from {ao, ..., as}, otherwise follow the policy that
moves the 7 disc stack to P;.
arp, |If the 7 disc stack is on P> then choose uniformly
from {ao, ..., as}, otherwise follow the policy that
moves the 7 disc stack to Ps.
0 ‘ ‘ Trajectory Tree —— = " T 77 Trajectory Tree ——
a5 | ] TPjrl}ojrit}flze}dTSwwfejpjlrjq;"‘"j":* | Prioritized Sweeping
20 {}*f%“&%?%?f{f%*%
IR
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Fig. 1. Results from the Towers of Hanoi domain. (a) A plot of Expected Reward
vs. Number of Sample transitions taken from the world. (b) Data from the same log
plotted against time instead of the number of samples



style state abstraction. In U Tree the same action is always chosen in a leaf.
However, it is never legal to perform the same action twice in a row in Tow-
ers of Hanoi. TTree is able to solve these problems because the, automatically
generated, random abstract action allows it to gather more useful data than
Continuous U Tree.

In addition, the transition function of the abstract SMDP formed by TTree
is closer to what the agent actually sees in the real world than the transition
function of abstract SMDP formed by Continuous U Tree. TTree samples the
transition function assuming it might take a number of steps to leave the abstract
state. Continuous U Tree assumes that it leaves the abstract state in one step.
This makes TTree a better anytime algorithm.

6.2 The Rooms Domains

This domain simulates a two legged robot walking through a maze. The two legs
are designated left and right. With a few restrictions, each of these legs can be
raised and lowered one unit, and the raised foot can be moved one unit in each of
the four compass directions: north, south, east and west. The legs are restricted
in movement so that they are not both in the air at the same time. They are
also restricted to not be diagonally separated, e.g. the right leg can be either
east or north of the left leg, but it cannot be both east and north of the left leg.

More formally, we represent the position of the robot using the two dimen-
sional coordinates of the right foot, (x,y). We then represent the pose of the
robot’s legs by storing the three dimensional position of the left foot relative
to the right foot, (Az, Ay, Az). We represent East on the +z axis, North on
the +y axis and up on the +z axis. The formal restrictions on movement are
that Az and Ay cannot both be non-zero at the same time and that each of
Az, Ay and Az are in the set {—1,0,1}. A subset of the state space is shown
diagrammatically in Figures 2 and 3. These figures do not show the entire global
state space and also ignore the existence of walls.

The robot walks through a grid with a simple maze imposed on it. The mazes
have the effect of blocking some of the available actions: any action that would
result in the robot having its feet on either side of a maze wall fails. Any action
that would result in an illegal leg configuration fails and gives the robot reward
of —1. Upon reaching the grey square in the maze the robot receives a reward
of 100.

In our current implementation of TTree we do not handle ordered discrete
attributes such as the global maze coordinates, x and y. In these cases we trans-
form each of the ordered discrete attributes into a set of binary attributes. There
is one binary attribute for each ordered discrete attribute/value pair describing
if the attribute is less than the value. For example, we replace the x attribute
with a series of binary attributes of the form: {x < 1,2 < 2,...,2 < 9}. The y
attribute is transformed similarly.

In addition to the mazes above, we use the ‘gridworlds’ shown in Figure 4
for experiments. It should be remembered that the agent has to walk through



<0,1,1,0,0,0>

<0,1,1>
\ Move foot
North/South

Raise/Lower

<0,0,1,0,0,0> <1,0,1,0,0,0>
Left Foot
<-1,0,1,0,0,0> I <0,0,1> <1,0,1>
<1.0,1> < Move raised foot Move raised foot
East/West East/West
. Move foot +
aig Z
Raise/Lower North/South
Left Foot . <0,-1,1,0,0,0>
<0,1,0.0.0,0> Raise/Lower
,1,0,0,0, Left Foot <0,-1,1> +y +X
<0.1.0> eitroo Raise/Lower
Left Foot
Raise/Lower
Right Foot RaisolL. <1.0.0.0.0.0>
- 18! wer
<-1,0,0,0,0,0> <0,0,0,0,0,0> se/Lowe <1,0,0>
<-1,0,0> <0,0,0> Left Foot

Raise/Lower

Right Foot Raise/Lower This point
<0,1,0,0,0,15% Right Foot represents
Ay
<0,L-1> Move foot Raise/Lower bo}zh feet b
. together on the
North/South i Right Foot
N Raise/Lower S ground
N Right Foot
<-1,0,0,0,0,1> P _——— ' )
<lO-1> Move raised <0,0,0,0,0,1 R Move raised foot <1,0,0,0,0,1>
o foot East/West <0.0-1> ~ East/West <1.0.-1>
o Move foot T
North/South
* A
<0,-1,0,0,0,1>
<0,-1,-1>

Representation 1 <LeftX, LeftY, LeftZ, RightX, RightY, RightZ>
Representation 2 <dX, dY, dZ>

Fig. 2. The local transition diagram for the walking robot domain without walls. This
shows the positions of the feet relative to each other. Solid arrows represent transitions
possible without a change in global location. Dashed arrows represent transitions pos-
sible with a change in global location. The different states are shown in two different
coordinate systems. The top coordinate system shows the positions of each foot relative
to the ground at the global position of the robot. The bottom coordinate system shows
the position of the left foot relative to the right foot

these grids. Unless stated otherwise in the experiments we have a reward of 100
in the bottom right square of the gridworld.

When solving the smaller of the two worlds, shown in Figure 4 (a), TTree was
given abstract actions that walk in the four cardinal directions: north, south, east
and west. These are the same actions described in the introduction, e.g. Tables 4.
The various constants were v = 0.99, N, = 40, N; = 40, N; = 2 and MAXSTEPS
= 150. Additionally, the random abstract action was not useful in this domain,
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Fig. 3. A subset of the global transition diagram for the walking robot domain. Each
of the sets of solid lines is a copy of the local transition diagram shown in Figure 2.
As in that figure, solid arrows represent transitions that do not change global location

and dashed arrows represent transitions that do change global location
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Fig. 4. (a) A set of four 10 x 10 rooms for our robot to walk through; (b) A set of

sixteen 10 x 10 rooms for our robot to walk through



Table 4. The policy for walking north when starting with both feet together. (a) Shows
the policy in tree form, (b) shows the policy in diagram form. Note: only the Az-Ay
plane of the policy is shown as that is all that is required when starting to walk with
your feet together

if Az =0 then {both feet on the ground}
if Ay > 0 then {left foot north of right foot}
raise the right foot
else
raise the left foot
end if
else if Az =1 then {the left foot is in the air}
if Ay > 0 then {left foot north of right foot}
lower the left foot
else

1
1
1
|
1
y

move the raised foot north one unit el

end if
else {the right foot is in the air}
if Ay < 0 then {right foot north of left foot}
lower the right foot
else
move the raised foot north one unit
end if
end if

- - - - - -
4

i e

<- - —

(a) (b)

so it was removed. The other generated abstract actions, one for each base level
action, remained. The results for the small rooms domain are shown in Figure 5.

When solving the larger world, shown in Figure 4 (b), we gave the agent
three additional abstract actions above what was used when solving the smaller
world. The first of these was a ‘stagger’ abstract action, shown in Table 5. This
abstract action is related to both the random abstract action and the walking
actions: it takes full steps, but each step is in a random direction. This improves
the exploration of the domain. The other two abstract actions move the agent
through all the rooms. One moves the agent clockwise through the world and the
other counter-clockwise. The policy for the clockwise abstract action is shown
in Figure 6. The counter-clockwise abstract action is similar, but follows a path
in the other direction around the central walls.

The results for this larger domain are shown in Figure 7. The various con-
stants were v = 0.99, N, = 40, N; = 40, N; = 1 and MAXSTEPS = 250. Addi-
tionally the coefficient on the policy code length in the MDL coding was modified
to be 10 instead of 20.

6.3 Discussion

There are a number of points to note about the TTree algorithm. Firstly, it gen-
erally takes TTree significantly more data than Prioritized Sweeping to converge,
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Fig. 5. Results from the walking robot domain with the four room world. (a) A plot of
expected reward vs. number of transitions sampled. (b) Data from the same log plotted
against time instead of the number of samples

Table 5. The ‘stagger’ policy for taking full steps in random directions

if Az < 0 then {the right foot is in the air}
if Az <0 then {left foot west of right foot}
move the raised foot one unit west
else if Az =0 then {right foot is same distance east/west as left foot}
if Ay < 0 then {left foot south of right foot}
move the raised foot one unit south
else if Ay =0 then {left foot is same distance north/south as right foot}
lower the right foot
else {left foot north of right foot}
move the raised foot one unit north
end if
else {left foot east of right foot}
move the raised foot one unit east
end if
else if Az =0 then {both feet are on the ground}
if Az =0 and Ay = 0 then {the feet are together}
raise the left foot
else
raise the right foot
end if
else {the left foot is in the air}
if Az =0 and Ay = 0 then {the left foot is directly above the right foot}
Move the raised foot north, south, east or west with equal probability
else
lower the left foot
end if
end if



Fig. 6. The clockwise tour abstract action. This is a policy over the rooms shown in

Figure 4 (b)
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Fig. 7. Results from the walking robot domain with the sixteen room world. (a) A plot
of Expected Reward vs. Number of Sample transitions taken from the world. (b) Data

from the same log plotted against time instead of

the number of samples
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Fig. 8. Plots of the number of states seen by Prioritized Sweeping and the number of
abstract states in the TTree model vs. number of samples gathered from the world.
The domains tested were (a) the Towers of Hanoi domain, and (b) the walking robot
domain with the sixteen room world. Note that the y-axis is logarithmic

although TTree performs well long before convergence. This is unsurprising. Pri-
oritized Sweeping is remembering all it sees, whereas TTree is throwing out all
trajectories in a leaf when that leaf is split. For example, all data gathered before
the first split is discarded after the first split.

However, TTree is significantly faster that Prioritized Sweeping in real time
in large domains (see Figures 1b, 5b and 7b). It performs significantly less pro-
cessing on each data point as it is gathered and this speeds up the algorithm.
It also generalizes across large regions of the state space. Figure 8 shows the
sizes of the data structures stored by the two algorithms. Note that the y-axis
is logarithmic. TTree does not do so well in small domains like the taxi domain
[6].

Given this generalization, it is important to note why we did not compare to
other state abstraction algorithms. The reason is because other state abstraction
algorithms do not have a temporal abstraction component and so cannot gener-
alize across those large regions. e.g. Continuous U Tree performs very poorly on
these problems.

The next point we would like to make is that the abstract actions help TTree
avoid negative rewards even when it has not found the positive reward yet. In the
walking robot domain, the agent is given a small negative reward for attempting
to move its legs in an illegal manner. TTree notices that all the trajectories
using the generated abstract actions receive these negative rewards, but that
the supplied abstract actions do not. It chooses to use the supplied abstract
actions and hence avoid these negative rewards. This is evident in Figure 5
where TTree’s expected reward is never below zero.

The large walking domain shows a capability of TTree that we have not em-
phasized yet. TTree was designed with abstract actions like the walking actions
in mind where the algorithm has to choose the regions in which to use each
abstract action, and it uses the whole abstract action. However TTree can also



Table 6. Part of the policy tree during the learning of a solution for the large rooms
domain in Figure 4 (b)

if £ < 78 then
if < 68 then
if y < 10 then
perform the loop counter-clockwise abstract action
else
perform the loop clockwise abstract action
end if
else
{Rest of tree removed for space}
end if
else
{Rest of tree removed for space}
end if

choose to use only part of an abstract action. In the large walking domain, we
supplied two additional abstract actions which walk in a large loop through all
the rooms. One of these abstract actions is shown in Figure 6. The other is
similar, but loops through the rooms in the other direction.

To see how TTree uses these ‘loop’ abstract actions, Table 6 shows a small
part of a tree seen while running experiments in the large walking domain. In
the particular experiment that created this tree, there was a small, —0.1, penalty
for walking into walls. This induces TTree to use the abstract actions to walk
around walls, at the expense of more complexity breaking out of the loop to
reach the goal. The policy represented by this tree is interesting as it shows that
the algorithm is using part of each of the abstract actions rather than the whole
of either abstract action. The abstract actions are only used in those regions
where they are useful, even if that is only part of the abstract action.

This tree fragment also shows that TTree has introduced some non-optimal
splits. If the values 78 and 68 were replaced by 79 and 70 respectively then the
final tree would be smaller.* As TTree chooses its splits based on sampling, it
sometimes makes less than optimal splits early in tree growth. The introduction
of splits causes TTree to increase its sample density in the region just divided.
This allows TTree to introduce further splits to achieve the desired division of
the state space.

The note above about adding a small penalty for running into walls in order
to induce T'Tree to use the supplied abstract actions deserves further comment.
The Taxi domain [15] has a penalty of —10 for misusing the pick up and put
down actions. It has a reward of 20 for successfully delivering the passenger. We
found TTree had some difficulty with this setup. The macros we supplied chose
randomly between the pick up and put down actions when the taxi was at the
appropriate taxi stand. While this gives a net positive reward for the final move

4 The value 79 comes from the need to separate the last column to separate the reward.
The value 70 lines up with the edge of the end rooms.



(with an expected reward of 10), it gives a negative expected reward when going
to pick up the passenger. This makes the abstract action a bad choice on average.
Raising the final reward makes the utility of the abstract actions positive and
helps solve the problem.

When running our preliminary experiments in the larger walking domain,
we noticed that sometimes TTree was unable to find the reward. This did not
happen in the other domains we tested. In the other domains there were either
abstract actions that moved the agent directly to the reward, or the random
abstract action was discovering the reward. In the walking domain the random
abstract action is largely ineffective. The walking motion is too complex for
the random action to effectively explore the space. The abstract actions that
walk in each of the four compass directions will only discover the reward if they
are directly in line with that reward without an intervening wall. Unless the
number of sample points made very large, this is unlikely. Our solution was to
supply extra abstract actions whose goal was not to be used in the final policy,
but rather to explore the space. In contrast to the description of McGovern
[16], where macros are used to move the agent through bottlenecks and hence
move the agent to another tightly connected component of the state space, we
use these exploration abstract actions to make sure we have fully explored the
current connected component. We use these ‘exploration’ abstract actions to
explore within a room rather than to move between rooms.

An example of this type of exploratory abstract action is the ‘stagger’ ab-
stract action shown in Table 5. We also implemented another abstract action that
walked the agent through a looping search pattern in each room. This search
pattern covered every space in the room, and was replicated for each room. The
stagger policy turned out to be enough to find the reward in the large walking
domain and it was significantly less domain specific than the full search, so it
was used to generate the results above.

7 Conclusion

We have introduced the TTree algorithm for finding policies for Semi-Markov
Decision Problems. This algorithm uses both state and temporal abstraction to
help solve the supplied SMDP. Unlike previous temporal abstraction algorithms,
TTree does not require termination criteria on its abstract actions. This allows it
to piece together solutions to previous problems to solve new problems. We have
supplied both a proof of correctness and empirical evidence of the effectiveness
of the TTree algorithm.
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