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Abstract Communication among a group of robots should in principle improve
the overall performance of the team of robots, as robots may share their
world views and may negotiate task assignments. However, in prac-
tice, effectively handling in real-time multi-robot merge of information
and coordination is a challenging task. In this paper, we present the
approach that we have successfully developed for a team of commu-
nicating soccer robots acting in a highly dynamic environment. Our
approach involves creating shared potential functions based on shared
positions of relevant obstacles in the world. The biases introduced in
the potential functions are general and they could in principle be pro-
vided by external sources, such as a human or robot coach. We provide
controlled experiments to analyze the impact of our approach in the
overall performance of a robot team.
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1. Introduction
Many open questions remain in the areas of multi-robot coordination

and task assignment. How should a group of robots divide tasks among
its members? Once roles have been assigned to the robots, how should
they position themselves to fulfill their roles without interfering with
their teammates. What happens if a robot fails or if the environment
changes so that a different robot is more suitable for the task?

In this paper, we present a framework for task assignment and co-
ordination for a group of robots in a soccer domain. We show how
heuristic bidding functions that use globally shared information may
be used to determine which robot is the most suitable for each task.
We also describe how obstacle avoidance may be combined with coor-
dination through the use of artificial potential fields. We have put our
algorithm to the test while participating in the Sony legged league at the
RoboCup’02 competition. We came in first place in the competition out
of 20 participating teams. This performance was certainly the result of
many contributions of our complete team (Veloso et al., 2002). Although
during the games we could clearly observe the successful multi-robot co-
ordination, it was hard to quantify the value of this specific component.
In this paper, we present a focused experimental evaluation of our frame-
work in a penalty shot situation that demonstrates the effectiveness of
communication and coordination.

Our approach is based on the use of shared potential functions. Arti-
ficial potential fields have long been used for obstacle avoidance (Khatib,
1985). Others have extended this idea to allow a group of robots to as-
semble and maintain formations using only local information in the po-
tential calculation (Balch and Arkin, 1997; Balch and Hybinette, 2000).
Domain specific heuristics may also be encoded in potential fields to po-
sition robots for particular roles (Castelpietra et al., 2001; Veloso et al.,
1999; Weigel et al., 2001). For example, these heuristics may guide
robots to locations near an opponent’s goal or place them in a good
position to receive a pass. We combine these ideas with distributed
task allocation by continuous bidding (Castelpietra et al., 2001; Mataric
and Sukhatme, 2001) to create a system where obstacle avoidance is
combined with coordination through dynamic potential functions that
change based on the role each robot is assigned though the distributed
task allocation.

2. Background - The RoboCup Domain
The legged league of Robocup (Kitano et al., 1997), the robot soc-

cer world championship, provides a challenging test bed for multi-agent
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research. Two teams of quadruped robots compete for two ten minute
halves on a small soccer field. The hardware is the same for each team:
the commercially available Sony Aibo ERS210 Entertainment Robot.
The rules specify that each team must be fully autonomous; no off board
computation or human intervention is allowed. For Robocup-2002, the
domain was extended to create additional research opportunities. The
number of agents on each team was increased from three to four. Wire-
less communication, in the form of wireless Ethernet cards, was added.
Also, the size of the field was increased by 50% in both directions. This
was a major change; formerly robots could detect the ball from across
the length of the field. After the size increase this was no longer possible.

The challenges that arise during the game can be divided into two cat-
egories: challenges that may be addressed from a single robot perspective
and those that arise due to the multi-agent nature of the domain. Single
agent tasks include localization, detecting other robots, detecting the
ball, as well as motion control.

Robots rely entirely on vision for sensing in these single agent
tasks (Bruce et al., 2002). To simplify matters, the world is color coded.
Each robot is dressed in either a red or a blue uniform. The ball and
goals are also color coded. To aid localization, six distinct, brightly
colored markers are placed around the edge of the field. Despite these
aids, soccer is still a difficult task from a single robot perspective; visual
processing, the behavior system, and motion control must all run in real
time on the same processor (Lenser et al., 2001; Uther et al., 2002). And,
as with any physical system, sensor readings and motions commands are
rife with noise and uncertainty. The presence of other agents compounds
the difficulty of these tasks.

Including other agents fundamentally changes the domain. With other
agents, the world is no longer static; even if the robot does not act, the
world will continue to change around it. In addition to changing the
environment, other agents can also interact directly with the robot. To
cite a few examples of this, two robots may become entangled, causing
motion commands to have unanticipated effects; the referee may pick up
the robot and move it across the field to enforce a penalty; other robots
may obscure the ball or the markers that are used for localization. The
addition of other robots makes the world dynamic and increases the
amount of uncertainty, but perhaps more importantly, the other agents
have their own sets of goals. In the case of the agents on the other team,
these goals are diametrically opposite to the goals of the agent.

Robocup is an adversarial domain; the environment [in the form of
the other team] actively works against the agents. We treat the other
team as a part of the environment because we cannot control them di-
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rectly. The adversarial nature of the domain changes the way agents
must approach action selection. In addition to considering the expected
payoff of actions, agents must also consider the worst possible outcome;
the environment will attempt to steer the game in the direction of that
worst case scenario. Agents must choose actions that minimize risk, even
if choosing those particular actions reduces their expected payoff.

3. Task Assignment and Coordination
As described in the introduction, each team consists of four robots

with identical capabilities; we are solving a homogeneous agent task
assignment problem. One of these robots serves as the goalie. It is the
only robot with a fixed role. The other three robots play offense, but the
rules do not specify fixed positions for them. We allow these three robots
to dynamically switch between predefined, mutually exclusive roles.

Figure 1. On the left, the primary attacker prepares to shoot while two other robots
position themselves in supporting positions. On the right, three robots spread around
the ball while the goalie clears it from the defense zone.

These roles are a primary attacker, which approaches the ball and
attempts to move it upfield; an offensive supporter, which moves up
the field from the primary attacker and positions itself to recover the
ball if the primary attacker misses its shot on goal; and a defensive
supporter, which positions itself down the field from the primary attacker
to recover the ball if the other team captures it. Figure 1 shows the
robots positioning themselves in these roles.

The three agents negotiate among themselves using a predefined pro-
tocol so that a single robot fills each role. In addition, they coordinate
with the goalie to avoid approaching the ball while the goalie is clearing
it from the defense zone and they avoid collisions with their teammates.
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Before providing the details of how the different roles are assigned and
how the robots fill those roles, we briefly describe information sharing
between teammates.

3.1 Shared information
In our framework, the robots must communicate in order to coordi-

nate effectively. Coordination methods that rely on local information
alone are not feasible in this domain since there are many cases where
a robot cannot observe the ball or its teammates. Since a known, small
number of robots are collaborating, we chose to use a system of broadcast
messages to share information. This approach does not scale to large
numbers of robots, but it is very simple to implement and understand.

Twice a second, each robot broadcasts a message to its teammates.
This message contains the robot’s current position and ball location
estimates as well as uncertainty estimates on those values. The messages
also contain flags indicating if the robot is the goalie and if the robot
currently sees the ball. The goalie flag is needed for role assignment
since the goalie can never play a different position. The flag indicating
whether or not the robot currently sees the ball is used when building a
shared world model to avoid incorporating evidence about ball location
from robots that do not see it.

A detailed explanation of the shared information and how this in-
formation is combined may be found in (Roth et al., 2003). Next we
describe how this shared information is used to assign roles to different
agents and how the agents fill those roles.

3.2 Role assignment
The three robots playing offense need to be assigned to the roles of

primary attacker, offensive supporter, and defensive supporter. Role
assignment is done in a fixed, total order. The primary attacker is
chosen first, followed by the defensive supporter, and finally the offensive
supporter is picked. This order is designed to make the system more
robust; if one or two of the robots fails, the remaining member(s) of the
team can carry on playing.

All of the robots use a common set of functions to calculate real val-
ued bids for each task. These functions encode heuristic information
about the world to return an estimate of how suitable the robot is for a
particular task. For example, the bid function for the primary attacker
activation takes ball proximity and the relative orientation of the op-
ponents’ goal into account. Robots first calculate their own suitability
using local information from their world models and then they use the
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same function to calculate the bids of their teammates using only the
shared information provided by each teammate. It is important to note
that only the reported information is used for calculating teammates’
bids; in effect the agent doing the calculation is putting itself into the
shoes of the agent whose bid is being calculated.

Once each robot calculates the bids for itself and each of its team-
mates, it compares them. If it has the highest bid for the role being
assigned, it assumes that role. If it was not the winner, it assumes that
the winning robot will take up the role and performs calculations for the
next role in the list. The winners of previous auctions are not consid-
ered in subsequent auctions for different roles; they have already been
assigned a task. In principle, all of the robots are performing the same
calculation on the same shared data, so they should arrive at the same
result. In practice, no synchronization is provided, so it is possible for
teammates to calculate different bids for each other due to factors such
as network delays and transmission errors. To address this, hysteresis is
added to the system. Once a robot takes a particular role, it does not
relinquish that role for a short time - on the order of seconds.

Another question is: why broadcast so much information? It seems
wasteful to broadcast position estimates instead of a real valued bid.
However, robots must broadcast their location and ball position esti-
mates anyway. This allows obstacle avoidance and aids ball discovery
when teammates or the ball are not visible.

We present a bidding function to calculate the robots’ activation for
the primary attacker role as a concrete example. Bid functions for other
roles may be designed in a similar manner and there are many other
possible functions that could be used for the primary attacker auction.
For example, it might be desirable to take localization uncertainty into
account in a principled way. This particular function is designed to
produce high bids when robots are close to the ball and also to take
into account how well lined up the robot is to kick the ball into the
opponent’s goal.

Bid =
θgoal

π︸ ︷︷ ︸
angular component

+(1 − min(1, dball))︸ ︷︷ ︸
distance component

(1)

In this equation, θgoal is the angle formed between the line running
from the robot to the ball and the line from the ball to the goal. When
θgoal equals π, the robot is perfectly lined up to kick the ball into the
opponents’ goal. The dball parameter is the distance from the robot to
the ball in meters. This distance is capped at 1 meter.
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Figure 2. A contour plot of the potential functions used by the offensive and de-
fensive supporters to position themselves. Darker shading corresponds to lower areas
of the surfaces; the robots follow the gradient down to these minimum values.

3.3 Coordination
The robots use the same mechanism for both coordination and obsta-

cle avoidance. They overlay a potential field over the environment and
sample local points in the field to approximate its slope at their current
location. They follow the gradient of the potential field until they reach
a local minimum. The components of the field are designed such that
local minimums arise at positions from which the robots can support
the primary attacker. In the case of the offensive supporter, the field
guides the robot to a good position to receive passes or recover the ball
if the shot on goal goes wide. In the case of the defensive supporter,
the gradient guides the robot to a position where it blocks its own goal
and can recover the ball if it is intercepted by the opposing team. The
primary attacker does not make use of the potential field; it always seeks
out the ball and counts on its teammates to move out of its way instead
of avoiding them.

The potential field is the sum of several linear components. Each
of these components either represents heuristic information about the
world, such as the offensive supporter should not block the primary at-
tacker’s shot on goal, or obstacle information, such as repulsion terms
from the walls and other robots. Typically the components of the po-
tential functions are bounded at zero. This makes the effect of the terms
local and helps prevent undesirable interactions between terms.

Currently only teammates are included in the list of robots to avoid
due to the difficulty of perceiving other robots. Teammates report their
own positions via the wireless network; since opponents do not do this,
high fidelity information about their locations is not available. However,
this is a perceptual problem - the composite nature of the functions
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makes it trivial to add terms for opponents as soon as the perceptual
system is able to provide that information.

Depending on their supporting role, the robots may use different sub-
sets of the components. For example, the offensive supporter does not
use the component that guides the robot to positions between the ball
and its own goal - that heuristic information is not applicable when
filling an offensive role.

Next we review the individual components of both the offensive and
defensive supporters’ potential fields. In the following equations cn in-
dicates a positive constant and kn indicates a positive slope.

Pwall = max(0, c1 − k1 · dwall) (2)

The wall potential term encodes a linear repulsion from the walls and
the team’s own defense zone; only the goalie on each team is allowed to
be in the defense zone. c1 is a positive base potential for when the robot
is at the wall. The potential falls off linearly with the distance of the
robot from the wall with a slope of k1. This term is shared by both the
offensive and defensive supporters.

Pball = ‖c2 − dball‖ · k2 (3)

The ball potential term guides the offensive supporter to a position
that is an equilibrium distance, c2, away from the ball. The potential
increases linearly with a slope of k2 as the robot moves away from the
equilibrium distance.

Pteammate = max(0, c3 − k3 · dteammate) (4)

The teammate repulsion potential is a positive value that falls off
linearly with distance. As with wall repulsion, this term is shared by
both types of supporter.

Pforward bias = max(0, k4 · dbehind ball) (5)

The forward bias potential guides the offensive supporter to a position
parallel to or in front of the ball. The dbehind ball parameter encodes how
far the offensive supporter is down field from the ball.

Pdefensive bias = k5 · dfrom goalline (6)

The defensive bias potential is analogous to the forward bias only
it acts on the defensive supporter. It forces the robot to remain in a
position close to its own goal; it increases in value linearly as the robot
moves up the field away from the goal line.
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Pball corridor = ‖c6 − dshot path‖ · k6 (7)

The ball corridor potential encodes the heuristic information that the
offensive supporter should not block shots on the goal, but it should also
position itself close to the path taken by the ball in order to recover the
ball if it stops before reaching the goal. c6 represents the equilibrium
distance of the agent from the ball path. dshot path is the actual distance
of the agent from the path. The shot path is defined as the line segment
from the ball to the center of the opponent’s goal line. The offensive
supporter is the only robot that uses this potential.

Pblock goal = dblock path · k7 (8)

The block goal potential guides the defensive supporter to a position
on the line between the ball and its own goal. dblock path is the distance
between the robot and the line segment running from the ball to the
center of the robot’s goal line.

Pside bias = max(0, k8 · offsetrobot ·
offsetball

1
2 · widthfield

) (9)

The side bias term applies only to the offensive supporter. It encodes
the fact that the robot should position itself across the field from the
primary attacker. The offset terms represent the offset of either the
ball or the robot from the line drawn between the centers of the two
goals. Notice that this is not a distance - the offset has a negative value
for one half of the field.

4. Experimental Results
In order to quantify the difference that coordinations makes, we tested

how coordination affects the performance of the robots in a penalty shot
domain. In these experiments, a robot, or a team of robots, attempted
to score on an empty goal. No opponent robots were used, which means
that while the environment was dynamic and uncertain, it was not adver-
sarial; the world did not actively work against the robots while they were
performing the task. We did not use opponents to reduce the amount
of noise in the data and the time required for each trial.

To test how long it took the robots to score, we marked 30 locations
on the field. The 30 locations were divided evenly between each half
of the field and within each half the locations were distributed in an
approximately uniform fashion. Each marker was assigned a unique
number so that the locations could be visited in a fixed order. The same
order was used for all experiments.
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Since the goal of the experiment was to test how quickly the robots
scored in general, we did not want to specify their starting position.
For this reason the robots were not moved after scoring a point; their
starting position for each point was where they had scored from during
the previous point. (Before scoring for the first time, they started on
their own goal line) This means that samples are not independent, but it
does mimic what happens in real games when the goalie of the opposing
team clears the ball to an unknown place on the field.

We ran three separate experiments. The first was a single robot per-
forming alone to provide a baseline. Next, three robots without coordi-
nation performed the task followed by three robots with coordination.
Each experiment began with the robot(s) on their own goal line. The ball
started on the first marker. The robots were unpaused and the length
of time it took for them to score was recorded. As soon as the robots
scored, they were paused, the ball was moved to the next marker in the
sequence, and then the robots were restarted without being moved. This
procedure was repeated until the ball had started from each of the 30
markers. If the ball left the field or entered the penalty region, it was
immediately replaced in legal territory.

Figure 3 shows cumulative distributions of the time to score for each of
the three trials. The minimum times to score for all three trials were very
similar; for these points nothing went wrong. The robots approached the
ball, captured it, and kicked it into the goal on their first attempt. On
the other hand, there is a large difference between the maximum values
for the single robot versus the team without coordination and again for
the maximum values between the robots with coordination versus the
robots without coordination. The means and standard deviations for
the distributions are listed in table 1.

We uses a Wilcoxon signed rank test to determine whether or not
the distributions were the same. The results of these tests are shown in
table 2. There was a significant difference between the case with coor-
dination and the case without it. There was also a significant difference
between the single robot case and the case without coordination. While
the mean for the trial with three robots using the coordination frame-
work was lower than the mean for the single robot case, there was not a
statistically significant difference in the distributions from these trials.

5. Discussion and Conclusions
Our results show that coordination is vital for multi-agent systems.

A stronger result would have shown the case with three coordinating
robots out performing the single robot case, however, our results do
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Figure 3. Cumulative distributions of the time between points for the three trials.

Table 1. Time to score for the three trials

mean (sec) std. dev.

Single Robot 93.48 62.38

Three Robots (No coordination) 156.40 125.01

Three Robots (Coordination) 78.89 52.58

Table 2. P values from the Wilcoxon signed rank test to determine if two distribu-
tions are the same

Distributions P

Single Robot No coordination 0.043

Single Robot Coordination 0.221

Coordination No Coordination 0.006

show the extra robots do not decrease performance in the non-adversarial
test domain. Even without increasing performance in the penalty shot
domain, the extra robots do make the system more robust against failure;
if a single robot fails, two other remain to complete the task.

In the future, we would like to investigate what happens in an adver-
sarial domain by adding either a goalie or a single robot to the opposing
team. We hypothesize that the difference between the single agent case
and the three robots with coordination case would be widened. That is,
three robots should be able to fare better against an opponent than a
single robot.
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