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Abstract— In principle, a robot member of a multi-robot team
with teammates that can communicate their own sensing can build
a more accurate world model by incorporating shared information
from its teammates than by relying only on its own sensing. How-
ever, in practice, building a consistent world model that combines a
robot’s own sensing with information communicated by teammate
robots is a challenging task. In this paper, we present in detail
our approach to constructing such a world model in a multi-robot
team. We introduce two separate world models, namely anindi-
vidual world modelthat stores one robot’s state, and ashared world
modelthat stores the state of the team. We present procedures to
effectively merge information in these two world models. We over-
come the problem of high communication latency by using shared
information on an as-needed basis. The success of our world model
approach is validated by experimentation in the robot soccer do-
main. The results show that a team using a world model that in-
corporates shared information is more successful and robust at
tracking a dynamic object in its environment than a team that
does not use shared information. The paper includes a compre-
hensive description of the data structures and algorithms, as im-
plemented for our CM-Pack’02 team, which because the RoboCup
2002 world champion in the Sony legged-robot league.

I. I NTRODUCTION

The need to operate under partial observability and interact
with objects in the environment makes the creation of a world
model a necessity for most robotic systems. In a multi-robot
system, where several agents interact simultaneously with each
other and shared portions of the environment, the need for a
consistent view of the world is even greater. For systems like
the ones described in [6] and [7], where the primary goal of the
system is to cooperatively map an area using several robots, the
challenge is to merge information from several agents coher-
ently. However, these observations do not need to be merged in
real-time, as the environment tends to be static.

In adversarial domains, such as robotic soccer, the environ-
ment is dynamic. In addition to knowing the positions of its
teammates to facilitate cooperation, the robot must be able to
quickly locate the ball and avoid adversarial agents. When us-
ing local vision as the primary sensor, soccer-playing agents are
usually unable to observe their entire environment. Unless com-
munication between teammates is available, each robot must
model its environment without input from other agents. Until
recently, it was common for teams competing in RoboCup to
build their world models without using shared information. An
example of world model design without communication for is

presented by [1] in their description of the 1999 RoboCup Agilo
RoboCuppers mid-sized robot team. In the Sony legged-robot
league, the hardware for communication was not available on
the robots until 2002, so all teams were forced to rely entirely
on local sensing to build their world models. [10] describes the
pre-communication implementation of the CM-Pack’01 legged
robot team.

The advantages of utilizing communication when it becomes
available are obvious. The Agilo RoboCuppers added commu-
nication to their system for the RoboCup 2000 competition. By
using a Kalman filter to fuse information about the locations
of objects in the environment, they enabled each robot on their
team to use a global world model as if it were its own local
model [4]. Another highly successful mid-sized robot team, CS
Freiburg, designed a system where each robot maintains a lo-
cal world model, but contributes information to a global world
model on a single off-board server. This server then sends
global world model information back to the individual team-
mates, allowing them to update their state of the world [3], [2].

The focus of this paper is to present our solution to the prob-
lem of building a world model for a multi-robot team within the
context of the RoboCup competition. We assume for the pur-
poses of this implementation that the robots are able to sense
task-relevant objects such as the soccer ball, teammate robots,
and opponent robots, but the techniques that we describe are
applicable to any domain where a robot interacts with a com-
bination passive objects that can be sensed and manipulated,
intelligent agents that can be detected but with whom the robot
cannot communicate, and intelligent agents that can communi-
cate with the robot for the purpose of sharing information.

II. SOURCES OFKNOWLEDGE FORBUILDING STATE

The 2002 AIBO robots have two sources of information that
are used to build state: vision and communication. Each robot
is equipped with a CCD camera located at the front of its head.
All relevant objects in the world are color-coded, allowing the
unique recognition of an object by its color. The camera in-
formation is processed as described in [10], to produce output
in the form of (x, y, θ), in the robot’s local coordinate system,
for all of the objects in the current field of view. The objects
that the vision system is able to recognize are six color-coded
markers at known locations around the field, two goals at either
end of the field, the orange ball, and the other robots, which are
either blue or red.
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Fig. 1. This is one the Sony AIBO robots for which this world model was
implemented. The round aperture at the tip of the robot’s nose is the CCD
camera that is used to capture visual sensor data.

Fig. 2. This image shows two AIBO robots on a regulation-sized field. The
vertical cylinders in the corners of the field are the color-coded markers that are
used by the robots for localization.

The known locations of the markers observed by the vision
module are used by each robot to compute its own location on
the field, using the method detailed in [5] and [9]. The output
of the localization module is two 2-dimensional Gaussian dis-
tributions, one for the robot’s position and one for the robot’s
heading. Each Gaussian distribution is comprised of:

• µ, the mean, a 2-d vector of (x, y) position
• σ, the standard deviation, a 2-d vector of (σx, σy)
This year, wireless communication, in the form of 802.11

ethernet, was added by Sony as a standard feature of the AIBO
robots. This communication, although it has low bandwidth
and high latency, allows the sharing of state information be-
tween teammates. This paper presents our solution to utilizing
communicated information effectively, despite being unable to
synchronize data streams from different robots due to high la-
tency, and without relying on an external server for centralized
information processing.

Using the information acquired by each robot through its
own vision system and the information communicated be-
tween teammates, we introduce an approach for representing
the world with two separate world models: an individual world
model that describes the state of one robot, and a shared world
model that describes the state of the team.

III. I NDIVIDUAL WORLD MODEL

Each robot maintains for itself an individual world model that
contains its perception of the state of the world. The individual
world model is a data structure comprised of:

• wm position, the robot’s position
• wm heading, the robot’s heading
• wm ball, the location of the ball
• wm teammate, a vector ofn teammate positions
• wm opponent, a vector ofm opponent positions

Each element of the individual world model is stored in global
coordinates as a 2-dimensional Gaussian structured to contain
the same format of information as the Gaussian parametric dis-
tributions described in Section II. We do this to ensure that data
representation remains uniform across all the modules of the
system. Each object also has associated with it a timestamp,τ .

Each element of the individual world model is updated by
information either from the vision module, the communication
module, or a combination of the two. The robot’s own position,
wm positionandwm headingcomes directly from the localiza-
tion module, which in turn receives its input solely from vision.
The opponent position vector,wm opponent, is also determined
entirely from vision information. The teammate position vec-
tor, wm teammate, however, is determined entirely from shared
information communicated by the teammate robots. Although
the vision module returns positions for robots of both colors,
making it possible to extract some teammate information from
the vision, this information is so noisy that it is discarded en-
tirely in favor of the more accurate shared information. The
position of the ball,wm ball, is calculated by combining its po-
sition as returned by the vision module with information that is
shared between teammates.

The individual world model is updated by calling routine de-
scribed in Table I.

ProcedureUPDATEWORLDMODEL(robot position, robot angle,
ball pos, op pos, τcurrent)

UPDATELOCALIZATION (robot posn, robot ang)
wm position= robot position
wm heading= robot angle

UPDATEV ISION(ball pos, op pos, τcurrent)
UPDATESHAREDINFORMATION(τcurrent)
UPDATETIME(τcurrent)

TABLE I
INDIVIDUAL WORLD MODEL UPDATE PROCEDURE

The procedure that updates the world model to account for
new localization information simply copies the localization in-
formation into wm position and wm heading. This requires
no processing, as the input data from the localization module,
robot positionandrobot angle,is already in the format used by
the world model. Additionally, because the objects in the indi-
vidual world model are stored in global coordinates, they do not
need to be shifted to account for the change in robot position.

A. Update from Vision

Both the ball position,wm ball, and the opponent position
vector, wm opponent, are updated from the information re-
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turned by the vision module, as described in Table II. The vi-
sion module returns the observed ball position,ball pos, and a
vector of observed opponent positions,op pos. The update is
comprised of two major steps: updating the ball position, and
updating the position of opponents. Because the vision module
returns the locations of objects in coordinates local to the robot,
whereas the positions are stored in global coordinates in the
world model, it is necessary to convert all object positions into
global coordinates. If the vision module reports that the ball
has been seen, it is merged with the old ball position, using the
method detailed in [8]. The merge method takes advantage of
the property of Gaussian distributions that states that the prod-
uct of two Gaussians is also a Gaussian. By multiplying the
two position estimates, with their appropriate standard devia-
tions, we end up with an estimate that is a weighted average
of the old position and the new observation. Because we grow
uncertainty with time, old information is given less weight than
new information that starts with the default small standard de-
viation, SMALL ERROR, allowing us to converge to the correct
ball position with relatively few observations. However, by not
discarding the old ball position out of hand, we are able to main-
tain a smoother estimate of ball position that does not fluctuate
drastically as a result of spurious sensor readings. When merg-
ing the ball positions, it is important to limit the standard devia-
tion, σwm ball, to no less than the default minimum confidence
value,SMALL ERROR, to prevent it from becoming vanishingly
small.

It should be pointed out that in earlier implementations of
the individual world model, we experimented with updating the
ball position without merging with old information. Instead, the
position reported by vision was trusted immediately. Although
this method allowed for faster response time when locating the
ball, it was subject to noise due to sensor error, and was dis-
carded after experimentation.

The vision module returns a vector of the positions of all
opponent robots that were observed. However, as the robots are
identical, there are no visual characteristics that distinguish one
opponent robot from another. Instead, we developed a method
that attempts to match a new observation of an opponent robot
to a previously observed opponent and then updates its location.
If no matching robot is found to be withinOP THRESHOLD, the
maximum allowable distance, of the new observation, the oldest
position in the opponent vector is merged with the new value.

B. Update from Shared Information

The ball position and the teammate position vector are up-
dated, as in Table III from information stored in the shared
world model. The format of the shared world model is de-
scribed in Section IV.

As explained in Section II, the communication latency be-
tween robots is extremely high. Each robot receives informa-
tion from its teammates, on average, every .5 seconds, but the
latency was observed to be as high as 5 seconds. Additionally,
because timestamps associated with the data are local to each
robot and cannot be matched between robots, it is impossible to
integrate shared information via a Kalman filter, as was done in
[4]. Because of these restrictions, we use the shared ball infor-
mation sparsely, and only when the ball cannot be easily located

ProcedureUPDATEV ISION(ball pos, op pos, τcurrent)
Update the ball position.

if ball pos 6= NIL
µglobal = µwm position + ROTATE(µball pos, µwm heading)
σglobal = SMALL ERROR
MERGE(wm ball, {µglobal, σglobal})
τwm ball = τcurrent

Update the opponent vector.
for i = 1 to SIZE(op pos)

µglobal = µwm position + ROTATE(µop posi , µwm heading)
j = arg mink ‖µwm opponentk − µglobal‖
dist = ‖µwm opponentj − µglobal‖
if (dist < OP THRESHOLD)

σglobal = SMALL ERROR
MERGE({µglobal, σglobal}, wm opponentj)
τwm opponentj = τcurrent

else
j = arg maxk(τcurrent − τwm opponentk )
σglobal = SMALL ERROR
MERGE({µglobal, σglobal}, wm opponentj)
τwm opponentj = τcurrent

TABLE II
PROCEDURE TOUPDATE FROMV ISION

by an individual robot. If the ball has not been observed by the
robot for a period of time greater thanτthreshold, the best avail-
able ball location is requested from the shared world model,
using theGETBALL LOCATION function described in Section
IV.

Because the vision information that is returned for observa-
tions of robots, both teammates and opponents, is extremely
noisy, it is always preferable to use the position provided by
each teammate, rather than attempting to integrate the two
sources of information. In the update, the position of each team-
mate is requested from the shared world model and stored in
wm teammate.

ProcedureUPDATESHAREDINFORMATION(τcurrent)
If the ball has not been seen in a long time, request its
location from the shared world model.

if τcurrent − τwm ball > τthreshold

sharedball = GETBALL LOCATION(τcurrent, robot id)
if sharedball 6= NIL

wm ball = MERGE(wm ball, sharedball)
τwm ball = τcurrent

Get teammate location from the shared world model
for i = 1 to n

wm teammatei = GETTEAMMATE LOCATION(i)

TABLE III
PROCEDURE TOUPDATE FROMSHARED INFORMATION

C. Update from Time

Because the robot soccer environment is dynamic, we expect
objects to move over time from where the robot last observed
them. However, we present here a position-only world model
that does not attempt to track velocities, although we intend
to investigate velocity-tracking in the future. To account for
unobserved motion of objects without knowing their velocities,
we grow our uncertainty for any object in the individual world
model that was not observed in the last time step.
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ProcedureUPDATETIME(τcurrent)
If any object has not been updated this time period, add
some error to its standard deviation.

if τwm ball 6= τcurrent

σwm ball = σwm ball+ SMALL ERROR
for i = 1 to m

σwm opponenti = σwm opponenti+ SMALL ERROR

TABLE IV
PROCEDURE TOUPDATE FORTIME

D. Accounting for Localization Changes

The localization module and the individual world model are
updated at different times during the system execution, making
it necessary to correct the world model to account for changes
in localization information. When the robot executes a localiza-
tion update due to seeing a marker, its estimate of its own posi-
tion changes, even though its physical position has not changed.
To ensure consistency between the individual and the shared
world models, objects in both world models are stored in global
coordinates. However, this means that changes in the robot’s
knowledge of its position caused by seeing a marker also make
it appear to the robot as if the other objects in its environment
have suddenly changed position with respect to itself. Because
we need to know the position of the ball with high accuracy at
all times, it is necessary to correct the position of the ball to ac-
count for this shift immediately. The procedure in Table V was
implemented to correct for this source of error.

ProcedureSHIFTBALL ()
Getrobot positionandrobot angle, the current robot

position and heading.
Shift the ball position into local coordinates:

µto local = ROTATE(µrobot position,−µrobot angle)
µwm ball = µwm ball − µto local

Do the localization update from the sensor reading.
Get the updated robot position and heading.
Shift the ball back into global coordinates:

µto global = ROTATE(µwm ball, µrobot angle)
µwm ball = µrobot position− µto local

TABLE V
CORRECTION FORLOCALIZATION SHIFT

IV. SHARED WORLD MODEL

The shared world model is a fully distributed data structure,
with each robot maintaining its own on-board copy. The con-
tents of each robot’s shared world model are:

• swmposition, a vector ofn teammate positions
• swmball, a vector containing each teammate’s estimate of

the ball position
• swmgoalie, a vector containing a flag for each teammate,

indicating whether or not that robot is the goal keeper
• swmsawball, a vector containing a flag for each team-

mate, indicating whether or not that robot saw the ball in
the last time step

The last flag,swmsawball is important because it prevents
other robots from incorporating old or second-hand information
into their individual world models when they receive an update

from this robot. Each element inswmpositionandswmball is
made up of a 2-dimensional Gaussian and a timestamp,τ , as in
the individual world model.

Updates to the shared world model occur asynchronously,
with each robot updating its model whenever it receives a
broadcast from a teammate. This means that communication
latency or dropped messages may cause the shared world model
contents to differ among robots. By not requiring synchroniza-
tion between teammates, we avoid the communication overhead
required to synchronize. Each robot broadcasts its own shared
information at a rate of 2 HZ. Although this seems slow, it is due
in part to bandwidth limitations. Additionally, because the high
and variable latency prevents us from using the shared informa-
tion for fine-grained control, there is no reason to broadcast at
a higher rate.

The shared world model also contains two methods (Table VI
and Table VII) that are relevant to this paper. These methods
are used by the individual world model to access information
stored in the shared world model. TheGETTEAMMATE LO-
CATION function is straightforward; it returns the position of
the requested teammate as it stored in the shared world model.
TheGETBALL LOCATION procedure determines which, among
all the ball positions estimates reported by the team members,
is the ’best’ estimate of the true ball position. In the future,
we may find it worthwhile to attempt to merge ball estimates
as they are reported by different teammates. However, in the
current implementation, we attempt to select the ball estimate
that has the lowest uncertainty, and which has been observed
within a reasonable period of time,τthreshold. We do not allow
a robot to retrieve its own reported estimate from the shared
world model, as this would only reinforce the robot’s belief
without adding new information. Additionally, we require the
uncertainty to be belowσthreshold, a maximum uncertainty.

ProcedureGETBALL LOCATION(τcurrent, robot id)
ball = NIL
bestconfidence= σthreshold

for i = 1 . . . n
if i 6= robot id

if ISVALID (i, τcurrent)
if σswm balli < bestconfidence

bestconfidence= σswm balli

ball = swm balli
return ball

Procedure ISVALID (i, τcurrent)
if i < 0 or i > n

return FALSE
if τcurrent − τswm balli > τthreshold

return FALSE
if σswm balli > σthreshold

return FALSE
if swm sawballi 6= false

return FALSE
return TRUE

TABLE VI
PROCEDURE TOGET THE BEST BALL LOCATION
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ProcedureGETTEAMMATE LOCATION(i)
return swm positioni

TABLE VII
PROCEDURE TOGET THE LOCATION OF A TEAMMATE

V. EXPERIMENTAL RESULTS

The shared and individual world models presented in this
paper were used by the CM-Pack’02 legged-robot team in the
2002 RoboCup competition that took place in Fukuoka, Japan.
The team performed extremely well, winning the competition
to become the world champion. In order to experimentally ver-
ify the efficacy of the world model separately from the overall
performance of the team in competition, we compared the be-
havior of a robot team using this world model, constructed with
both sensor and shared information, to a robot team using only
sensor information for determining ball location. We had orig-
inally intended to use an overhead camera to record the posi-
tion of the ball on the soccer field and compare it to the robot’s
estimate of the ball position. However, while running that ex-
periment, we discovered that the robots themselves physically
occlude the ball with their bodies, preventing it from being seen
by the overhead camera for as many as 36% of the time steps
recorded. Our current system for tracking the ball from over-
head does not account for ball occlusion, thereby reducing its
efficiency for data tracking. We will be enhancing our global
vision system in the future to account for this problem.

The robot behaviors for this system are comprised of many
behavior states, some of which can execute simultaneously.
Each robot transitions between states due to the contents of
its individual world model, the output of its localization mod-
ule, and the output of several potential functions, described in
[11]. During the execution of most behaviors, such as posi-
tioning itself on the field or walking towards the ball, the robot
opportunistically observes the world, updating its world model
and localization as it sees markers or objects. If its uncertainty
about its position or the position of the ball grows above a cer-
tain threshold, the robot executes an active localization behav-
ior, where it turns its head in the expected direction of markers
or the ball, in the hope of observing relevant features. This
behavior executes concurrently with other robot behaviors and
does not cause interruption. However, if the ball has not been
observed for a long time, and no other information has allowed
the robot to reduce its uncertainty about ball position, the ball
is considered “lost”, and the robot transitions into a behavior
called SEARCHSPIN. The threshold of time without know-
ing the position of the ball that triggers a transition into the
SEARCHSPIN behavior was chosen to be approximately 5
seconds. In this behavior, which interrupts the robot’s previous
behavior, the robot spins in place, attempting to locate the ball
on the field. Because this behavior interrupts other behaviors,
we seek to minimize its occurrence.

In the experiment that we conducted, we ran two teams, each
comprised of three robots, in several soccer games against each
other. The teams used identical software, and each had two at-
tacker robots and a goal keeper. Each game lasted around 10
minutes, during which the ball was replaced in the center of the
field if a goal was scored, but the robots were not moved back

time # SEARCHSPIN
(min) SEARCHSPIN per minute

SHARED 87.35 192 2.198
NO SHARED 88.84 418 4.705

TABLE VIII
COMPARING HOW OFTEN THE BALL IS LOST BY COUNTING TRANSITIONS

INTO THE SEARCH SPIN BEHAVIOR, WITH AND WITHOUT SHARED

INFORMATION

to their starting positions. After each 10 minute trial, the robot
batteries were changed, and the robots were restarted from their
initial configurations. Each attacker robot wrote to an on-board
log file the time for which it was active and each instance when
it transitioned into the SEARCHSPIN behavior. We were only
interested in the attacker’s logs because the goal keeper robots
are not permitted to execute the SEARCHSPIN behavior. We
ran two trials each of fully functional teams, using both sen-
sors and shared information to construct its world model, and
teams from which all instances of ball information-sharing was
removed. Table VIII shows a summary of the data collected.
SHARED refers to the teams that use shared information and
NO SHARED refers to the teams that did not share ball infor-
mation. The “# SEARCHSPIN” column gives the raw counts
of how many times the SEARCHSPIN behavior was triggered.
This reflects only the number of times that the behavior began,
and does not adequately represent the amount of time that the
robots spent executing the SEARCHSPIN behavior. Although
we do not currently have data to support this observation, it is
our belief, formed through long periods of observing the teams,
that the robots utilizing shared information not only transition
into the SEARCHSPIN behavior less frequently than robots
without shared information, but also spend considerably less
time executing the behavior once it has begun. The final col-
umn in Table VIII represents the number of transitions into the
SEARCHSPIN behavior per minute.

The robots use the confidence and timestamp values stored
in the individual world model to determine when to transition
into the SEARCHSPIN behavior. Therefore, we consider the
SEARCHSPIN behavior to provide an accurate estimate of
how frequently the individual world model considers the ball
to be lost. Without shared information from their teammates,
the robots lost the ball 2.14 times more frequently than robots
that did incorporate shared information. This causes them to
interrupt their behaviors to search for the ball more frequently,
reducing their effectiveness at accomplishing the task of play-
ing soccer. By effectively integrating information that is shared
between cooperative agents, as demonstrated by these results
and the results shown in [11], we are able to minimize the in-
stances in which the robots are unable to locate the ball, thus
improving the performance of our robots over what they would
be able to achieve without cooperation.

VI. CONCLUSION

The results of our experiment clearly show that sharing infor-
mation about the state of the world with teammates helps robots
to overcome the problem of partial observability when locating
relevant objects in their environment. By using both the in-
dividual and the shared world models, the robots were more
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aware of the position of the ball, and needed to interrupt their
behaviors to search for the ball with lower frequency. Although
the communication available for our use had high and variable
latency, making it impossible to synchronize with sensor data
that arrived predictably at 25 HZ, we were able to utilize shared
information effectively by using it only on an as-needed basis.

As the AIBO hardware continues to evolve, we hope that
lower latency communication will become available for our use.
This will enable us to conduct future investigations such as the
benefit of simultaneously observing an object from multiple lo-
cations and merging observations. These observations can be
especially important for tracking of a moving object like the
ball. Even without hardware improvements, the accuracy of
opponent detection in our current model remains to be deter-
mined. We hope also to improve our ability to observe the en-
vironment using an overhead camera, both to enable us to com-
pare our robots’ perceptions of the world to the ground truth
of the world state, and to investigate the integration of global
information with local sensing and communication.
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