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Abstract—Role assignment and coordination are difficult issues
for multi-robot systems, especially in highly dynamic tasks. Robot
soccer is one such task and it provides a unique challenge for
multi-robot research. In this paper, we contribute the approach
that we successfully developed for CMPACK’02, our team for
the RoboCup-2002 Sony legged league. The RoboCup-2002 Sony
robots were equipped with wireless communication for the first
time this year. We developed an approach for sharing sensed in-
formation and effective coordination through the introduction of
shared potential fields. The potential fields were based on the po-
sitions of the other robots on the team and the ball. The robots po-
sitioned themselves on the field by following the gradient to a min-
imum of the potential field. In principle, our potential functions
can be applied to any multi-robot domain. We present the results
of the RoboCup-2002 competition, which we won, and we show
a post-competition, controlled empirical evaluation to analyze the
impact of our algorithm. The results demonstrate that our team
using our communication-dependent coordination outperforms a
team of individually skilled robots without coordination.

|. INTRODUCTION

Many open questions remain in the areas of multi-robot coor-
dination and task assignment. How should a group of robots di-
vide tasks among its members? Once roles have been assigned
to the robots, how should they position themselves to fulfill
their roles without interfering with their teammates. What hap-
pens if an agent fails or if the environment changes so that a
different robot is more suitable for the task?

In this paper we present a framework for task assignment
and coordination for a group of robots in a soccer domain. We
show how heuristic bidding functions that use globally shared
information may be used to determine which robot is the most
suitable for each task. We also describe how obstacle avoidance
may be combined with coordination through the use of artificial
potential fields. We provide a robust experimental evaluation of
our framework in a penalty shot domain showing that commu-
nication is important for coordination.

This paper is organized as follows: In the following section,
we give a brief overview of the Robocup domain and review
related work. Section Il1 is the technical contribution of this
paper. It describes the information sharing between robots and
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presents the framework used for task assignment and coordi-
nation. Both empirical results from Robocup-2002 and results
from controlled experiments are presented in section V. Sec-
tion V concludes the paper.

Il. BACKGROUND

This section provides background information on Robocup
and reviews related work in mutli-robot coordination and task
assignment.

A. The Robocup Domain

The legged league of Robocup [6], the robot soccer world
championship, provides a challenging testbed for multi-agent
research. Two teams of quadruped robots compete for two ten
minute halves on a small soccer field. The hardware is the same
for each team: the commercially available Sony Aibo ERS210
Entertainment Robot. The rules specify that each team must be
fully autonomous; no off board computation or human interven-
tion is allowed. For Robocup-2002, the domain was extended to
create additional research opportunities. The number of agents
on each team was increased from three to four. Wireless com-
munication, in the form of 802.11b wireless network cards, was
added. Also, the size of the field was increased by 50% in both
directions. This was a major change; formerly robots could de-
tect the ball from across the length of the field. After the size
increase this was no longer possible.

The challenges that arise during the game can be divided into
two categories: challenges that may be addressed from a single
robot perspective and those that arise due to the multi-agent
nature of the domain. Single agent tasks include localization,
detecting other robots, detecting the ball, as well as motion con-
trol.

Robots rely entirely on vision for sensing in these single
agent tasks [3]. To simplify matters, the world is color coded.
Each robot is dressed in either a red or a blue uniform. The
ball and goals are also color coded. To aid localization, six dis-
tinct, brightly colored markers are placed around the edge of
the field. Despite these aids, soccer is still a difficult task from
a single robot perspective; visual processing, the behavior sys-
tem, and motion control must all run in real time on the same
processor [7], [10]. And, as with any physical system, sensor



readings and motions commands are rife with noise and uncer-
tainty. The presence of other agents compounds the difficulty
of these tasks.

Including other agents fundamentally changes the domain.
With other agents, the world is no longer static; even if the
robot does not act, the world will continue to change around it.
In addition to changing the environment, other agents can also
interact directly with the robot. To cite a few examples of this,
two robots may become entangled, causing motion commands
to have unanticipated effects; the referee may pick up the robot
and move it across the field to enforce a penalty; other robots
may obscure the ball or the markers that are used for localiza-
tion. The addition of other robots makes the world dynamic
and increases the amount of uncertainty, but perhaps more im-
portantly, the other agents have their own sets of goals. In the
case of the agents on the other team, these goals are diametri-
cally opposite to the goals of the agent.

Robocup is an adversarial domain; the environment [in the
form of the other team] actively works against the agents. We
treat the other team as a part of the environment because we
cannot control them directly. The adversarial nature of the do-
main changes the way agents must approach action selection.
In addition to considering the expected payoff of actions, agents
must also consider the worst possible outcome; the environment
will attempt to steer the game in the direction of that worst case
scenario. Agents must choose actions that minimize risk, even
if choosing those particular actions reduces their expected pay-
off.

Next, we review related work before providing an overview
of the coordination framework.

B. Related work

Artificial potential fields have long been used for obstacle
avoidance [5]. They have a low computational overhead in
comparison to higher level approaches such as path planning;
they require simple, local knowledge about the environment;
and, because they do not require computationally expensive re-
pair, such as replanning, when the environment changes, they
are robust in dynamic situations. On the other hand, potential
fields have a tendency to guide robots to local rather than global
minima. However, in highly dynamic environments such as
soccer, this is not a major problem as the world quickly changes
and jogs the robot from the local minimum.

In addition to static obstacle avoidance, potential fields
may also be used for multi-agent formations and coordination.
In [1], [2], Balch et al describe how robots can form and main-
tain formations using only local information to calculate poten-
tial fields. They name their approach “social potentials” be-
cause the potential functions are calculated using the distances
between teammates. In [4], [11], [12], potential fields are used
to position robots for particular roles. The potentials encode
heuristic information about the environment. This information
takes the form of attractive potentials that guide robots to de-
sirable areas of the field. For example, potentials may guide
robots to locations near an opponent’s goal to place the robot in
a good position to receive a pass.

Before robots can take up positions based on their roles,
those roles must be assigned. [4], [8] describe how robots may

perform distributed task allocation by calculating their suit-
ability for a task and broadcasting this suitability as a bid to
their teammates. This approach resembles a continuous auc-
tion where the robot with the highest bid wins the task. If that
robot becomes unavailable for some reason, its bid is no longer
seen by the other robots and the robot with the next highest bid
addresses the task.

I1l. TASK ASSIGNMENT AND COORDINATION

As described in the introduction, each team consists of four
robots with identical capabilities; we are solving a homoge-
neous agent task assignment problem. One of these robots
serves as the goalie. It is the only robot with a fixed role. The
other three robots play offense, but the rules do not specify fixed
positions for them. We allow these three robots to dynamically
switch between predefined, mutually exclusive roles.
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Fig. 1. The primary attacker holds the ball slightly to the left of the other team’s
goal. The offensive supporter waits by the right edge of the goal to recover
the ball if the primary attacker misses. The defensive supporter positions itself
down field of the ball to recover it if the ball moves behind the primary attacker.
The cylinder standing at the left corner of the field is one of the markers used
for localization.

These roles are a primary attacker, which approaches the ball
and attempts to move it upfield; an offensive supporter, which
moves up the field from the primary attacker and positions itself
to recover the ball if the primary attacker misses its shot on goal;
and a defensive supporter, which positions itself down the field
from the primary attacker to recover the ball if the other team
captures it. Figure 1 shows the robots positioning themselves
in these roles.

The three agents negotiate among themselves using a prede-
fined protocol so that a single robot fills each role. In addition,
they coordinate with the goalie to avoid approaching the ball
while the goalie is clearing it from the defense zone and they
avoid collisions with their teammates.



Before providing the details of how the different roles are
assigned and how the robots fill those roles, we briefly describe
information sharing between teammates.

A. Shared information

In our framework, the robots must communicate in order to
coordinate effectively. Coordination methods that rely on local
information alone are not feasible in this domain since there are
many cases where a robot cannot observe the ball or its team-
mates. Since a known, small number of robots are collaborat-
ing, we chose to use a system of broadcast messages to share
information. This approach does not scale to large numbers of
robots, but it is very simple to implement and understand.

Twice a second, each robot broadcasts a message to its team-
mates. This message contains the current position of the robot,
according to its localization system, as well as an estimate of
the uncertainty in that position. The message also contains the
robot’s estimation of the ball’s position and the uncertainty as-
sociated with that measurement. The final pieces of informa-
tion included are flags indicating whether or not the robot is the
goalie and if the robot currently sees the ball. The goalie flag
is needed for role assignment since the goalie can never play
a different position and is the only robot allowed to clear the
ball from the defense zone. The flag indicating whether or not
the robot currently sees the ball is used when building a shared
world model to avoid incorporating evidence about ball location
from robots that do not see it.

A detailed explanation of the shared information and how
this information is combined may be found in [9]. Next we
describe how this shared information is used to assign roles to
different agents and how the agents fill those roles.

B. Role assignment

The three robots playing offense need to be assigned to the
roles of primary attacker, offensive supporter, and defensive
supporter. Role assignment is done in a fixed, total order. The
primary attacker is chosen first, followed by the defensive sup-
porter, and finally the offensive supporter is picked. This order
is designed to make the system more robust; if one or two of
the robots fails, the remaining member(s) of the team can carry
on playing.

All of the robots use a common set of functions to calculate
real valued bids for each task. These functions encode heuris-
tic information about the world to return an estimate of how
suitable the robot is for a particular task. For example, the bid
function for the primary attacker activation takes ball proxim-
ity and the relative orientation of the opponents’ goal into ac-
count. Robots first calculate their own suitability using local in-
formation from their world models and then they use the same
function to calculate the bids of their teammates using only the
shared information provided by each teammate.

It is important to note that only the reported information is
used for calculating teammates’ bids; in effect the agent doing
the calculation is putting itself into the shoes of the agent whose
bid is being calculated. If the agent performing the calculation
used its own information, it could erroneously assign another
agent a different potential than it calculated for itself.

A concrete example of this would be when the agent per-
forming the calculation sees the ball next to the other robot,
but the agent whose bid is being calculated does not see the
ball (perhaps the ball is behind it or occluded by an opponent).
Since the robot that cannot detect the ball is not confident about
the ball location, it will assign itself a low bid for the primary
attacker role. The agent that sees the ball should not assign its
teammate a higher bid than the teammate would pick for itself.
And the teammate should not use the shared information from
the robot that sees the ball to assign itself a higher value. In the
case where an opponent is occluding the ball, the robot does not
have a clear path to the ball; although it would be reasonable for
it to use the shared information to turn to the ball.

Once each robot calculates the bids for itself and each of its
teammates, it compares them. If it has the highest bid for the
role being assigned, it assumes that role. If it was not the win-
ner, it assumes that the winning robot will take up the role and
performs calculations for the next role in the list. The winners
of previous auctions are not considered in subsequent auctions
for different roles; they have already been assigned a task. In
principle, all of the robots are performing the same calculation
on the same shared data, so they should arrive at the same result.
In practice, no synchronization is provided, so it is possible for
teammates to calculate different bids for each other due to fac-
tors such as network delays and transmission errors.

To address this, hysteresis is added to the system. Once a
robot takes a particular role, it does not relinquish that role for
a short time - on the order of seconds. Since the bid functions
are self-reinforcing, that is to say once a robot takes up a role
its actions increase its suitability to fill that role, this hysteresis
is enough to overcome the lack of synchronization in practice.

Another question is: why broadcast so much information?
Why not have agents send only their own bid values? It seems
wasteful to broadcast position estimates instead of a real valued
bid. However, robots must broadcast their position and their
estimate of the ball position anyway. The utility of sharing ball
information is obvious; robots frequently find themselves in sit-
uations where they cannot see the ball due to distance or occlu-
sion. In these cases, teammates can help each other find the
ball. The robot position information shared by teammates can
be used for obstacle avoidance. The robots have a limited field
of view so vision alone is not sufficient to detect neighboring
robots.

We present a bidding function to calculate the robots’ acti-
vation for the primary attacker role as a concrete example. Bid
functions for other roles may be designed in a similar manner
and there are many other possible functions that could be used
for the primary attacker auction. For example, it might be desir-
able to take localization uncertainty into account in a principled
way. This particular function is designed to produce high bids
when robots are close to the ball and also to take into account
how well lined up the robot is to kick the ball into the oppo-
nent’s goal.
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Bid = + (1 — min(1, dpanr)) ()

distance component

™
~——

angular component

In this equation, 64,4 is the angle formed between the line



running from the robot to the ball and the line from the ball to
the goal. When 6,4, equals 7, the robot is perfectly lined up
to kick the ball into the opponents’ goal. The dy,;; parameter is
the distance from the robot to the ball in meters. This distance
is capped at 1 meter.
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Fig. 2. A contour plot of the potential function used by the offensive supporter
to position itself on the field. Darker shading corresponds to lower areas of the
surface; the robot follows the gradient down to these minimum values. The
opponent’s goal lies on the left edge of the field and the goal being defended is
on the right side.

C. Coordination

The robots use the same mechanism for both coordination
and obstacle avoidance. They overlay a potential field over the
environment and sample local points in the field to approximate
its slope at their current location. They follow the gradient of
the potential field until they reach a local minimum. The com-
ponents of the field are designed such that local minimums arise
at positions from which the robots can support the primary at-
tacker. In the case of the offensive supporter, the field guides
the robot to a good position to receive passes or recover the
ball if the shot on goal goes wide. In the case of the defensive
supporter, the gradient guides the robot to a position where it
blocks its own goal and can recover the ball if it is intercepted
by the opposing team. The primary attacker does not make use
of the potential field; it always seeks out the ball and counts on
its teammates to move out of its way instead of avoiding them.

The potential field is the sum of several linear components.
Each of these components either represents heuristic informa-
tion about the world, such as the offensive supporter should
not block the primary attacker’s shot on goal, or obstacle in-
formation, such as repulsion terms from the walls and other
robots. Typically the components of the potential functions are
bounded at zero. This makes the effect of the terms local and
helps prevent undesirable interactions between terms.

Currently only teammates are included in the list of robots
to avoid due to the difficulty of perceiving other robots. Team-
mates report their own positions via the wireless network; since

Defensive supporter potential field
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Fig. 3. A contour plot of the potential function used by the defensive supporter
to position itself. Darker areas correspond to lower values and the agent nav-
igates down the gradient. The opponents goal is on the right edge of the plot
and the goal being defended is on the left edge.

opponents do not do this, high fidelity information about their
locations is not available. However, this is a perceptual problem
- the composite nature of the functions makes it trivial to add
terms for opponents as soon as the perceptual system is able to
provide that information.

Depending on their supporting role, the robots may use dif-
ferent subsets of the components. For example, the offensive
supporter does not use the component that guides the robot to
positions between the ball and its own goal - that heuristic in-
formation is not applicable when filling an offensive role.

Next we review the individual components of both the offen-
sive and defensive supporters’ potential fields. In the following
equations ¢,, indicates a positive constant and k,, indicates a
positive slope.

Pwall = maaz(O, c1 — kl : dwall) (2)

The wall potential term encodes a linear repulsion from the
walls and the team’s own defense zone; only the goalie on each
team is allowed to be in the defense zone. ¢; is a positive base
potential for when the robot is at the wall. The potential falls off
linearly with the distance of the robot from the wall with a slope
of k1. This term is shared by both the offensive and defensive
supporters.

Poay = |lca — dpan|| - k2 (3)

The ball potential term guides the offensive supporter to a
position that is an equilibrium distance, co, away from the ball.
The potential increases linearly with a slope of k5 as the robot
moves away from the equilibrium distance.

Pteammate - maz((), C3 — kS : dteammate) (4)

The teammate repulsion potential is a positive value that falls
off linearly with distance. As with wall repulsion, this term is
shared by both types of supporter.



Pj’orward bias — ma$(07 k4 : dbehind ball) (5)

The forward bias potential guides the offensive supporter to
a position parallel to or in front of the ball. The dpenind baul
parameter encodes how far the offensive supporter is down field
from the ball.

Pdefensive bias — k5 : df'rom goalline (6)

The defensive bias potential is analogous to the forward bias
only it acts on the defensive supporter. It forces the robot to
remain in a position close to its own goal; it increases in value
linearly as the robot moves up the field away from the goal line.

Pball corridor — ”CG - dshot pathH . kﬁ (7)

The ball corridor potential encodes the heuristic information
that the offensive supporter should not block shots on the goal,
but it should also position itself close to the path taken by the
ball in order to recover the ball if it stops before reaching the
goal. cg represents the equilibrium distance of the agent from
the ball path. dsnot patr 1S the actual distance of the agent from
the path. The shot path is defined as the line segment from the
ball to the center of the opponent’s goal line. The offensive
supporter is the only robot that uses this potential.

Pblock goal = dblock path * k’? (8)

The block goal potential guides the defensive supporter to
a position on the line between the ball and its own goal.
dbiock path 1S the distance between the robot and the line seg-
ment running from the ball to the center of the robot’s goal line.

offsetb 1l
Pside bias — maz((), k8 : Offsetrobot : 1.7(1
5 wzdthfield

) )

The side bias term applies only to the offensive supporter. It
encodes the fact that the robot should position itself across the
field from the primary attacker. The of f set terms represent the
offset of either the ball or the robot from the line drawn between
the centers of the two goals. Naotice that this is not a distance -
the offset has a negative value for one half of the field.

1V. EXPERIMENTAL RESULTS

We first present empirical results from Robocup-2002 to
demonstrate that our system functions well against a wide va-
riety of opponents. We then present results from controlled ex-
periments in a penalty shot domain to provide a more quantita-
tive view of the importance of coordination.

A. Empirical Results from Robocup-2002

We present the final scores from the games that
CMPACK’02 participated in during Robocup-2002 in ta-
ble I. The opposing teams used different strategies for
coordination and task assignment. For example, the German
Team also used wireless communication for coordination. The
University of New South Wales, the 2001 champions, used only
local information from vision and sound to coordinate their

TABLE |
GAMES SCORES FROM RoBOCUP-2002

Opponent Final score (CMU:Opponent)
ARAIBO 5:1

German Team 31

SPQR 7:0

Team Sweden 9:0
Robomutts++ 4:0

rUNSWift 3:3 (penalty kicks 2:1)

robots. CMPACK’02 performed well against all opponents
and did not lose a single game. However, our communication
framework was only one facet of the team. Vision, motion
control, localization, and behaviors were equally important.
Since it is impossible to separate out the contribution of
only our coordination framework from Robocup, we also
present results from controlled experiments designed to test the
importance of coordination alone while the other systems are
held constant.

B. Controlled Experiments

We tested how coordination affects the performance of the
robots in a penalty shot domain. In these experiments, a robot,
or a team of robots, attempted to score on an empty goal. No
opponent robots were used, which means that while the envi-
ronment was dynamic and uncertain, it was not adversarial; the
world did not actively work against the robots while they were
performing the task. We did not use opponents to reduce the
amount of noise in the data and the time required for each trial.

To test how long it took the robots to score, we marked 30
locations on the field. The 30 locations were divided evenly be-
tween each half of the field and within each half the locations
were distributed in an approximately uniform fashion. Each
marker was assigned a unique number so that the locations
could be visited in a fixed order. The same order was used for
all experiments.

Since the goal of the experiment was to test how quickly the
robots scored in general, we did not want to specify their start-
ing position. For this reason the robots were not moved after
scoring a point; their starting position for each point was where
they had scored from during the previous point. (Before scoring
for the first time, they started on their own goal line) This means
that samples are not independent, but it does mimic what hap-
pens in real games when the goalie of the opposing team clears
the ball to an unknown place on the field.

We ran three separate experiments. The first was a sin-
gle robot performing alone to provide a baseline. Next, three
robots without coordination performed the task followed by
three robots with coordination. Each experiment began with
the robot(s) on their own goal line. The ball started on the first
marker. The robots were unpaused and the length of time it took
for them to score was recorded. As soon as the robots scored,
they were paused, the ball was moved to the next marker in
the sequence, and then the robots were restarted without being
moved. This procedure was repeated until the ball had started



TABLEII
TIME TO SCORE FOR THE THREE TRIALS
mean (sec) | std. dewv.
Single Robot 93.48 62.38
Three Robots (No coordination) 156.40 | 125.01
Three Robots (Coordination) 78.89 52.58

from each of the 30 markers. If the ball left the field or en-
tered the penalty region, it was immediately replaced in legal
territory.

Figure 4 shows cumulative distributions of the time to score
for each of the three trials. The minimum times to score for
all three trials were very similar; for these points nothing went
wrong. The robots approached the ball, captured it, and kicked
it into the goal on their first attempt. On the other hand, there
is a large difference between the maximum values for the sin-
gle robot versus the team without coordination and again for
the maximum values between the robots with coordination ver-
sus the robots without coordination. The means and standard
deviations for the distributions are listed in table I1.

We uses a Wilcoxon signed rank test to determine whether or
not the distributions were the same. The results of these tests are
shown in table IV-B. There was a significant difference between
the case with coordination and the case without it. There was
also a significant difference between the single robot case and
the case without coordination. While the mean for the trial with
three robots using the coordination framework was lower than
the mean for the single robot case, there was not a statistically
significant difference in the distributions from these trials.

Cumulative distributions of times to score
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Fig. 4. Cumulative distributions of the time between points for the three trials.

V. DIscussSION AND CONCLUSIONS

Our results show that coordination is vital for multi-agent
systems. A stronger result would have shown the case with
three coordinating robots out performing the single robot case,
however, our results do show the extra robots do not decrease

TABLEIII
P VALUES FROM THE WILCOXON SIGNED RANK TEST TO DETERMINE IF
TWO DISTRIBUTIONSARE THE SAME

Distributions P
Single Robot | No coordination | 0.043
Single Robot | Coordination 0.221
Coordination | No Coordination | 0.006

performance in the non-adversarial test domain. Even without
increasing performance in the penalty shot domain, the extra
robots do make the system more robust against failure; if a sin-
gle robot fails, two other remain to complete the task.

In the future, we would like to investigate what happens in an
adversarial domain by adding either a goalie or a single robot to
the opposing team. We hypothesize that the difference between
the single agent case and the three robots with coordination case
would be widened. That is, three robots should be able to fare
better against an opponent than a single robot.
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