Guided Symbolic Universal Planning*

RuneM. Jensen, Manuela M. Veloso and Randal E. Bryant
Computer Science Department,Carnegie Mellon University,
5000 Forbes Avenue, Pittsburgh,PA 15213-3891, USA
{runej,mmv,bryant}@cs.cmu.edu

Abstract

Symbolic universal planning based on the reduced Ordered
Binary Decision Diagram (OBDD) has been shown to be an
efficient approach for planning in non-deterministic domains.
To date, however, no guided algorithms exist for synthesiz-
ing universal plans. In this paper, we introduce a general
approach for guiding universal planning based on an exist-
ing method for heuristic symbolic search in deterministic do-
mains. We present three new sound and complete algorithms
for best-first strong, strong cyclic, and weak universal plan-
ning. Our experimental results show that guiding the search
dramatically can reduce both the computation time and the
size of the generated plans.

I ntroduction

Universal planning handles non-determinism in a planning
domain by computing a plan that for each reachable domain
state associates a set of relevant actions for achieving the
goal (Schoppers 1987). A major challenge is to represent
universal plans compactly. It has been shown that even for a
flexible circuit representation of universal plans in domains
with n Boolean state variables, the fraction of randomly
chosen universal plans with polynomial size in n decreases
exponentially with n (Ginsberg 1989). However, univer-
sal plans encountered in practice are normally far from ran-
domly distributed. Often real-world planning problems and
their universal plan solutions are regularly structured. A pri-
mary objective is therefore to develop efficient techniques
for exploiting such structure.

A particularly successful approach uses the reduced Or-
dered Binary Decision Diagram (OBDD, Bryant 1986) to
represent and synthesize universal plans (Daniele, Traverso,
& Vardi 1999). A universal plan is generated by a breadth-
first backward search from the goal states to the initial state.
The state space is implicitly represented and searched using

*This research is sponsored in part by the Danish Research
Agency and the United States Air Force under Grants Nos F30602-
00-2-0549 and F30602-98-2-0135. The views and conclusions
contained in this document are those of the authors and should not
be interpreted as necessarily representing the official policies or en-
dorsements, either expressed or implied, of the Defense Advanced
Research Projects Agency, the Air Force, or the US Government.
Copyright © 2003, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

efficient OBDD techniques originally developed for sym-
bolic model checking (McMillan 1993). Three major classes
of universal plans have been studied: strong, strong cyclic,
and weak. An execution of a strong universal plan is guar-
anteed to reach states covered by the plan and terminate in a
goal state after a finite number of steps. An execution of a
strong cyclic plan is also guaranteed to reach states covered
by the plan and terminate in a goal state, if it terminates.
However, a goal state may never be reached due to cycles.
An execution of a weak plan may reach states not covered by
the plan, it only guarantees that some execution exists that
reaches the goal from each state covered by the plan.

A substantial limitation of the current OBDD-based uni-
versal planning algorithms is that they are unguided. The
search frontier is blindly expanded in all directions from the
goal states and the final universal plan may cover a large
number states that are unreachable from the initial states.
In this paper, we show that the approach used by SetA*
(Jensen, Bryant, & Veloso 2002) for heuristic OBDD-based
search in deterministic domains also can be applied to guide
universal planning algorithms. The basic idea is to split
the states of the backward search frontier with respect to a
heuristic estimate of the minimum number of actions needed
to reach an initial state and perform a best-first search on the
resulting search tree.

We develop guided versions of the three basic OBDD-
based universal planning algorithms. Each algorithm is
sound and complete. Thus, the algorithms will return a solu-
tion if it exists, and otherwise return failure. The algorithms
have been empirically validated in two non-deterministic do-
mains: a non-deterministic version of the 8-puzzle and a
steel plant of SIDMAR (Fehnker 1999). Our results show
that guided OBDD-based universal planning in these do-
mains consistently outperforms the previous blind OBDD-
based universal planning algorithms both in terms of the
planning time and the size of the OBDD representing the
universal plan.

Heuristic symbolic search was first suggested to guide
formal verification algorithms toward error states (Yuan et
al. 1997; Yang & Dill 1996). These algorithms can handle
non-deterministic domains, but they only decide whether er-
ror states are reachable. Heuristic symbolic search has also
been studied for classical search in deterministic domains
(Edelkamp & Reffel 1998; Hansen, Zhou, & Feng 2002;



Oz(C —— D
Y
Figure 1: An example universal planning domain.

Jensen, Bryant, & Veloso 2002). However, these algo-
rithms do not handle non-deterministic domains. Closer re-
lated works are a recent guided symbolic approach for solv-
ing Markov decision processes (Feng & Hansen 2002) and
a guided controller synthesis approach for timed automata
(Hune, Larsen, & Pettersson 2001). However, in both cases,
the domain model is more general and the developed tech-
niques are not efficiently applicable to universal planning.

The reminder of the paper is organized as follows. We
first describe universal planning and OBDD-based universal
planning. We then introduce the search frontier splitting ap-
proach and the guided strong, strong cyclic, and weak uni-
versal planning algorithms. Finally, we present empirical
results and draw conclusions.

Universal Planning

A universal planning domain is a tuple (V, S, Act, —) where
V is a finite set of Boolean state variables, S C 2" is a
set of states, Act is a finite set of actions, and -C S x
Act x S is a non-deterministic transition relation. Instead of
(s,a,s") €— we write s 5 s'. Further, let NEXT(s,a) =
{s' | s 3 s'} denote the set of possible next states of action
a applied in state s. A simple domain with two actions « and
(3 and two state variables v; and v- yielding four states A =
-1, W2, B = -1, V3, C = V1, T3 and, D = v1,V2 is
shown in Figure 1. A universal planning problem is a tuple
(D, s, G) where D is a universal planning domain, so € S
is a single initial state, and G C S is a set of goal states.
A universal plan is a set of state-action pairs (SAs) U C
{(s,a) | 3s'.s 3 '} that associates states with relevant
actions to apply in the state for reaching a goal state. The
set of states covered by a universal plan U/ is STATES(U) =
{s | Ja € Act.(s,a) € U}. An execution of I/ starting in
s is a possibly infinite sequence of states s, so, - - - Where,
for each adjacent pair of states (s, s'), an action a exists such

that (s,a) € U and s = s'. An execution terminates in s,
iff no action a exists with (s,a) € U. Let CLOSURE(U) =
{s' & STATES(U) | (s,a) €U, s = s'} U G. We say that
U is total iff CLOSURE(U) = G.

We use the definition of strong, strong cyclic, and weak
plans introduced by (Daniele, Traverso, & Vardi 1999).
This definition relies on the branching time temporal logic
CTL (Emerson & Srinivasan 1989). CTL provides univer-
sal and existential path quantifiers and temporal operators
like “eventually” and “always”. CTL formulas are defined

starting from the finite set P of propositions, the Boolean
connectives, the temporal connectives X (“next-time”) and
U (“until”), and the path quantifiers E (“exists”) and A (*“for
all”). Given a finite set P of propositions, CTL formulas are
inductively defined as follows

e Each element of P is a formula

e —p, YV ¢, EX1), AX ), E(¢ Uep), and A(¢ Uep) are formu-
las if ¢ and ¢ are.

CTL semantics is given with respect to Kripke structures. A
Kripke structure K is a triple (W, T, L) where W is a set
of worlds, T C W x W is a total transition relation, and
L : W — 2% is a labeling function. A path 7 in K is
a sequence wyws - - - of worlds in W such that, for ¢ > 0,
T (w;i,wit1). In the following inductive definition of the
semantics of CTL, K,w [= ¢ denotes that ¢ holds in the
world w of K

e K,wi Epiffpe L(wy),forpe P

o K,wi |~ iff K,wy E

e K,wi EyyVoiff Kjw Evor K w |=¢

e K,w; | EXv iff there exists a path wyws - - - such that
K,U)2 IZQ,ZJ

o K,w; = AX ¢ iff forall paths wyws, - - - we have K, wy |=
Y

e K,wi E E(¢U4) iff there exists a path wyws - -- and
i > 0 such that K,w; = ¢ and, forall 0 < j < i,
K,wj = ¢

o K,wi |= A(¢U) iff for all paths wyws - - - there exists
i > 0 such that K,w; = ¢ and, forall 0 < j < i,
K, U)j ': ¢

We introduce the usual abbreviations AF ¢ = A(trueUq))

(F stands for “future” or “eventually”), EF ¢ = E(true U1)),

AF ) = —EF—w) (G stands for “globally” or “always™), and

EGy = —AF—).

The executions of a universal plan ¢/ for the planning

problem P can be encoded as paths of Kripke structure K

induced by U

e W} = STATES(U/) U CLOSURE(Y)

o T/ (s,8")iff (s,a) e Uands = s',0rs = s' and s €
CLOSURE(U)

o LI(s) =s.

A strong plan for a planning problem P is a total universal
plan ¢/ such that so € Wi’ and K/, so = AFG. A strong
cyclic plan for a planning problem P is a total universal plan
U such that so € W}F and K}/,s0 E AGEFG.! A weak
plan for a planning problem P is a universal plan &/ such
that so € Wi’ and K}/, so |= EF G.

Consider a universal planning problem for our example
domain with C as initial state (so = C) and B as a sin-
gle goal state (G = {B}). There does not exist a strong

1This definition can be further improved by excluding counter
productive transitions (Daniele, Traverso, & Vardi 1999). It is triv-
ial to extend the guided strong cyclic algorithm presented in this
paper with a post optimization producing such solutions.



universal plan for this problem since any action applied
in C may cause a cycle or reach a dead end. However,
{(C,a),{A, B)} is a valid strong cyclic universal plan for
the problem, and {{C, ), {C, 8), (A, )} is a valid weak
universal plan.

Universal plans can be synthesized by a backward
breadth-first search from the goal states to the initial state.
The search algorithm is shown in Figure 2. In each step
(1.2-7), a precomponent U,, of the plan is computed from the
current states covered by the plan C. If the precomponent
is empty, a fixed point of U has been reached that does not
cover the initial state and failure is returned. Otherwise, the
precomponent is added to the universal plan and the states
in the precomponent are added to the set of covered states
(1.6-7). Strong, Strong cyclic, and weak universal plans only

function BLINDUNIVERSALPLANNING(sg, G)
1 U«0,C«G
2 whilesg ¢ C

3 Up + PRECOMP(C)

4 if U, = 0 then return failure
5 else

6 U+~UUU,

7 C < CU STATES(U,)
8 returnU

Figure 2: A generic algorithm for synthesizing universal
plans.

differ in the definition of the precomponent. Let the preim-
age of a set of states C' be defined by

PREIMG(C) = {{s,a) | NEXT(s,a) N C # 0}.
The weak precomponent PRECOMPW (C) is the set of SAs
{(s,a) | {s,a) € PREIMG(C), s ¢ C}.
The strong precomponent PRECOMPS(C) is the set of SAs

{{s,a) | (s,a) € PREIMG(C) \ PREIMG(C), s ¢ C}
where C denotes the complement of C. The strong cyclic
precomponent PRECOMPSC(C) can be generated by itera-
tively extending a set of candidate SAs (wSA) and pruning
it until a fixed point is reached.

function PRECOMPSC(C)
wSA
repeat
OldwSA < wSA
wSA < PREIMG(STATES(wSA) U C)
wSA + wSA\ (C x Act)
scSA + SCPLANAUX(wSA, C)
until scSA #0 Vv wSA = OldwSA
return scSA

CO~NOOUTPA WN -

function SCPLANAUX (startSA, C)

1 SA « startSA

2 repeat

3 OldSA «+ SA

4 SA < PRUNEOUTGOING(SA, C)

5 SA < PRUNEUNCONNECTED(SA4, C)

6 until SA = OldSA
7 return SA

function PRUNEOUTGOING(SA4, C)

1 NewSA + SA\ PREIMG(C U STATES(SA4))
2 return NewSA

function PRUNEUNCONNECTED(S4, C)

1 NewSA < 0

2 repeat

3 OldSA + NewSA

4 NewSA + SAN PREIMG(C U STATES(NewSA))
5 until NewSA = OldSA

6 return NewSA

It can be shown that PRECOMPS(C) (PRECOMPSC(C),
PRECOMPW/(C)) includes a strong (strong cyclic, weak)
plan for each state it covers for reaching C. On the
other hand, if a strong (strong cyclic, weak) plan exists
for reaching C' from a state s ¢ C then PRECOMPS(C)
(PRECOMPSC(C), PRECOMPW(C)) will be non-empty.
Thus, BLINDUNIVERSALPLANNING(sg,G) is sound and
complete for both strong, strong cyclic, and weak universal
planning.

OBDD-based Universal Planning

An OBDD is a rooted directed acyclic graph representing a
Boolean function. It has one or two terminal nodes 0 and
1 and a set of internal nodes associated with the variables
of the function. Each internal node has a high and a low
edge. For a particular assignment of the variables, the value
of the function is determined by traversing the OBDD from
the root node to a terminal node by recursively following
the high edge, if the associated variable is true, and the low
edge, if the associated variable is false. The value of the
function is true, if the reached terminal node is 1 and other-
wise false. Every path in the graph respects a linear ordering
of the variables. An OBDD is reduced such that no two dis-
tinct nodes are associated with the same variable and have
identical low and high successors, and no variable node has
identical low and high successors. Due to these reductions,
the OBDD of a regularly structured function is often much
smaller than its disjunctive normal form (DNF). Another ad-
vantage is that the reductions make the OBDD a canonical
representation such that equality check can be performed in
constant time. In addition, OBDDs are easy to manipulate.
Any Boolean operation f x g on two OBDDs f and g can
be carried out in O(|f||g|). For symbolic search, a large
number of OBDDs need to be stored and manipulated. In
this case, a multi-rooted OBDD can be efficiently used to
share structure between the OBDDs. The size of an OBDD
is sensitive to the variable ordering. To find an optimal vari-
able ordering is a co-NP-complete problem in itself (Bryant
1986), but as illustrated in Figure 3, a good heuristic for
choosing an ordering is to locate related variables near each
other (Clarke, Grumberg, & Peled 1999).

By encoding states and actions as bit vectors, OBDDs can
be used to represent the characteristic function of a set of
states and the transition relation. To make this clear, assume



@

(b)

Figure 3: Two OBDDs representing the function (z1 Ay1) V (z2 Ay2) V (23 Ays). The OBDD in (a) only grows linearly with
the number of variables in the expression, while the OBDD in (b) grows exponentially. Low and high edges are drawn dashed

and solid, respectively.

that we represent the states of the example domain with a
two dimensional bit vector ¢ = (v, v2) and the actions with
a one dimensional bit vector @ = (a). A possible encoding
of the domain could then be as shown in Figure 4. The initial

0,0) —L = (0,1)

0 01

0(71,0)—1» (1,1)

Figure 4: The example domain encoded with bit vectors.

state is given by the characteristic function so (7) = v; A—ws,
and similarly we have G(%) = —w; Awvs. To encode the tran-
sition relation, we construct an OBDD of its characteristic
function T'(v,d,v"). The unprimed and primed variables
are called current and next state variables, respectively. For
the example domain, the DNF of this function is

T(v,a,v")

-1 A —wa A a A vy Avh
v1 A =y A —a A —wy
v1 A =g A —a A vy A -y

< < <

v1 A= A a A vy,

The main idea in OBDD-based universal planning is to
perform the search entirely at the OBDD level. Thus, all
computations of the algorithm in Figure 2 must be imple-
mented with OBDD operations. This is straight forward

for set operations since union, intersection, and complement
translates to disjunction, conjunction and negation on the
characteristic functions of the sets. In the reminder of this
paper, we will not distinguish between set operations and
their corresponding OBDD operations. The remaining ques-
tion is how to compute precomponents symbolically. An
inspection of the precomponent definitions reveals that we
only need to define the symbolic preimage computation. It
is given by the expression

PReEIMG(C) =37". T(v,d,v") A C(T").

Consider computing the preimage of the goal state of our
example domain. We have C(¢') = —w; A vj. Thus,

PREIMG(C) = 3¢'.T(v,a,7") A vy Avh
= —wi A-v2A\a
\Y v1 A —v2 A —a
Vv v1 N\ DUs A a.

A common problem when computing the preimage is that
the intermediate OBDDs tend to be large compared to the
OBDD representing the result. Another problem is that the
transition relation may be very large if it is represented by
a single OBDD. In symbolic model checking, one of the
most successful approaches to solve this problem is transi-
tion relation partitioning. For universal planning problems,
where each transition normally only modifies a small subset
of the state variables, the suitable partitioning technique is
disjunctive partitioning (Clarke, Grumberg, & Peled 1999).
In a disjunctive partitioning, unmodified next state variables
are unconstrained in the transition expressions and the ab-
stracted transition expressions are partitioned such that each
partition only modifies a small subset of the variables. Let
m; denote the modified next state variables of partition B in
a partition Py, P, - - -, P,,. The preimage computation may



now skip the quantification of unchanged variables and op-
erate on smaller expressions
n
PREIMG(C) = \/ (3} P(3,1}) A C(@)liis/])
i=1

where C(9)[m,; /5] substitutes 173; with 73} in C(7).

Guided Symbolic Universal Planning

In guided symbolic universal planning, the precomponents
are divided according to a heuristic function h. For a state s,
h(s) estimates the minimum number of actions necessary to
reach s from the initial state. Each partition of the precom-
ponent contains states with identical h-value. It has been
shown how this can be accomplished by associating each
transition with its change éh in the value of the heuristic
function (in forward direction) and constructing a disjunc-
tive partitioning where each partition only contains transi-
tions with identical 6k (Jensen, Bryant, & Veloso 2002).

Let 0h; denote &k of partition P;. Further, let C be a set of
states with identical h-value h.. By computing the preimage
individually for each partition

PREIMG;(C) = 3m; . P;(¢,m}) A C(0)[m; /],
we split the preimage of C into n components
PREIMGy,- - -,PREIMG,, Where the value of the heuris-
tic function for all states in PREIMG; equals h. — dh;. To
illustrate this, assume we define a heuristic function for our
example problem, as shown in Figure 5. For the example

h=1 %h=1 p 9

AP .8
oh=1 ﬁ
o o/ 5h=2
Sh=0
o C T»D
h=0 gy h=1

Figure 5: The example problem with a heuristic function
estimating the sum of the horizontal and vertical distance to
the initial state.

problem, we would need at least 3 partitions since the
possible values of §h are 0,1, and 2. Splitting the preimage
of the goal state B would give PREIMG; = {(A, )} with
h =1and PREIMG, = {(C, a},{C, 3)} with h = 0.

The preimage splitting makes it possible to define a search
tree that can be used to explore the state space in a best-
first manner. For weak universal planning this approach is
straight forward. Each node in the search tree contains a
set of SAs with identical h-value. Similar to heuristic de-
terministic search algorithms, we use a queue to store the
unexpanded leaf nodes of the search tree. The queue is pri-
oritized with highest priority given to nodes with lowest h-
value. The algorithm is shown in Figure 6.2 The current

2To simplify the presentation of the guided universal planning

function WEAKGUIDED(sg, G, hy)
1 U+ 0;C + G; Q + emptyQueue
2 fori=1ton
¢SA < PRECOMPW (i, C, G)
if ¢cSA # 0 then
Q < INSERT(Q, (¢SA, hy — 6h;))
whilesy ¢ C
if |Q| = 0 then return failure
(pSA, h) + REMOVETOP(Q)
pS + STATES(pSA)
10 U« UUpPSA;C«+ CUpS
11 fori=1ton

©O©oo~NO O~ Ww

12 ¢SA <+ PRECOMPW(i, C, pS)

13 if cSA # () then

14 @ < INSERT(Q, (cSA, h — dh;))
15 returnU

Figure 6: The algorithm for guided weak universal planning.

universal plan and the states covered by the plan are stored
in U and C respectively (1.1). Initially, the child precom-
ponents of the goal states are computed and inserted in the
search queue @ (1.2-5). If a node already exists in the search
queue with the same h-value as a child, the SAs of the child
are added to the existing node. The weak precomponent is
defined by

PRECOMPW(i,C, S) = PREIMG;(S) A =C(7).

That is, the subset of the preimage of S for partition 4 that
is not already covered by the plan. In each iteration (1.6-14)
the top node of @) is removed and added to the plan (I. 8-
10). The precomponents of its children are then computed
and inserted in the search queue (I. 11-14). The algorithm
terminates with failure if the search queue at some point be-
comes empty (1.7). Otherwise, the algorithm terminates with
success when the initial state is covered by the universal plan
(1.15).

The algorithm is sound due to the correctness of the weak
precomponent computation. The algorithm always termi-
nates since the number of states is finite and a search node
only can be inserted in @ if it contains a non-empty set of
states not already covered by the plan. Furthermore, it can
not terminate with failure if a solution exists, since the only
child states that are pruned from a search node are states for
which precomponents already have been generated. Thus,
the algorithm is also complete. An execution example of
the algorithm is shown in Figure 7. In this example, we as-
sume that the h-value of all goal states is 5. Initially, two
weak precomponents with h-value 4 and 6 are inserted in
the search queue. In the first iteration, the weak precompo-
nent with h-value 4 is removed from the top of the queue and
added to the current plan. Its children with h-value 3 and 4
are then inserted in the search queue. In the next iteration,
the weak precomponent with h-value 3 is added to the plan
in a similar way.

algorithms, we assume that all goal states have identical h-value.
It is trivial to generalize the algorithms to accept goal states with



Iteration O Iteration 1 Iteration 2 --:

2 A R

olollcYo é@

/ /
®O Cf)@
©,

Figure 7: The search tree of an execution example of
WEAKGUIDED. The numbers in the search nodes are the
h-values of the states. Shaded nodes are covered by the plan.

The strong and strong cyclic guided universal planning
algorithms build a new search tree in each iteration. The
strong algorithm is particularly simple since it only produces
the first level of the search tree. The algorithm is shown
in Figure 8. As usual, the current universal plan and the

function STRONGGUIDED(sg, G, hyg)
1 U+ 0;Clh] G, C+G
2 whilesg ¢ C
Q < emptyQueue
for j =1to|C]|
fori=1ton
¢SA < PRECOMPS (i, C, C[h;])
if ¢SA # 0 then
@ « INSERT(Q, (¢SA, hj — 0h;))

if |Q| = 0 then return failure
10 (pSA,h) + REMOVETOP(Q)
11  pS + STATES(pSA)
12 U<+ UUpSA; C[h] + C[hUDpS; C + CUpS
13 return U

©CoOo~NOO UL~ W

Figure 8: The algorithm for guided strong universal plan-
ning.

states covered by the plan are stored in U and C. In addition,
however, the covered states are divided with respect to their
h-values in a map C with h-values as keys. In each iteration
(1.2-12), a queue is generated with strong precomponents of
the states in C (1.3-8). The strong precomponent is defined

by
PRECOMPS(i,C,S) = PREIMG;(S) A =PREIMG(C)
A=C(7).
That is, the subset of the preimage of S for partition i
that is not already covered by the plan and has no transi-
tions leading outside the covered states. The top node is

then removed from ) and added to the plan (1.10-12). The
algorithm terminates with failure if the search queue at some

different h-values.

point becomes empty (1.9). Otherwise, the algorithm termi-
nates with success when the initial state is covered by the
universal plan (1.13).

The algorithm is sound due to the correctness of the strong
precomponent computation. Similarly to the weak algo-
rithm, the strong algorithm always terminates since the num-
ber of states is finite and a search node only can be inserted
in @, if it contains a non-empty set of states not already cov-
ered by the plan. The algorithm is also complete since it
terminates and computes a complete strong search frontier
in each iteration (thus ) is only empty if no such frontier
exists). An execution example of the algorithm is shown
in Figure 9. Again, we assume that the h-value of all goal
states is 5. In the first iteration, the strong precomponent
of the goal states is divided according to the h-value of the
states in the precomponent. We get two partitions with h-
value 4 and 6, respectively. The partition with least h-value
is added to the plan. In the second iteration, the same proce-
dure is repeated, however this time, the covered states have
two distinct h-values.

Iteration 1 Iteration 2 =+

@ -

@@ @@@
\ \

Figure 9: An execution example of STRONGGUIDED. The
numbers in the search nodes is the h-value of the states.
Shaded nodes are covered by the plan.

Iteration O

<O,

The strong cyclic guided universal planning algorithm
uses a search tree of preimages to generate a candidate set
of SAs for a strong cyclic precomponent. The algorithm is
shown in Figure 10. The variables U, C, and C have their
usual meaning. The search queue @ stores the leaf nodes
of a search tree of weak precomponents generated from the
states in the current plan. Each node is associated with its
h-value as usual, however, for this algorithm, we also asso-
ciate a node with its depth d in the search tree. In addition,
the highest priority is given to nodes with smallest sum of
h and d. In case of a tie the highest priority is given to the
node with smallest depth. When inserting a new node in
@, it will only be merged with an existing node in @ if this
node has identical h and d value. In each iteration of the
outer loop (I. 2-27), a new search tree is generated and a
strong cyclic precomponent is added to the plan. First, the
weak precomponents of the current plan are added to @ (1.4-
8). These are all at depth 1 in the tree. Then, the candidate
SAs wSA for the strong cyclic precomponent and auxiliary
variables are initialized (1.9). The inner loop (1.10-23) per-
forms a guided version of the expansion and pruning of wSA



function STRONGCY CLICGUIDED(sg, G, hyg)
1 U« 0;Clhyl«G;C+G

2 whilesg ¢ C

3 Q@ + emptyQueue

4 for j =1to|C|

5 fori=1ton

6 ¢SA < PRECOMPW (i, C, Clh;])

7 if cSA # 0 then

8 @ < INSERT(Q, (¢SA,1,hj — 0h;))
9 wSA + 0; wS + emptyMap

10 repeat

11 if |@| = 0 then return failure

12 (pSA,d,h) + REMOVETOP(Q)
13 pSA « pSA\ wSA

14 if pSA # 0 then

15 pS + STATES(pSA)

16 wS[h] <« wS[h]U pS

17 fori=1ton

18 ¢SA < PRECOMPW (i, C, pS)

19 if cSA # 0 then

20 @ <+ INSERT(Q, (cSA,d+ 1,h — 6h;))
21 wSA + wSAUpSA

22 s¢SA + SCPLANAUX(wSA, C)

23 until scSA #

24 scS + STATES(scSA)

25 U<+ UUscSA;C + CUscS

26 for k=1to|wS]|

27 Clhi] < C[hg] U (WS[hi] N scS)
28 return U

Figure 10: The algorithm for guided strong cyclic universal
planning.

carried out by PRECOMPSC(C). When a non-empty strong
cyclic precomponent scSA is found, it is added to the cur-
rent plan (l. 24-27). The algorithm terminates with success
when the plan includes the initial state.

The purpose of taking the depth of search nodes into ac-
count when expanding the search tree is to avoid a deep but
too narrow candidate set for the strong cyclic precomponent.
The tie breaking rule of the search queue further ensures that
nodes at depth ¢ are expanded before nodes at depth ¢ + 1
with same priority.

The algorithm is sound due to the correctness of the
approach for computing the strong cyclic precomponent.
Given that the inner loop terminates the outer loop will also
terminate since the number of states covered by the plan
grows in each iteration such that the initial state eventually
will be covered. The inner loop terminates, since the number
of SAs covered by the tree of weak precomponents grows in
each iteration and there only is a finite number of SAs. If the
algorithm terminates with failure, the inner loop has gener-
ated the largest possible set of states for which a weak plan
exists for reaching the states in the current plan. Since a
strong cyclic precomponent must be a subset of this set of
states, the algorithm can only terminate with failure if no
strong cyclic plan exists. Thus, the algorithm is also com-
plete. An execution example of the strong cyclic algorithm

is shown in Figure 11. As usual, we assume that the h-value
of all goal states is 5. Since these states form the root of
our search tree their depth is 0. In the first iteration, the
candidate set for the strong cyclic precomponent is grown
by iteratively adding nodes from a tree of weak precompo-
nents. The nodes added has the current least sum of d and h.
Thus, we first add the node (1,4) and then (because of the
tie breaking rule) (1,5). It is assumed that the SAs of these
two nodes include a non-empty strong cyclic precomponent
which is then added to the plan. The algorithm continues in
a similar fashion in the second iteration. The only difference
is that the set of covered states now is partitioned into two
sets of states.

Iteration 1 Iteration 2 »*»*

Iteration O

@)

B~ O~
@,@
@*@\é ®«

O~
@A’

®-2"
C

o

/

O~®-.
@/

e+

Figure 11: An execution example of STRONG-
CvycLicGUIDED showing the iterations of the outer
loop. The numbers in the search nodes is the d and h-value
of the states. Shaded nodes are covered by the plan. Striped
nodes form the strong cyclic precomponent candidate.

Experimental Results

The performance of the guided universal planning algo-
rithms have been evaluated in two non-deterministic do-
mains. The first of these domains is a non-deterministic ver-
sion of the well known 8-puzzle problem. The 8-puzzle con-
sists of a 3x 3 board with 8 numbered tiles and a blank space.
A tile adjacent to the blank space can slide into the space.
The goal is to reach a configuration where the tiles are or-



dered 1,2,3;4,5,6; and 7,8 in row 1,2, and 3, respectively.
To make the domain non-deterministic, we assume that up
and down moves of the blank space may move left and right
as well, as shown in Figure 12. However, to ensure that the
sum of Manhattan distances of the tiles to their initial posi-
tion remains an underestimating heuristic, we assume that a
single move at most will cause this heuristic to be reduced
by one. Left and right moves are deterministic in order to

- HE A E 12]R
6(4(7 647 6(4|7
3[ 8|5 3[ 8|5 3/8|5
1142 1142 1{4]2
6| 7|«—|6 7\ — |67
3[ 8|5 3| 8|5 3[8|5
1142 1142 1142
6(8(7 68| 7 6(8|7
"HENE BREES

Figure 12: An example move of the blank space and its pos-
sible outcomes.

ensure that a strong universal plan exists for any reachable
initial state. The second domain is an abstract model of a
real-world steel producing plant of SIDMAR in Ghent, Bel-
gium used as an Esprit case study (Fehnker 1999). The lay-
out of the steel plant is shown in Figure 13. The goal is to

Overhead
cranes

—e——]  Crane 1
Machine 2 Machine 3

P
&—O
Converter 2

1 1
1 1
1 1
1 1
1 1
O Machine 4 : : Machine 5
@ , , 2
1 1
1 |

Converter 1

U Machine 1

&

Crane 2
|

I
I Buffer D !
I I
I I ]

| Continuous

casting
' machine
I

| Storage
0 place

I Holding ! ,
| place . )
|

Figure 13: Layout of the SIDMAR steel plant.

cast steel of different qualities. Pig iron is poured portion-

wise in ladles by the two converter vessels. The ladles can
move autonomously on the two east-west tracks. However,
two ladles can not pass each other and there can at most be
one ladle between machines. Ladles are moved in the north-
south direction by the two overhead cranes. The pig iron
must be treated differently to obtain steel of different quali-
ties. Before empty ladles are moved to the storage place the
steel is cast by the continuous casting machine. A ladle can
only leave the casting machine if there already is a filled la-
dle at the holding place. The actions of machine 1,2,4, and
5 are non-deterministic. They may either cause the steel in
the ladles to be treated or the machine to break. To ensure
that a strong universal plan exists, actions have been added
to fix failed machines.

The guided and blind universal planning algorithms de-
scribed in this paper have been implemented in C++/STL
using the BuDDy OBDD package (Lind-Nielsen 1999). All
experiments are carried out on a Linux RedHat 7.1 PC with
kernel 2.4.16, 500 MHz Pentium 111 CPU, 512 KB L2 cache
and 512 MB RAM. For the non-deterministic 8-puzzle, we
consider problems where the minimum length of a path from
the initial state to the goal state grows linearly from 8 to
23. The sum of Manhattan distances is used as heuristic
function. For the SIDMAR problem, we consider producing
steel from two ladles. They both need an initial treatment
on machine 1 or 4 and 2 or 5. One of the ladles in addition
need a treatment on machine 3 and a final treatment on ma-
chine 2 or 5 before being cast. Non-determinism is caused
by machines failures. We consider 6 problems where the
goal states correspond to situations with growing distances
from the initial state during the production of these two la-
dles. The number of completed treatments is used as heuris-
tic function. Notice that this heuristic for the SIDMAR prob-
lem is weaker than the sum of Manhattan distances for the
8-puzzle. The reason is that it underestimates the distance to
the initial state more relative to the sum of Manhattan dis-
tances.

For the non-deterministic 8-puzzle experiment, the
OBDD package was initialized with 4000000 free OBDD
nodes in its node table and 700000 free OBDD nodes in
its operator cache. Memory allocation and transition rela-
tion construction took 1.56 and 1.34 seconds respectively for
all experiments. For the SIDMAR experiment the OBDD
package was initialized with 8000000 free OBDD nodes in
its node table and 700000 free OBDD nodes in its operator
cache. Memory allocation and transition relation construc-
tion took 2.34 and 0.22 seconds respectively for all exper-
iments. The results of the non-deterministic 8-puzzle and
SIDMAR experiment are shown in Figure 14. For the 8-
puzzle, each datapoint is the average of 3 computational re-
sults. The results consistently show that guided universal
planning may reduce the computation time and the size of
the produced plans dramatically. This may be somewhat
surprising for guided strong and strong cyclic universal plan-
ning. These algorithms apparently repeat a large number of
computations. The previous results of such recomputations,
however, will often be stored in the operator cache of the
OBDD package and may therefore not cause a significant
computation overhead. The problem for the blind universal



Total CPU time (sec)

Number of OBDD nodes in the universal plan

Total CPU time (sec)

Number of OBDD nodes in the universal plan

Strong Universal Planning

Non-deterministic 8-puzzle

Strong Cyclic Universal Planning

Weak Universal Planning

80 T T T T T T T T 250 T T T T T T T T 35 T T T T T T T T
guided —— guided ——
70 q unguided - 30 | unguided - 4
200 1
60 - 1 25 L ]
50 - 1 g
150 x Bl 20t ]
40t E
15 - 1
20l | 100 -
20| | 10 - q
50 -
10 - E 5t ]
0 0 0 . . . . . . . .
6 24 6 6 8 10 12 14 16 18 20 22 24
160000 T T T T T T T T 180000 180000 T T T
guided —— guided ——
140000 |- unguided % 1 160000 - 160000 |- unguided 1
120000 | 1 140000 - 140000 - 1
120000 120000 1
100000 | 1
100000 100000 1
80000 - q
80000 - 80000 - q
60000 1
60000 - 60000 q
40000 1 40000 1 40000 1
20000 ] 20000 [ q 20000 q
0 = — 0 X e 0
6 8 10 12 14 16 18 20 22 24 6 8 10 12 14 16 18 20 22 24 6 8 10 12 14 16 18 20 22 24
Minimum length path from initial state to goal state Minimum length path from initial state to goal state Minimum length path from initial state to goal state
Strong Universal Planning Strong Cyclic Universal Planning Weak Universal Planning
500 T T T T 700 T T T T 200 T T T
450 180 guided ——
600 - unguided -
400 160
350 | 500 | 140 |
300 - 200 - 120 +
250 100
200 800 80 q
150 200 | 60 4
100 - 40 + 1
100
50 - 20 - 1
0 0% 0= t
1 1 1 2 3 4 5 6
600000 450000 450000
guided —— guided —— guided ——
unguided — 400000 |- unguided - 400000 |- unguided
500000 1
350000 350000 1
400000 1 300000 | 300000 | q
250000 | q 250000 1
300000 1
200000 1 200000 1
200000 1 150000 1 150000 1
100000 # q 100000 q
100000 1
50000 1 50000 1
0 . 0 . 0 .
1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

Problem number

Problem number

Problem number

Figure 14: Results of the non-deterministic 8-puzzle and SIDMAR experiments.



planning algorithms is that the blind precomponent grows Hune, T.; Larsen, K. G.; and Pettersson, P. 2001. Guided

fast with the search depth. In addition, the plan returned by synthesis of control programs using UPPALL. Nordic
these algorithms may cover states that are never reached by Journal of Computing 8(1):43-64.
an execution of the plan from the initial state. Jensen, R. M.; Bryant, R. E.; and Veloso, M. M. 2002.
) SetA*: An efficient BDD-based heuristic search algorithm.
Conclusion In Proceedings of 18th National Conference on Artificial
In this paper, we have shown how the approach of SetA* for Intelligence (AAAI’02), 668-673.
guiding OBDD-based deterministic search can be applied to Lind-Nielsen, J. 1999. BuDDy - A Binary Decision Di-
universal planning as well. We have developed sound and agram Package. Technical Report IT-TR: 1999-028, In-
complete guided versions of the three main symbolic uni- stitute of Information Technology, Technical University of
versal planning algorithms and studied their performance in Denmark. htt p: // cs. i t. dt u. dk/ buddy.

a non-deterministic version of the 8-puzzle and a real-world
domain of a steel producing plant. The results consistently
show a dramatic performance improvement compared to the

McMillan, K. L. 1993. Symbolic Model Checking. Kluwer
Academic Publ.

previous blind algorithms both in terms of the total CPU Schoppers, M. J. 1987. Universal plans for reactive robots
time and the size of the produced plans. in unpredictable environments. In Proceedings of the 10th

Other versions of the algorithms are obvious to consider. International Joint Conference on Artificial Intelligence
A best-first search approach may be too aggressive if the (IJCAI-87), 1039-1046. Morgan Kaufmann.
non-determinism in the domain is less local or if multiple Yang, C. H., and Dill, D. L. 1996. Spotlight: Best-first
initial states are considered. Another issue is how to con- search of FSM state space. IEEE International High Level
trol the quality of the produced plans. When using breadth- Design Validation and Test Workshop.
first search to produce strong plans for instance, the solu- Yuan, J.; Shen, J.; Abraham, J.; and Aziz, A. 1997. For-
tions have minimum worst-case execution length. Best-first mal and informal verification. In Conference on Computer
search does not provide similar guarantees. Aided Verification (CAV’97), 376-387.

References

Bryant, R. E. 1986. Graph-based algorithms for boolean
function manipulation. IEEE Transactions on Computers
8:677-691.

Clarke, E.; Grumberg, O.; and Peled, D. 1999. Model
Checking. MIT Press.

Daniele, M.; Traverso, P.; and Vardi, M. Y. 1999. Strong
cyclic planning revisited. In Proceedings of the Fifth Euro-
pean Conference on Planning (ECP’99), 35-48. Springer-
Verlag.

Edelkamp, S., and Reffel, F. 1998. OBDDs in heuristic
search. In Proceedings of the 22nd Annual German Con-
ference on Advances in Artificial Intelligence (K1-98), 81—
92. Springer.

Emerson, E. A., and Srinivasan, J. 1989. Branching time
temporal logic. In Bakker, J. W.; Roever, W. P.; and
Rozenberg, G., eds., Linear Time, Branching Time and Par-
tial Order in Logics and Models for Concurrency. Berlin:
Springer. 123-172.

Fehnker, A. 1999. Scheduling a steel plant with timed
automata. In Sixth International Conference on Real-Time
Computing Systems and Applications (RTCSA’99). IEEE
Computer Society Press.

Feng, Z., and Hansen, E. 2002. Symbolic LAO* search
for factored markov decision processes. In Proceedings of
the AIPS-02 Workshop on Planning via Model Checking,
49-53.

Ginsberg, M. L. 1989. Universal planning: An (almost)
universal bad idea. Al Magazine 10(4):40-44.

Hansen, E.; Zhou, R.; and Feng, Z. 2002. Symbolic heuris-
tic search using decision diagrams. In Symposium on Ab-
straction, Reformulation and Approximation SARA’02.



