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The idea of autonomous robot soccer teams invariably inspires images and expectations that, ironically, remove us somewhat from the real concept they embody. Indeed, the underlying research goes well beyond the entertainment of soccer and aims at creating completely autonomous artificial intelligent robots. I find myself fortunate to research in artificial intelligence (AI) at Carnegie Mellon, where Allen Newell and Herb Simon started this fascinating field of research. In the late 80s, Allen Newell strongly claimed that it was time for AI to merge its multiple subareas and create “complete intelligence agents” with perception, action and cognition. I fully embraced this challenge for my research career, and robot soccer is to be viewed in that context.


	The robot soccer research platforms, as defined in the RoboCup international competitions, offer many challenges, such as:  (i) the environment is partially observable; (ii) the effects of your actions in the presence of opponents are uncertain and difficult to model; and (iii) the cycle of perception, cognition and action needs to run in real time. Other adversarial tasks, such as chess, are different as there is no uncertainty in the effects of one player’s actions. When Kasparov played chess against Deep Blue, there was no uncertainty in the execution of the moves. There was no table shaking, no piece falling accidentally. The real time response requires an effective combination of deliberative planning and reactive execution.	


	RoboCup set itself a challenge to beat the human soccer team in the World Cup in 2050. 


The competitions are organized in a smart way focused on research to advance the scientific state of the art of the field of artificial intelligence and robotics. Every year we revise every league, and we try to move them closer to reality, to the final goals of having real robots coexisting with humans in a common physical environment.


	Let me now explain the technical challenges and contributions of the autonomous playing robots. The robots function today in a color-coded world. The floor is green; the goals are yellow and blue; the ball is orange; their uniforms are red and blue; the field is marked with unambiguous colored landmarks. The entire environment is customized, and we can indeed note that the real world is not color coded. But the complete world in its entire complexity will be incrementally addressed over time. The league is revised each year, and each year the teams move a bit closer toward realization of the final goals. This year, for example, black and white balls will replace the orange balls to determine whether the robots can cope without the color.


Progress in AI and task achievement in  robotics cannot stand still until all issues are resolved so that robots can cope with the world, run in grass, function in rain or shine and do all sorts of beautiful kicks through the air.


	The objective, then, is to develop AI in these robots in such a way that they can perceive and model the environment with which they are interacting and then can respond to problems or changes in that environment in real time. Even in this colored coded world, we had to develop new segmentation and object recognition algorithms capable of reliably and continuously process images in real time. Furthermore, to function as a true approximation of human intelligence, AI must encompass the idea of thinking forever, of deliberative planning, of when you stop thinking, and start execution, and of assessing and learning from execution to improve future executions. The integration of thinking, perception, and action is the research goal represented by these soccer-playing robots, and the complete realization of that goal is decades away. But significant progress has been made in a complete set of dimensions, ranging from hardware, strategic teamwork, and intelligent response to the world and other robots.


	Currently, in 2002 and as opposed to a few years ago, at the RoboCup competitions, in our lab, and in many demonstrations that we give, our robots are active all the time, which represents a huge leap in terms of reliability and of robustness. The robots also move much more quickly today than they did even in 2000. They are capable of maneuvering around obstacles, scoring goals, localizing themselves, all completely autonomously; no one remote controls them. Our robot team can cope with a large degree of uncertainty. Indeed, unlike professional sports teams, they have not seen the other teams prior to play. They don’t have videos of games, don’t know what their opponents look like, don’t know whether they are particularly adept at finding the ball, blocking, or any other aspect of the game. When watching the robot soccer videos, one can easily be caught in the excitement of the game and anxiously wait the scoring of a goal. However, from a deep technical view, we should appreciate their performance well beyond just the goal scoring; their ability to play different roles as a team, to continuously search for and chase the ball, to localize themselves and navigate in the field without being lost even if they are occasionally picked up by a referee.


	In 2002, we were able to gather a complete sequence of images as a robot sees the world. The images left the research team at Carnegie Mellon speechless. The bouncing vision camera on the four-legged body of the robot captures an incredibly different view of the world than the one that we see: the field is upside down, the ball is not always round, objects change position and size radically with the motion of the robot, the ball actually disappears from the angle of view of the robot, when the robot is nearby it.  Overall, the images gathered illustrate the challenge of processing such perceptual data to be used by intelligent behaviors of the robots. Through our CMVision processing algorithm, robots effectively process such images and act based on the objects recognized [2].


	One of main functions of the robot consists of localizing itself on the field. The robot localization problem involves determining your own position in the world. Human beings take for granted that they know where they are. Robots don't have any clue where they are unless algorithms have been written to help them filter the world and try to predict where they are going. How is this accomplished? The classical approach to localization uses a probability distribution for the robot’s belief of its position. It has an a priori model of the robot’s movement and a model of the field as a function of the sensory input, in our case, the fixed colored landmarks. This belief distribution is updated in two steps. When the robot moves, it updates its belief using its a priori model of its own movement. When the robot senses the landmarks, then it further updates the distribution according to the a priori model of the environment. We also followed this classical approach, but it turned out, as I explain below, that it cannot successfully handle large errors in the robot movement model. At RoboCup’98 [10], in Paris, the robots got often entangled with each other, and the referee decided to lift them up and put them in a different location. The robot became completely lost, as its perception at a different location did not match its locale belief, given that the robot itself had not moved. In the classical localization perspective, there is no thinking of robots being lifted up, robots being pushed, or robots falling down. Robot soccer created the first small robots of the world executing a complete task. The earlier functioning robots were big and were not manually moved around, so there was no need for localization algorithms that would mathematically require more updates than just movement and sensors. With no precedent for that, a great deal of research time was devoted to addressing the inevitably unmodeled many situations. We have devised a new localization algorithm, SRL (sensor resetting localization) that is capable of detecting “failure” in its localization updates when the sensory information contradicts its belief above some set threshold [4]. SRL then abruptly creates a new hypothesis for its position based on the sensory data. The robots can now beautifully localize themselves even when with the inevitable errors in their movement models.  


	Subsequently, given that the robots are now equipped with robust vision and localization, they need to act to achieve their goals. They see the world, they know where they are, they need to kick the ball in the right direction. How do they know what they are supposed to do? That derives from what we call planning behavior based approaches, which our research has revealed must be a function of the robot’s own confidence in its world model. This discovery led to our introduction of “multi-fidelity behaviors” in which a robot scores with different procedures as a function of how much it trusts its sensors [11]. As an example, if the robot has low confidence in its own position on the field, it approaches the ball in a plain straight path. If however it knows its position well, it can skew its approach to the ball to set itself behind the ball facing the opposing goal. Such multi-fidelity behaviors are a new contribution; no previous behavior architectures had an explicit set of procedures for the same behavior as a function of the confidence in the robot’s own world model. 


	Let me point out another aspect of the behavior finite state machine. The behavioral states transition among each other upon the verification of conditions that test the visual perceptual input for specific environment states. For example, the robot transitions from searching the ball to approaching it, if it can now see the ball. Anything else that is the image rather than the ball is in reality ignored by the robot. General perception becomes therefore “purposeful perception,” as the robot’s behavior state machine focuses its attention on only specific perceptual conditions to test.	If we think about the images of what the robot could actually see, this purposeful perception explains how the robot still performs well, even when it sees a series of apparently confusing images. Everything is ignored except for the specific conditions set at each state, e.g., the presence of the ball in the searching state.


	Individual robots with real time object recognition, effective sensor resetting localization, and multi-fidelity behaviors can function as individual autonomous creatures. The next question to address is how to form a team of robots.


	The first step in team organization is the introduction of roles, which assign different behaviors to different members of a team, e.g., goalie, mid-fielders, offensive players, defensive players. Robots can be then organized in formations. A team member, as a single robot, executes a particular role through a behavioral state machine. Coordination between team robots during the real time execution may require communication among the robots. However, communication may be expensive or not available, and we have devised coordination approaches that do not need to rely in real time communication among team members. In particular, we have introduced predefined team plans, which we call “locker room agreements,” which encode coordination plans that the robots can do as a team triggered by universal world features that every robot can detect without the need for communication [7]. For example, if a team is winning by more than two goals and there is only one minute left in the game, then the team moves to a defensive formation. Time and score are special world features that the robots can perceive without the need for communication among them. Robots have been equipped with alternative predefined plays that they can execute as a team. They can actually learn the success of each play in the presence of different opponents and can adapt to using the play that succeeds mostly against a particular opponent.


	For the past few years, the Sony legged robots did not have any communication; they did not talk to each other, and they could see each other only in terms of recognition of the colors of their uniforms, which they could perceive. As noted earlier, in 2002, wireless communication became available in these robots. 


	Communication among members of a team opens opportunities for sharing of information and dynamic coordination. In a communicating team, the model of the environment does not need to be inferred only from one robot’s own view of the world. Instead, team members can share their views of the world resulting in a global world model. Even when one robot cannot see the ball, as when the ball is too far or occluded, the robot may know the position of the ball as shared by its teammates. 


	The asynchronous communication in a highly dynamic environment, such as robot soccer, inevitably leads into inconsistency in the information shared. Two robots may communicate different ball positions. We have developed an approach in which each individual robot keeps two separate world models, one that corresponds to its own view of the world, and another that is the merge of the information received by its teammates in terms of their positions and the position of the ball as well as of the confidence in the shared information [6]. The robot relies mostly on its own individual world model and only invokes the shared world model if its confidence in its own model is below some preset threshold.


	Except for the goalie that has a fixed role, other robots are prepared to switch their roles dynamically and opportunistically during the course of a game. For example, as we have seen in the videos, our CMPack’02 team of the Sony legged robots consists of four robots, where one is the goalie, and the other three fill in the three roles of primary attacker, offensive supporter, and defensive supporter. Robots coordinate in two separate phases, namely first they assign roles to each other, and then they position themselves on the field according to their assigned roles. For example, a primary attacker would move towards the ball, while the offensive supporter would position itself in a supportive attacking position, and the defensive supporter would move closer to its own goal. Role assignment is achieved by the introduction of values functions that are computed based on the world model. Each robot can compute the value of each role for all the robots, as a function of their distance to the ball and their position on the field. Roles are hence assigned through local computations based on the shared world model without the need for additional negotiations.


	After a role has been assigned, robots need to position themselves as a function of their roles. We have devised mainly two similar solutions for this strategic positioning, namely a constraint based objective optimization and a gradient based potential field. For the supportive attacker, the objective function finds a position that maximizes the distance to the opponents and teammates and minimizes the distance to the ball and to the goal, under a set of constraints that capture undesirable positions, e.g. don't block the goal, don’t compromise passes [9].  The primary attacker goes to the ball and the supporter moves to a good open position trying to maximize the chances of an emerging pass. We have more recently developed a similar potential field based approach that combines the multiple repulsion and attraction points and allows for the robots to navigate in the direction of the gradient of the field [8]. Our CMPack’02 team successfully coordinated and positioned itself following this approach. It became the RoboCup’02 World Champion and its coordination was clearly visible in the multiple games that the robots played. 


	Teams of robots create several other research directions that we pursue, including dynamic multi-robot path planning, coaching, and multi-agent learning. We have devised algorithms for path planning that probabilistically combine past plans into the generation of new plans and allow for a smooth real time execution of planned trajectories [3]. Coaching addresses the challenging question of providing and following advice [5]. Multi-agent learning enables an agent to learn in the presence of other learning agents. We have introduced an effective learning principle that relies in changing the learning rate as a function of whether the learner is winning or losing [1]. 


	Finally, I will just add a few remarks about the way humans respond to these completely autonomous teams of soccer playing robots. Spectators, as well as we researchers, cheer the robots and get truly involved in the game. Human responses to the robot behavior can be fascinating.  This year, we have wired into robots is a victory dance. That dance, which of course exists because humans programmed it to exist, does not represent any consciousness of the robots, anything they see, perceive, or plan. However, people respond to this dance, as they believe that the robots have emotions and do the dance to express happiness. By 2003, we plan on having five or six different dances that the robots will select randomly, which will increase the illusion that they are creative and, in turn, will have that much more of an impact on spectators’ response to them. At another demonstration early in the year, we have had a similar amazing response of one child to the autonomous aspect of the robot. The child asked “Do the robots wonder why people are picking them up?” The robots autonomous behavior led to the inference of much more than they actually can do. Indeed they are currently only little soccer player robots. But time will pass and they will become increasingly more efficient.


	Our research takes place within the context of my overarching research project at Carnegie Mellon, which we call CORAL for Cooperate, Observe, Reason, Act and Learn. All the videos and publications are available at http://www.cs.cmu.edu/~coral.


	The first RoboCup American Open will be held in Pittsburgh, April 30 thru May 4, 2003, at Carnegie Mellon for all the Americas. As this paper briefly outlines, the cognition and action involved in competitions between multi-robot teams is very challenging and fascinating, both scientifically and at engineering level, and offers opportunities for ongoing research and developments for years to come.
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