Soccer-playing robots could lead to completely

autonomous intelligent machines.
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The idea of autonomous robot soccer teams invariably inspires images and
expectations that, ironically, remove us somewhat from the real concept they
embody. Indeed, the underlying research goes well beyond entertaining soc-
cer fans to the creation of completely autonomous intelligent robots. I am
in the fortunate position of pursuing research in artificial intelligence (Al),
a fascinating field of research started by Allen Newell and Herb Simon at
Carnegie Mellon. In the late 1980s, Allen Newell announced that it was
time for the subareas of Al to merge and create “complete intelligence
agents” capable of perception, action, and cognition. [ fully embraced this
challenge as the subject of my research.

Robot soccer teams compete in matches called RoboCup, which set itself
a challenge of creating a robot team that could beat a human soccer team in
the World Cup in 2050. RoboCup competitions are organized in a way that
advances the state of the art of Al and robotics. Every year, the leagues are
revised and moved closer to reality. The final goal is for robots to coexist
with humans in a common physical environment.

The research platforms defined for the RoboCup international competi-
tions present many challenges: (1) the environment is only partially observ-
able; (2) the effects of a player’s actions in the presence of opponents are
uncertain and difficult to model; and (3) the cycle of perception, cognition,
and action must run in real time. Soccer differs from other adversarial
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scenarios in fundamental ways. In chess, for example,
there are no uncertainties about the effects of a player’s
actions. When Kasparov played chess against Deep
Blue, there was no uncertainty in the execution of the
moves—no tables were shaken; no pieces fell acciden-
tally. Real-time response required only a combination
of deliberative planning and reactive execution.

Autonomous playing robots face many technical
challenges. The robots function today in a color-coded
world. The floor is green; the goals are yellow and blue;
the ball is orange; the uniforms are red and blue; the
field is marked with unambiguous colored landmarks.
Unlike the real world, the entire environment is cus-
tomized. The real world in all of its complexity will be
incrementally addressed over time. Each time the
leagues are revised, the teams move a bit closer toward
realization of the final goals. This year, for example,
black and white balls will replace orange balls to deter-
mine whether robots can cope without the color.

Eventually robots will be able to cope with the real
world—run in grass, function in rain or shine, and do all
kinds of beautiful kicks through the air. The objective
is to develop robots that can perceive and model the
environment with which they are interacting and then
respond to problems or changes in that environment in
real time. Even in the color-coded world, we had to
develop new segmentation and object-recognition algo-
rithms capable of reliably and continuously processing
images in real time.

To function as a true approximation of human intel-
ligence, Al must encompass the idea of thinking forever,
of deliberative planning, of when to stop thinking and
start executing, and of assessing and learning from an
execution to improve future executions. In other words,
the goal is the integration of thinking, perceiving, and
acting. Realization of the goal is decades away, but sig-
nificant progress has been made in many dimensions,
ranging from hardware and strategic teamwork to intel-
ligent response to the world and other robots.

In the 2002 RoboCup competitions, in the labora-
tory, and in many demonstrations, our robots were
active all the time, which represents a huge leap forward
in terms of their reliability and robustness. The robots
also move much more quickly today than they did even
a few years ago. They are capable of maneuvering
around obstacles, scoring goals, and localizing them-
selves, all autonomously (i.e., without remote control).
Our robot team can cope with a large degree of uncer-
tainty. Indeed, unlike real-world sports teams, they must

because they do not see their opponents prior to play.
They have no videos of games, do not know what their
opponents look like, and do not know if their opponents
are adept at finding the ball, blocking, or any other
aspect of the game. It’s easy to get caught up in the
excitement of the game, but we can also appreciate their
performance from a technical view—their ability to
play different roles as a team, to search continuously for
the ball and chase it, to localize themselves and navigate
in the field without getting lost, even if they are occa-
sionally picked up by a referee.

A soccer robot’s view
of the world is utterly
different from ours.

In 2002, we were able to gather a complete sequence
of images of a robot’s view of the world. The images left
the research team at Carnegie Mellon speechless. The
bouncing vision camera on the four-legged body of the
robot captures an utterly different view of the world
than the one we see: the field is upside down; the ball
is not always round; objects change position and size
radically with the motion of the robot; the ball actually
disappears from view when it is near the robot. Overall,
the images illustrate the challenge of processing percep-
tual data to be used by intelligent robots. Through our
CMVision processing algorithm, robots effectively
process such images and act based on the objects they
recognize (Bruce et al., 2000).

One of the main functions of the robot is localizing
itself on the field. Localization involves determining its
position in the world. Human beings take for granted
that they know where they are. Robots have no clue
where they are unless algorithms have been written to
help them filter the world and try to predict where they
are going. How is this accomplished? The classical
approach to localization uses a probability distribution
for the robot’s belief of its position. The distribution
includes an a priori model of the robot’s movement and
a model of the field as a function of the sensory input
(e.g., the fixed colored landmarks). When the robot
moves, it updates its belief using the a priori model of its
own movement. When the robot senses the landmarks,
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it further updates the distribution according to the a
priori model of the environment. When we tried this
classical approach, however, the robot could not handle
the large errors in the robot movement model.

At RoboCup’98, in Paris, the robots often became
entangled with each other, so the referee lifted them up
and put them down in a different location. At that
point, the robots became completely lost because their
perceptions of a different location did not match their
locale belief because they had been moved but had not
moved themselves (Veloso et al., 1998).

FIGURE T Robot soccer players on the playing grid.

In the classical approach to localization, robots being
lifted up, pushed, or falling down are not accounted for.
Earlier robots were big and were not moved around
manually, so there was no need to localize algorithms.
Robot soccer created the first small robots that execute
a complete task. We devoted a great deal of research
time to devising a new localization algorithm, called
sensor resetting localization (SRL) that is capable of
detecting “failure” in localization updates when the sen-
sory information contradicts belief above a set threshold
(Lenser and Veloso, 2000). SRL then abruptly creates a
new hypothesis for the robot’s position based on the sen-
sory data. With SRL, the robots can localize themselves
despite inevitable errors in their movement models.

Once the robots have been equipped with robust
vision and localization, they need to act to achieve their
goals. Now that they see the world and they know
where they are, they need to kick the ball in the right
direction. How do they know what they are supposed to
do? We call this a planning-behavior-based approach,
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which our research has revealed must be a function of
the robot’s confidence in its world model. This discov-
ery led to “multifidelity behaviors,” in which a robot
scores with different procedures as a function of how
much it trusts its sensors (Winner and Veloso, 2000). If,
for example, the robot has low confidence in its posi-
tion on the field, it approaches the ball by a straight
path. If it knows its position well, it can vary its
approach to the ball to set itself behind the ball facing
the opposing goal. Multifidelity behaviors are an inno-
vation; no previous behavior architectures had explicit
procedures for behavior as a function of a robot’s confi-
dence in its world model.

The behavioral states transition among each other
upon verification of conditions that test the visual
perceptual input for specific environment states. For
example, the robot transitions from searching for the
ball to approaching it, if it can see the ball. Any image
other than the ball is ignored. General perception
becomes, therefore, “purposeful perception,” as the
robot’s behavior-state machine focuses its attention
only on specific perceptual conditions. Considering
the images the robot actually sees, this purposeful
perception explains how the robot can perform well.
Even if it sees a series of apparently confusing images,
it ignores everything except the specific conditions set
at each state (e.g., the presence of the ball in the
searching state).

Individual robots with real-time object recognition,
effective SRL, and multifidelity behaviors can function
as autonomous individual creatures. The next question
to address is forming a team of robots. The first step in
team organization is assigning roles, different behaviors
to different members of the team (e.g., goalie, mid-
fielders, offensive players, and defensive players).
Robots can then be organized in formations. A team
member, as a single robot, executes a particular role
through a behavioral-state machine. Coordination
among team members during real-time execution may
require communication among them. However, com-
munication may be expensive or not available, so we
have devised coordination approaches that do not
depend on real-time communication. We introduced
predefined team plans, which we call “locker room
agreements,” that encode coordination plans the robots
can carry out as a team, triggered by universal world fea-
tures that all of the robots can detect without commu-
nication (Stone and Veloso, 1999). Time and score, for
example, are special world features the robots can
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perceive without communicating with other team
members. So, if a team is winning by more than two
goals and there is only one minute left in the game,
then the team moves to a defensive formation. The
robots have been equipped with alternative, predefined
plays they can execute as a team. They can actually
assess the success of each play in the presence of differ-
ent opponents and adapt to using the play most likely
to succeed against a particular opponent.

Before 2002, the robots could not talk to each other
and could see each other only in terms of recognition of
the colors of their uniforms, which they could perceive.
In 2002, the robots acquired wireless communication.
Communication among members of a team creates
opportunities for sharing information and for dynamic
coordination. In a communicating team, the model of
the environment does not have to be inferred from one
robot’s view of the world. Team members can share
their views of the world to create a global world model.
Therefore, even if one robot cannot see the ball, per-
haps because the ball is too far away or is occluded, the
robot may know the position of the ball through com-
munication with its teammates.

Asynchronous communication in a highly dynamic
environment like robot soccer inevitably leads to
inconsistencies in the information shared. Two robots
may communicate different ball positions, for example.
Therefore, we developed an approach in which each
individual robot keeps two separate world models, one
that corresponds to its view of the world and one that
merges information received from its teammates in
terms of their positions and the position of the ball, as
well as of the confidence in the shared information
(Roth et al., 2003). The robot relies mostly on its
individual world model and invokes the shared world
model only when its confidence in its model is below a
preset threshold.

Except for the goalie, which has a fixed role, the
robots are prepared to switch roles dynamically and
opportunistically during the course of a game. For
example, the CMPack’02 team of Sony legged robots
consists of four robots. One is a goalie, and the other
three play the roles of primary attacker, offensive sup-
porter, and defensive supporter. The robots coordinate
in two separate phases. First, they assign roles to each
other; then they position themselves on the field
according to their assigned roles. For example, a pri-
mary attacker would move toward the ball; the offen-
sive supporter would position itself in a supportive
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attacking position; the defensive supporter would move
closer to its own goal. Role assignment is achieved by
the introduction of values functions computed based on
the world model. Each robot can compute the value of
each role for all of the robots as a function of their dis-
tance to the ball and their positions on the field. Roles
are hence assigned through local computations based on
the shared world model, thus eliminating the need for
additional negotiations.

After a role has been assigned, the robots must posi-
tion themselves as a function of their roles. We have
devised two similar solutions for strategic positioning: a
constraint-based objective optimization and a gradient-
based potential field. For the supportive attacker, the
objective function finds a position that maximizes the
distance to the opponents and teammates and minimizes
the distance to the ball and to the goal, under con-
straints (e.g., do not block the goal, do not compromise
passes, etc.) (Veloso et al., 1999). The primary attacker
goes to the ball, and the supporter moves to a good open
position trying to maximize the chances of an emerging
pass. Recently, we developed a similar potential-field-
based approach that combines multiple repulsion and
attraction points and allows the robots to navigate in the
direction of the gradient of the field (Vail and Veloso, in
press). Using this approach, our CMPack’02 team suc-
cessfully coordinated and positioned itself, becoming the

RoboCup’02 World Champions.

Communication among team
members creates opportunities
for sharing information and
dynamic coordination.

Other research we are pursuing includes dynamic
multirobot path planning, coaching, and multiagent
learning. The algorithms we devised for path planning
probabilistically combine past plans into the generation
of new plans and allow for a smooth real-time execution
of planned trajectories (Bruce and Veloso, 2002).
Coaching addresses the challenging question of provid-
ing and following advice (Riley and Veloso, 2002).
Multiagent learning enables an agent to learn in the
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presence of other learning agents. We have introduced
a learning principle that changes the learning rate as a
function of whether the learner is winning or losing
(Bowling and Veloso, 2002).

Human responses to robot behavior can be fascinat-
ing. Spectators, as well as researchers, cheer the robots
on and get truly caught up in the game. This year, we
wired a victory dance into the robots. The dance, which
of course exists because humans programmed it to exist,
does not represent consciousness on the part of the
robots, nothing they see, perceive, or plan. Neverthe-
less, people respond to the victory dance because the
robots appear to be expressing their emotions. By 2003,
we plan to have five or six different dances the robots
can select randomly, which will increase the illusion
that they are creative and will elicit a stronger response.
At a demonstration last year, a child asked if the robots
wonder why people pick them up. Based on their
autonomous behavior, people often infer that robots can
do much more than they actually can. Indeed, they are
currently only little soccer-playing robots. But in time
they will surely become much more efficient.

The first RoboCup American Open for all the Amer-
icas will be held April 30 thru May 4, 2003, at Carnegie
Mellon in Pittsburgh. The cognition and action
involved in competitions between multirobot teams
continues to be challenging scientifically and at the
engineering level and will provide opportunities for
research and development for years to come.
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