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Abstract. In this paper we describe the Trajectory Tree or TTree algorithm.
TTree takes a set of policies and pieces them together to solve a Semi-Markov
Decision Problem (SMDP). The algorithm uses a learned tree based discretization
of the state space as an abstract state description and both supplied and generated
policies as temporally abstract actions. It uses a generative model of the world to
sample the transition function for the abstract SMDP. TTree then finds a policy for
the abstract SMDP. In this paper we present the algorithm and some detailed ex-
amples of its execution. Furthermore we present empirical comparisons to other
SMDP algorithms showing the effectiveness of our algorithm.

1 Introduction

Both Markov Decision Processes (MDPs) and Semi-Markov Decision Processes (SMDPs),
summarized in [1], are important formalisms for planning in stochastic domains. SMDPs,
like MDPs, suffer from exponential state explosion. The number of states that need to
be considered by an algorithm learning a policy for an SMDP is exponential in the
number of state dimensions that describe the problem.

A number of techniques have been used to solve large MDPs. These techniques can
be broken into two main classes.State abstractionrefers to the technique of grouping
many states together and treating them as one, e.g. [2, 3].Temporal abstractionrefers to
techniques that group sequences of actions together to form abstract actions which move
through large regions of state space, e.g. [4–6]. These techniques usually transform the
MDP into a related SMDP.1

In this paper we introduce the Trajectory Tree, or TTree, algorithm, that uses both
forms of abstraction. TTree uses a new format for defining temporal abstractions that
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are those of the authors and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of the Defense Advanced Research
Projects Agency (DARPA), the Air Force, or the US Government.

1 Using a function approximator for the value function, e.g. [7, 8], can, in theory, subsume both
state and temporal abstraction. The authors are unaware of any of these techniques that, in
practice, achieve significant temporal abstraction.



does not require the definition of end points, unlike some other formats. Given a set of
abstract actions, TTree first generates some additional abstract actions from the base
level actions of the domain. TTree then alternates learning a tree based discretization of
the state space and learning a policy for an abstract SMDP using the tree as an abstract
state representation. In [9] we give a proof that TTree will converge to the optimal
policy. In this paper we give a thorough description of the behavior of the algorithm.
Moreover we present empirical results showing TTree is an effective anytime algorithm
in practice.

2 Styles of Temporal Abstraction

There are two main styles of temporal abstraction described in the literature. The first
style, e.g. [5, 6], has a strict, pre-defined hierarchy of actions. Each action can use only
the actions in the next level of the hierarchy to achieve its goal. Often this hierarchy
includes some state abstraction related to the temporal abstraction. Hengst [10] has
recently generated hierarchies of a limited form by finding a fixed ordering of the state
variables.

The second main style [4], revolves around defining the end point(s) of a macro
action, oroption. After these end points have been defined, policies can be learnt that
achieve them. These policy/end point pairs can then be used as base level actions in an
SMDP. Once an option is selected to be executed, its policy is followed until an end
point is reached. The combined series of base level actions is treated as one, temporally
extended, action by the SMDP. McGovern and Barto [11] have recently managed to
automatically find options for the class of endpoints defined by ‘bottlenecks’ in the
state space.

In this paper we introduce a style of temporal abstraction similar to options, but
we remove the requirement for defining the end points of the option. Our abstract ac-
tions are simply policies. It is up to the algorithm using these abstract actions to decide
in which regions of the state space each abstract action is followed. In fact, arbitrary
controllers can be plugged in to the algorithm, but we do not consider non-markovian
controllers in the proof of correctness or experiments.

Consider, for example, a robot that walks through a maze. This robot is legged, and
the walking motion is non-trivial. One might imagine a set of four policies, each of
which walks the robot in one the four cardinal directions, north, south, east and west.
Each of these policies depends only upon the state variables that define the leg position,
and not upon the state variables defining the position of the robot in the maze. An
algorithm solving the walking robot in a maze problem need only learn which policy to
use in which region of the maze.

We have recently published work on decomposing policies in a supervised learning
setting [12]. We expect that this style of decomposition will form useful abstract actions
of the form expected by TTree, however in this paper all the domain specific macros
used in the experiments were generated by hand. We should also note that it is easy to
convert an option into a policy by discarding the end points. If no action is specified in
a state then a uniform distribution over the actions is used.



3 Definitions

An SMDP is defined as a tuple〈S,A, P, R〉.2 S is the set of states.A is the set of
actions.P : S × A× S × < → [0, 1] is a joint probability distribution over both next-
states and times, defined for each state action pair.R : S×A → < defines the expected
reward for performing an action in a state.3

Our agent starts in a state. It then performs an action. That action takes a length of
time to move the agent to a new state, the time and resulting state determined byP . The
agent gets reward for the transition defined byR.

Our goal is to learn a policy,π : S → A, that maps from states to actions. In
particular we want the policy,π∗, that maximizes a sum of rewards. To keep this sum
of rewards bounded, we will introduceγ ∈ (0, 1). The goal is to find a policy that
maximizes

∑∞
t=0 γtrt wherert is the reward our agent receives at timet.

We can then define the following standard functions:

Q(s, a) = R(s, a) +∑
s′∈S

∫ ∞

t=0

Ps,a(s′, t)γtV (s′) dt (1)

V (s) = Q (s, π(s)) (2)

π∗(s) = argmax
a∈A

Q∗(s, a) (3)

In addition, we will define the followingT function. This function is defined over a
set of statesS ′ ⊂ S. It measures the discounted sum of reward for following the given
action until the agent leavesS ′, then following the optimal policy.

TS′(s, a) = R(s, a) + (4)∑
s′∈S′

∫ ∞

t=0

Ps,a(s′, t)γtTS′(s′, a) dt + (5)

∑
s′∈(S−S′)

∫ ∞

t=0

Ps,a(s′, t)γtV (s′) dt (6)

We will write T (s, a) instead ofTS′(s, a) whenS ′ is the set of states that embed
into the abstract state containings.

We will assume that instead of being givenP andR, our agent is given agenerative
modelof the world, e.g. [13]. This is a function,G : S × A → S × < × <, that takes
a state and an action and returns a next state, a time and a reward for the transition.
The returned values are sampled fromP andR. This description of the world is more

2 P is often known asQ in the SMDP literature, however as we are usingQ elsewhere, we are
using MDP notation to avoid confusion.

3 R can also depend upon both next state and time for the transition, but as these in turn depend
only upon the state and action, they fall out of the expectation.



limited thanP andR in that the agent can only get samples and does not know exact
probabilities. However, this model is more powerful than having the agent in the real
world as the agent can sample from any state and action it chooses.

4 The TTree Algorithm

TTree uses a tree to divide the world into abstract states. Each leaf in the tree corre-
sponds to an abstract state. We extend previous tree-based discretization algorithms by
using abstract actions rather than base-level actions in each abstract state. The abstract
actions are policies in the original SMDP. There is a base set of abstract actions au-
tomatically generated from the low level actions. Additional abstract actions might be
learned or supplied by the user. Together the abstract state and abstract actions form an
abstract SMDP.

Each base level action has a corresponding, automatically generated, abstract action
which executes that base action in every state. We also generate a random abstract action
which picks uniformly among the base level actions in every state. The random abstract
action provides additional exploration by executing a random walk through the state
space.

TTree starts with the entire state mapped to a single leaf in the tree. It then loops
gathering data and improving the accuracy of its abstract SMDP. An abstract state is
divided when TTree estimates that theT (s, a) function is not constant across that state.
This is detected through the gathering oft values which are a stochastic approximation
of T . TTree divides a leaf if it finds that thet sample distribution varies across that leaf
for any action.

Eacht sample has a corresponding start state. From that state, the generative model
is used with each of the abstract actions in turn to form a set of trajectories through
the low level state space. The trajectories run until they leave the current abstract state,
or they have run long enough that the discounted reward value has converged, or they
reach a deterministic transition allowing the trajectory value to be calculated rather than
sampled or an absorbing state is reached. The start state, end state, abstract action, dis-
counted reward and total time for each trajectory are recorded. Each sampled trajectory
is a sampled transition in the abstract SMDP.

The trajectory can be used to stochastically approximate theT function. The reward
for the first step of a trajectory is explicitly in theT function, equation 4. Rather than
calculate an expectation over all next states and times, the trajectory samples a next
state and time, and then loops instead of recursing, equation 5. The third part of theT
function, equation 6, has an expectation that is sampled by the last step of the trajectory.
The value function in this third part is approximated by the value of the corresponding
abstract state.

The trajectories serve a second purpose besides stochastically approximatingT .
The abstract transition function is defined using the trajectories as abstract transitions.
When our agent enters an abstract state, we assume it is transported to the start of a
random trajectory for the abstract action it wishes to follow. The agent then moves to
the abstract state that the trajectory ends in, taking time equal to the time taken by the
trajectory and gaining reward equal to the discounted reward gained by the trajectory.



Table 1.ProcedureTTree(S, Â, G(s, a))

1: root ← a new leaf containingS
2: loop
3: Sa ← {s1, . . . , sNa} sampled fromS
4: for all s ∈ Sa do
5: SampleTrajectory(Â, s) {see ProcedureSampleTrajectory(Â, sstart) in Table 2}
6: end for
7: UpdateAbstractSMDP() {see ProcedureUpdateAbstractSMDP() in Table 3}
8: D ← ∅ {Reset split data set}
9: for all leavesl and associated pointsp do

10: t← ∅ {t is a new array of size|Â|}
11: for all trajectories inp, 〈a, sstop , ttotal , rtotal〉 do
12: lstop ← LeafContaining(sstop)
13: t[a]← t[a] + (rtotal + γttotal V (lstop))/Nt

14: end for
15: s← sstart in p
16: D ← D ∪ 〈s, t〉 {addt-values to data set}
17: k ← argmaxa t[a]
18: D ← D ∪ 〈s, k〉 {add best action to data set}
19: end for
20: for all new splits in the treedo
21: EvaluateSplit(D) {Use the splitting criterion to evaluate this split to see if eithert, for

any action, ork varies across a leaf}
22: end for
23: if ShouldSplit(D) then {Evaluate the best split using the stopping criterion}
24: Introduce best split into tree
25: Throw out all sample points,p, in the leaf that was split
26: end if
27: end loop

The complete algorithm is shown as ProcedureTTree(S, Â, G(s, a)) in Table 1,
whereS is the set of low level states,̂A = {π0(s), . . . , πn(s)} is the set of policies
for the abstract actions (including the automatically generated ones), andG(s, a) is the
generative model. The various constants referred to are defined in Table 4.

4.1 Sampling the transition function

Trajectory sampling is used in many policy gradient ascent methods of solving large
(S)MDPs, e.g. [13]. Our sampling is simpler in that we do not require gradients from
our samples. We also add extra stopping criteria for the trajectories. In particular, the
trajectory ends if it reaches a new leaf.

Ng and Jordan [13] carefully define the entropy source for each trajectory. Our im-
plementation also does this, although we believe it unimportant for in our experiments
as we used a deterministic domain. We refer the reader to their paper for details.



Table 2.ProcedureSampleTrajectory(Â, sstart)

1: Initialize new sample point,p, atsstart

2: l← LeafContaining(sstart)
3: for all policiesπi(s) ∈ Â do
4: for j = 1 to Nt do
5: s← sstart

6: ttotal ← 0, rtotal ← 0
7: repeat
8: 〈s, t, r〉 = G(s, πi(s))
9: ttotal ← ttotal + t

10: rtotal ← rtotal + γttotal r
11: until s 6∈ l, or

ttotal > MAXTIME, or
〈s, ∗, ∗〉 = G(s, πi(s)) is deterministic ands = s′, or
s is an absorbing state

12: if the trajectory stopped because of a deterministic self transitionthen
13: rtotal ← rtotal + γ(ttotal+t)r/(1− γt)
14: end if
15: if the trajectory stopped because the final state was absorbing,or because of a deter-

ministic self transitionthen
16: ttotal ←∞
17: end if
18: sstop ← s
19: Add〈a, sstop , ttotal , rtotal〉 to the trajectory list inp
20: end for
21: end for

4.2 Growing the tree

In ProcedureTTree(S, Â, G(s, a)) (Table 1), we mention testing for good divisions
using a splitting criterion. A splitting criterion is a statistical test that determines if the
t values on either side of the recently introduced split are actually different, and allows
the magnitude of the differences to be ranked. In [3] we used a non-parametric test, the
Kolmogorov-Smirnov test. The results in this paper are with a Minimum Description
Length based test, described in [12].

In the algorithm described we testt[a],∀a, andk = argmaxa t[a] with the splitting
criterion. The proof of correctness only requires testingt. We found that biasing the test
with k gave a small improvement in empirical results.

We make no claims about which test should be used. The algorithm seems to be
fairly robust to different tests. Non-parametric tests seem to perform better for separat-
ing t values. The Minimum Description Length test makes it easy to combine the tests
on t andk.

The other important part of tree growing is the stopping criterion. Procedure
TTree(S, Â, G(s, a)) (Table 1) will not introduce a split if the stopping criterion is
fulfilled, but keeps looping gathering more data. The experimental results in this paper
are with a Minimum Description Length stopping criterion. We have found that the al-
gorithm tends to get very good results long before the stopping criterion is met. The



Table 3.ProcedureUpdateAbstractSMDP()

1: for all leavesl with fewer thanNl sample pointsdo
2: Sa ← {s1, . . . , sNa} sampled froml
3: for all s ∈ Sa do
4: SampleTrajectory(Â, s) {see ProcedureSampleTrajectory(Â, sstart) in Table 2}
5: end for
6: end for
7: P ← ∅ {Reset abstract transition count}
8: for all leavesl and associated pointsp do
9: for all trajectories,〈a, sstop , ttotal , rtotal〉, in p do

10: lstop ← LeafContaining(sstop)
11: P ← P + 〈l, a, lstop , ttotal , rtotal〉
12: end for
13: end for
14: TransformP into transition probabilities
15: Solve the SMDP

Table 4.Constants in the TTree algorithm

Constant Definition

Na The number of points sampled from the entire space each iteration
Nl The minimum number of points sampled in each leaf
Nt The number of trajectories sampled per start point

MAXTIME The number of time steps before a trajectory value is assumed to have con-
verged. Often chosen to keepγMAXTIMEr/(1− γt) < ε, wherer andt are the
largest reward and smallest time step, andε is an acceptable error

outer loop in Table 1 is an infinite loop, although it is possible to modify the algorithm
so that it stops when the stopping criterion is fulfilled. We have been using the algorithm
as an anytime algorithm.

5 An example TTree execution

This example describes TTree running in the Towers of Hanoi domain. This domain
consists of 3 pegs,{P0, P1, P2}, on which sitN disks,{DA, DB , . . .}. Each disk is of
a different size,DA being the smallest, and they stack such that smaller disks always
sit above larger disks. Some example states from the eight disc problem are shown in
Table 5 a). There are six actions, shown in Table 5 b), which move the top disk on one
peg to the top of one of the other pegs. An illegal action, trying to move a larger peg
on top of a smaller peg, results in no change in the world. The object is to move all the
disks to a specified peg; a reward of50 is received this state. All base level actions take
one time step. The decomposed representation we used has a boolean variable for each
disk/peg pair. These variables are true if the disk is on the peg.

In our example we’ll use the eight disc domain andγ = 0.99. We will also assume
that TTree has been supplied with solutions to the three seven disc problems. These
are policies that will move the seven smallest discs, referred to as theG stack, onto a



Table 5.States and actions in the Towers of Hanoi domain. a) A set of sample states. b) The set
of base level actions

a) b)

Example Disks on peg
state ID P0 P1 P2

s1 DA DBDCDDDEDF DGDH

s2 DADDDG DBDE DCDF DH

s3 DADDDG DBDEDH DCDF

s4 DADDDH DBDEDG DCDF

Action Move Disc
From PegTo Peg

a0 P0 P1

a1 P0 P2

a2 P1 P2

a3 P1 P0

a4 P2 P1

a5 P2 P0

Table 6.The abstract set of actions in the Towers of Hanoi domain

Action Effect

Generated abstract actions

A0 Perform actiona0 in all states
A1 Perform actiona1 in all states
A2 Perform actiona2 in all states
A3 Perform actiona3 in all states
A4 Perform actiona4 in all states
A5 Perform actiona5 in all states
Ar Choose uniformly from{a0, . . . , a5} in all states

Supplied abstract actions

AG0 If stackG is onP0 then choose uniformly from{a0, . . . , a5}, otherwise follow
the policy that will move stackG to P0.

AG1 If stackG is onP1 then choose uniformly from{a0, . . . , a5}, otherwise follow
the policy that will move stackG to P1.

AG2 If stackG is onP2 then choose uniformly from{a0, . . . , a5}, otherwise follow
the policy that will move stackG to P2.

particular peg. These macros choose uniformly among the base level actions when the
G stack is already on the appropriate peg. The complete set of abstract actions is shown
in Table 6.

5.1 Building the abstract SMDP

Initially the algorithm has the entire state space as a single abstract state. The first thing
the algorithm does is sample some trajectories.

Sampling Trajectories Initially it picks some random start points. We’ll assume the
algorithm chooses the points in Table 5 a).

Trajectories are then taken from each start points with each action. Consider the first
sample point. From this location, actiona1 will solve the problem in a single step and



receive reward. In our set of abstract actions,A1 will do the same thing. In addition,
AG2 will also perform that base level action and solve the problem.Ar has one chance
in six of performing the right action in this state. Even if it does not solve the problem
with its first move, it will be performing a random walk near the solution and so has a
high probability of solving the problem.

None of the other abstract actions will solve the problem froms1. In detail;AG0 and
AG1 both move the agent away from the goal. Once they have moved theG stack to the
appropriate peg, they will perform a random actions, and then fix the stack again if nec-
essary. They will never reach the solution. There are three base level actions that are il-
legal. The corresponding abstract actions simply stop with deterministic self-transitions
after one step. There are two other legal base actions apart from the one that solves
the problem. These move the top disc on pegs 0 and 2 respectively to peg 1. These
actions do not solve the problem. Furthermore, in the Towers of Hanoi domain per-
forming any action leaves the agent in a state where performing the same action again
is illegal, hence the generated abstract actions stop after two steps with a deterministic
self-transition.

Having considered the resulting state of these trajectories, let us consider how long
they take to run.A1 andAG2 both solve the problem in one step. The solution state is
absorbing, so both trajectories stop immediately. The generated deterministic abstract
actions that perform ’illegal’ actions and so perform deterministic self-transitions like-
wise generate single-transition trajectories. The two generated deterministic abstract
actions that do not immediately perform ‘illegal’ actions will perform illegal actions
for their second action; their trajectories will be two steps long. The ‘random’ abstract
action will take a varying amount of time that stochastically depends upon the distance
to the goal.AG0 andAG1 will each run for MAXTIME time steps.

Now we’ll consider the second starting point. This starting point is similar tos1

except that the problem cannot be solved in a single step from here.A1 behaves like the
other generated abstract actions and onlyAG2 solves the problem efficiently.Ar is the
other abstract action that might solve the problem. If it does so, the trajectory is likely
to be fairly long.

The third and fourth starting points behave in similar ways. Like the second starting
point, there is no base level action that will solve the problem. Again, the random action
might solve the problem, but it is unlikely, and we would expect that if a solution is
found it is significantly longer than the solution found from start point 2. This is simply
due to the fact that the length of the shortest solution from point 2 is shorter than the
length of the shortest solution from points 3 and 4.

None of the supplied macros will solve the problem from points 3 or 4. IfAG2 is
selected, thenDH will never be moved ontoP2. If one of the other macros is selected,
thenDH might be moved ontoP2 at some point but theG stack will never be moved to
P2.

We can generalize these results to classes of start points. Any start point withDH

on P2 will reach the goal state usingAG2. Any start point withDH disc onP0 or P1

will not be solved by any macro, with the possible exception of the random macro.



A = {A0, A2, A3,
A4, A5, AG0, AG1}
p = 1
r = 0
g = 0

A = {AG2}
p = 0.5
r = 32.87
g = 0.65

A = {A1}
p = 0.75
r = 0
g = 0

A = {A1}
p = 0.25
r = 50
g = 0.99

A = {AG2}
p = 0.5
r = 0
g = 0

A = {Ar}
p = 0.5
r < 32.87
g < 0.65

A = {Ar}
p = 0.5
r = 0
g = 0

Fig. 1.Example abstract state transition diagram for the Towers of Hanoi domain

The abstract transition function Having sampled these trajectories, TTree uses them
to construct an abstract SMDP. All the trajectories either reached the absorbing goal
state or ended in the same abstract state they started in (there is only one state). The
abstract transition function is as follows: The generated abstract action that solves the
problem from start state one will solve the abstract SMDP with low probability,p =
0.25 with just the four example start points, and self transition the rest of the time. The
random abstract action will solve the problem with decreasing frequency and increasing
trajectory length as the start state moves away from the goal state.AG2 will solve the
problem froms1 ands2. More generally, it will solve the problem from any start state
whereDH is onP2. It will self-transition the rest of the time. The other abstract actions
will all self-transition. Figure1 shows the abstract state transition diagram. Note that the
random transition is marked with the maximum possible discount factor and reward. We
would expect that they would both be significantly lower for any particular sample. Also
note that it takesAG2 116 steps to solve the problem from states2, but only 1 step from
states1. These lengths giveγ ≈ 0.31, andγ = 0.99, andr ≈ 15.7 andγ ≈ 0.31. The
transition shown from the abstract state to the absorbing state uses weighted average
values,r ≈ 32.87 andγ = 0.65.

This abstract SMDP can then be solved (with the additional constraint that the ab-
sorbing state is assumed to have value 0). The resulting Q values are 0 for all abstract
actions exceptingAG2 andAr. AG2 has a Q value of 32.87.Ar has a Q value smaller
than that, the exact value depending upon the random trajectory length. These values
cause the algorithm to selectAG2 as the action to perform in all non-absorbing states.
This policy is optimal in approximately1/3 of the states.

5.2 Refining the abstract state space

Having formed a policy, the algorithm now attempts to refine the state. Each of the
trajectories has a value assigned to the start state,ts ← r + γV (s′) wherer andγ
are the recorded values for the transition, andV (s′) is the value associated with the
resulting abstract state for the transition.



H2 State S1
State S2

Fig. 2.Example abstract state tree for the Towers of Hanoi domain

In the current example, the value of the trajectory happens to equal the reward for the
trajectory because all the transitions either haveγ = 0 or transition into the absorbing
state.

If we added more random start states then we would see a pattern similar to the
classes of trajectories mentioned in section 5.1 above. Thet values of the trajectories
for Ar will be high near the goal state, and decrease quite quickly as you move away
from the goal state. Any other trajectory starting withDH onP0 or P1 will have t = 0.
Any trajectory forAG2 starting withDH on P2 will reach the goal. These trajectories
will have t values that increase as the trajectory length decreases. These values will be
higher than the values forAr. Other trajectories will havet = 0 except the the one that
starts in states1 and uses actionA1 which will havet = 50.

For a reasonable statistical test, you need more than four start states. With a large
enough set, the algorithm finds a distinction between states in whichDH is onP2 and
other states. The resulting abstract state tree is shown in Figure 2.

5.3 Further details

Having divided the state space, we now have two abstract states,S1, andS2. Moreover,
we don’t know when or even if the trajectories previously sampled cross between the
states. We discard those trajectories and sample some new ones.

The generated abstract actions don’t change their behavior much, so we’ll concen-
trate on the supplied abstract actions.

In abstract stateS2, DH is onP2. From any base state in this abstract state,AG2

will reach the goal. NeitherAG0 norAG1 will reach the goal in this abstract state.
In abstract stateS1, theDH is either onP0 or P1. If the DH is onP0 thenAG0 will

move other discs on top ofDH . Once the other discs are stacked onP0, AG0 chooses a
random action. This action can only moveDA or choose an illegal action.

However, if actionAG1 is chosen then all the discs exceptDH will be moved toP1.
Once in this state,AG1 chooses a random base-level action. This has a one in six chance
of moving theDH to P2. That moves the problem into abstract stateS2, from whence
it can be solved. The other two legal base level actions moveDA to another peg.AG1

will simply move it straight back and make more random moves untilS2 is reached. If
theDH is onP1 then symmetric situation arrises -AG0 will move to stateS2.

Sampling the transition function and solving the abstract SMDP leads to the follow-
ing policy: In S2, AG2 is chosen and solves the problem, and inS1, AG0 andAG1 are
both equally effective - they each lead to stateS2 half the time and self transition the
other half of the time.



Fig. 3.Example of some trajectories

Thet values in stateS1 clearly indicate the regions whereAG0 andAG1 are effec-
tive. Dividing S1 based on the location ofDH will separate thoset values; this is the
split that TTree introduces next.

At this point, the algorithm has three abstract states, one for each position ofDH .
Once the transition function is sampled and the SMDP solved, there is one clearly
superior abstract action in each state. Look ahead a little to the empirical results, this
state decomposition corresponds to the peak in expected reward at 150 000 samples in
figure 4 a). There are only two base level states where the action in non-optimal. These
are the two states whenDH is not on P2 and the other discs are stacked such that the
supplied abstract action chooses randomly amongst the base level actions.

In addition to these two states not having optimal actions, the actions in the other
states have not beenprovenoptimal by the algorithm; thet values across the states are
not constant. In order to find a provably optimal policy, TTree must continue dividing
the state. This division of the state does not necessarily monotonically improve the
policy found by TTree.

6 Example II

Consider the example shown in Figure 3. This figure shows a two dimensional state
space. The grey region on the right hand side of the state space is absorbing with a
reward of 50 for any action that enters that space. No other transitions in the space carry
any reward. There are two actions. In the top half of the state space, both actions move
the agent down in the same way. In the bottom half of the state space things are more
complex. ActionA0, shown with solid arrows, moves the agent up and to the right. It
does this in a way that takes two steps to reach the top half of the state space. In the
bottom half of the state space actionA1 moves the agent to the top left of the state
space.

Also shown as dotted lines are two potential divisions of this state space. One di-
vides the right of the state space from the left of the state space, and the other divides
the top from the bottom of the state space. With the state space undivided, then action
A0 has trajectories that reach the absorbing region on the right, whereas actionA1 loops
without gaining any reward on the left hand edge of the state space. ActionA0 will be
chosen as the optimal action in the abstract SMDP.

If we introduce the first of the two divisions and split the right hand side of the state
from the left, then the optimal actions in the abstract SMDP do not change. ActionA0

still moves the agent to the right and to the reward, and actionA1 moves the agent to



the left. In fact as long as the state is divided based on thex value of the state then it
doesn’t matter at whichx value the split occurs - actionA0 will still be the optimal
action in each of the new abstract states.

If we introduce the second of the two divisions, and divide the top from the bottom
of the state space, then we see that the optimal policy in the abstract SMDP is worse
after the split than before. To see this, let us construct the transition function for the
abstract SMDP. There are two abstract states, the top state,St, and the bottom state,Sb.
In St, both actions have the same transition function that move the agent either intoSb

or to the reward in a single step. InSb the actions have different effects.A0 moves the
agent intoSt in two steps, whereasA1 takes only one step to reachSt. Neither action
gets any direct reward. BecauseSt has positive value, and actionA1 gets the agent to
St faster than actionA0, actionA1 is selected inSb. This is far from optimal in the
non-abstract problem.

What is happening is that information is lost on abstract state transitions. Often this
is good because the information that is discarded is irrelevant. If the state is divided
in the wrong way then important information can be lost. This is what happens in the
example above. When the state is divided into top and bottom regions, thex location
of the agent is lost each time there is a state transition. This makes the action that flips
between abstract states faster look better than the one that flips between abstract states
more slowly, but which moves the agent to the right.

TTree usually makes the correct decision when dividing states. Thet values estimate
how much discounted reward an agent will receive for performing an action from a
particular point. In the example above, thet values for actionA0 would decrease from
right to left across the state. This is the largest variation and a split dividing the left of
the state from the right of the state would be introduced first.

TTree can make mistakes when there are not enought values sampled in a region,
particularly if the region has high dimensionality. In this case, random variation can
make less desirable splits be chosen first. It is important to note that even when this
occurs, future splits will be introduced that allow the optimal policy to be found.

7 Empirical Results

We have evaluated TTree in the Towers of Hanoi domain. This domain is well known in
the classical planning literature for the hierarchical structure of the solution; temporal
abstraction should work well. We compared TTree against two other algorithms, a well
known algorithm without abstraction, the Prioritized Sweeping algorithm [14] and an
algorithm similar to TTree that performs only state abstraction, the Continuous U Tree
algorithm [3].

Figure 4 shows a comparison of Prioritized Sweeping and TTree in the Towers of
Hanoi domain. The data shown are the averages over 15 trials. The error bars show
one standard deviation. For each trial the expected discounted reward was measured
periodically by running 250 trajectories from random start points. This was recorded
along with the number of samples the algorithm had taken from the generative model
and a time stamp The y-axis in Figure 4 is the average expected discounted reward.
The x-axis of (a) is the number of samples taken from the generative model. The x-
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(a) Reward vs. Samples (b) Reward vs. Time

Fig. 4. (a) A plot of Expected Reward vs. Number of Sample transitions taken from the world.
(b) The same data plotted against time instead of the number of samples

axis of (b) is the time stamp In (b) the TTree data finishes significantly earlier than the
Prioritized Sweeping data; TTree takes significantly less time per sample. Continuous
U Tree results are not shown as that algorithm was unable to solve the problem.

The Towers of Hanoi domain had sizeN = 8. We had a discount factor,γ = 0.99.
TTree was given policies for the threeN = 7 problems. The TTree constants were,
Na = 20, Nl = 20, Nt = 1 and MAXSTEPS= 400. Prioritized Sweeping used Boltz-
mann exploration with carefully tuned parameters (γ was also tuned to help Prioritized
Sweeping). The tuning of the parameters for Prioritized Sweeping took significantly
longer than for TTree. In fact, the TTree parameters shown are the second set we tested.

We also tested Continuous U Tree and TTree on smaller problems without addi-
tional macros. TTree with only the generated abstract actions was able to solve more
problems than Continuous U Tree. We attribute this to the fact that the Towers of Hanoi
is particularly bad for U Tree style state abstraction. In U Tree the same action is always
chosen in a leaf. However, it is never legal to perform the same action twice in a row
in Towers of Hanoi. TTree is able to solve these problems because the, automatically
generated, random abstract action allows it to gather more useful data than Continuous
U Tree.

In addition, the transition function of the abstract SMDP formed by TTree is closer
to what the agent will actually see in the real world than the transition function of
abstract SMDP formed by Continuous U Tree. TTree samples the transition function
assuming it might take a number of steps to leave the abstract state. Continuous U Tree
assumes it will leave the abstract state in one step. This makes TTree a better anytime
algorithm.

8 Conclusion

We have described the TTree algorithm for combining state and temporal abstraction in
Semi-Markov Decision Problems. We have given some detailed examples of the execu-
tion of the algorithm on two separate tasks. The example in the Towers of Hanoi domain
emphasizes the anytime nature of the algorithm. The second example shows some of



the pitfalls of incorrect state abstraction and how TTree avoids those pitfalls. We have
also supplied empirical results that show the algorithm is more effective in practice than
another state abstraction algorithm, and that when extra macros are supplied, TTree is
able to make use of these to further improve its results.
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